

PSO-TUNED PID SLIDING SURFACE OF SLIDING MODE CONTROL FOR AN ELECTRO-HYDRAULIC ACTUATOR SYSTEM

CHONG CHEE SOON

MASTER OF SCIENCE
IN ELECTRICAL ENGINEERING

2017

Faculty of Electrical Engineering

PSO-TUNED PID SLIDING SURFACE OF SLIDING MODE CONTROL FOR AN ELECTRO-HYDRAULIC ACTUATOR SYSTEM

Chong Chee Soon

Master of Science in Electrical Engineering

2017

PSO-TUNED PID SLIDING SURFACE OF SLIDING MODE CONTROL FOR AN ELECTRO-HYDRAULIC ACTUATOR SYSTEM

CHONG CHEE SOON

A thesis submitted in fulfilment of the requirement for the award of Master of Science in Electrical Engineering

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MELAKA MALAYSIA

2017

DECLARATION

I declare that this thesis entitled "PSO-Tuned PID Sliding Surface of Sliding Mode Control for an Electro-Hydraulic Actuator System" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in the candidature of any other degree.

Signature	:	
Name	:	Chong Chee Soon
Date	:	

APPROVAL

I hereby declare that I have read this dissertation and in my opinion, this dissertation is
sufficient in terms of scope and quality for the award of Master of Science in Electrica
Engineering.

Signature	:	
Supervisor Name	:	Dr. Rozaimi Bin Ghazali
Date	•	

DEDICATION

To my beloved family members

ABSTRACT

It is well known that the control engineering applications are widely implemented in the industrial fields through the assistance of the Electro-Hydraulic Actuator (EHA) system. The EHA system is commonly exposed to the parameter variations, disturbances, and uncertainties, which are caused by the changes in the operating conditions including supply pressure, total moving mass, and friction. Thus, due to the changes and uncertain operating conditions, an optimization to the system's controller is necessary in order to obtain a more robust system performance. This thesis presents the optimization on the Proportional-Integral-Derivative (PID) sliding surface of the Sliding Mode Control (SMC) scheme by using Particle Swarm Optimization (PSO) algorithm, applied to EHA system particularly for positioning tracking control. The EHA system is modelled according to the theories of the physical law, which taking into account the effect of nonlinearities, uncertainties, and disturbances occurred in the system. A robust control strategy is then formulated based on the control laws of the SMC, where the design of the sliding surface is integrated with the PID controller. The proposed control strategy is designed based on the EHA system that is subjected to the nonlinear characteristics and model uncertainties. Then, the PSO, which is based on the inspiration of the swarming behaviour has been utilized to seek for the optimum PID sliding surface parameters. The conventional tuning technique for the PID controller, which is known as Ziegler-Nichols (ZN) has been used to obtain the initial value of the PID sliding surface. Finally, the comparison has been made by applying the obtained parameters through the ZN and PSO tuning technique to the conventional PID controller and the PID sliding surface of the SMC. The findings indicate that the proposed robust SMC with PSO-PID sliding surface is preserved to ensure the actuator robust and stable under the variation of the system operating condition, which produce 26% improvement in terms of robustness characteristic that gave a better positioning tracking performance and reduced the controller effort as compared to the conventional PID controller.

ABSTRAK

Seperti yang diketahui aplikasi kejuruteraan kawalan telah meluas digunakan di bidang industri dengan bantuan sistem penggerak elektro-hidraulik (EHA). Sistem EHA biasanya terdedah kepada perubahan-perubahan parameter, gangguan, dan ketidakpastian, yang disebabkan oleh perubahan yang berlaku di dalam keadaan operasi termasuk bekalan tekanan, jumlah jisim bergerak, dan geseran. Oleh itu, disebabkan oleh perubahan dan ketidakpastian di dalam keadaan operasi, pengoptimuman terhadap pengawal di dalam sistem diperlukan untuk mendapatkan prestasi sistem yang lebih tegap. Tesis ini mengemukakan pengoptimuman pada permukaan gelangsar pengawal kadaran-kamiranterbitan (PID) yang terdapat di dalam kawalan ragam gelangsar (SMC) dengan menggunakan algoritma pengoptimuman pengumpulan zarah (PSO), yang digunakan pada sistem penggerak elektro-hidraulik (EHA) khususnya untuk kawalan penjejakan kedudukan. Sistem EHA telah dimodel berdasarkan teori hukum fizik, yang mengambilkira kesan ketaklinearan, ketidakpastian, dan gangguan yang berlaku di dalam sistem. Satu strategi kawalan tegap kemudianya dirumus berdasarkan hukum kawalan SMC, dimana rekabentuk permukaan gelangsar disepadukan dengan pengawal PID. Strategi kawalan yang dicadangkan telah direkabentuk berdasarkan sistem EHA yang telah terdedah kepada ciriciri ketaklinearan dan ketidakpastian model. Kemudiannya, PSO yang berdasarkan inspirasi kelakuan pengumpulan telah digunakan bagi mencari parameter permukaan gelangsar PID yang optimum. Teknik penalaan pengawal PID yang konvensional, yang dikenali sebagai Ziegler-Nichols (ZN) telah digunakan untuk mendapatkan nilai awal permukaan gelangsar PID. Akhirnya, perbandingan telah dibuat dengan menggunakan nilai-nilai yang telah diperolehi melalui teknik penalaan ZN dan PSO terhadap pengawal konvensional PID dan permukaan gelangsar PID bagi SMC. Keputusan menunjukkan bahawa pengawal tegap SMC dengan permukaan gelangsar PSO-PID dapat dikekalkan dalam memastikan ketegapan dan kestabilan penggerak di bawah perubahan keadaan operasi sistem, yang menghasilkan penambahbaikan sebanyak 26% dari ciri ketegapan dan memberi prestasi penjejakan kedudukan yang lebih baik dan meringankan daya pengawal berbanding dengan pengawal PID yang konvensional.

ACKNOWLEDGEMENTS

First and foremost, I would like to take this opportunity to express my sincere acknowledgement to my supervisor Dr. Rozaimi Bin Ghazali from Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka (UTeM) for his supervision, support and encouragement towards the completion of this thesis.

I would also like to express my profound gratitude to Mr. Hazriq Izzuan Bin Jaafar from Faculty of Electrical Engineering, UTeM, who is the co-supervisor of this project, and the members of CeRIA laboratory for their advice and suggestions during the establishment of this thesis. All their recommendations and advice have provided me with an insightful view in the development of the project.

Special thanks to Fundamental Research Grant Scheme (FRGS) Grant No. FRGS/1/2014/TK03/FKE/02/F00214, Short Term Grant No. (PJP/2015/FKE(8C)/S01440), Centre for Robotics and Industrial Automation (CeRIA), and Ministry of Higher Education (MOHE) for the financial and technical support that had been given throughout this project. Last but not least, special thanks to all my family members, peers, and UTeM staff for their moral support. Thanks to everyone that were involved directly or indirectly in the development of this project and the writing of this thesis.

TABLE OF CONTENTS

			PAGES
DEC	LARA	ATION	
APPI	ROVA	L	
DED	ICAT	ION	
ABS	ΓRAC	T	i
ABS	ΓRAK	· •	ii
ACK	NOW	LEDGEMENTS	iii
TAB	LE OI	FCONTENTS	iv
LIST	OF T	ABLES	vi
LIST	OF F	IGURES	vii
LIST	OF A	BBREVIATIONS	ix
LIST	OF S	YMBOLS	xi
LIST	OF P	UBLICATIONS	xiv
LIST	OF A	PPENDIX	xvii
CHA	PTER		
1.	INT	RODUCTION	1
	1.1	Introduction to Electro-hydraulic Actuator System	1
	1.2	Research Background	4
	1.3	Problem Statement	8
	1.4	Research Objectives	10
	1.5	Scope of Work	10
	1.6	Organization of the Thesis	11
2.	LIT	ERATURE REVIEW	13
	2.1	Introduction	13
	2.2	Linear Control Strategy	13
		2.2.1 Existing Linear Control Strategies in EHA system	15
	2.3	Nonlinear Control Strategy	19
		2.3.1 Existing Non-linear Control Strategies in EHA system	21
		2.3.1.1 Variable Structure Control and Sliding Mode Cont	rol
		Approaches	21
		2.3.1.2 Back-stepping Control Approach	25
		2.3.1.3 Quantitative Feedback Theory Approach	29
	2.4	Intelligent Control Strategy	32
		2.4.1 Existing Intelligent Control Strategies in EHA System	33
	2.5	Optimization in the Control Strategies of the EHA System	38
		2.5.1 Classical Algorithm	39
		2.5.2 Heuristic Algorithms	40
		2.5.3 Metaheuristic Algorithms	41
		2.5.3.1 Metaheuristic Based Particle Swarm Optimization	41
		2.5.3.2 Metaheuristic Based Genetic Algorithm	43
		2.5.3.3 Metaheuristic Based Differential Evolution	44
	2.6	Summary of the Existing Optimization Techniques and	
		Control Strategies	44

3.	ME'	ΓHODOLOGY	47
	3.1	Introduction	47
	3.2	Modelling of the EHA System	49
		3.2.1 Controlled Valve Systems	50
		3.2.2 Actuator in the Hydraulic System	52
	3.3	Sliding Mode Control Approach	55
		3.3.1 Overview on the Sliding Mode Control Approach	56
		3.3.2 Control Law in the Design of Sliding Mode Control	57
		3.3.3 Sliding Surface Design with PID Structure	59
	3.4	Computational Optimization Algorithms	62
		3.4.1 Implementation of Particle Swarm Optimization Algorithm	64
		3.4.2 Parameters Selection for Particle Swarm Optimization Algorit	thm67
		3.4.3 Inertia Weight for Particle Swarm Optimization Algorithm	69
		3.4.4 Constriction Factor for Particle Swarm Optimization Algorith	m 70
	3.5	Integration of the Particle Swarm Optimization Algorithm to the Slid	ing
		Mode Control with PID Sliding Surface	71
	3.6	References Trajectory for Positioning Control	72
		3.6.1 Step Reference Signal	73
		3.6.2 Sinusoidal Reference Signal	74
		3.6.3 Multi-step and Multi-sine References Trajectory	75
	3.7	Controller Performances Analysis	78
		3.7.1 Transient Response and Steady-State Error Analysis	78
		3.7.2 Root Mean Square Error	81
		3.7.3 Robustness Index	82
	3.6	Summary	83
4.	RES	ULTS AND DISCUSSION	85
	4.1	Introduction	85
	4.2	Simulation Results and Discussion	86
		4.2.1 Results for Controller Performances by using	
		Step Reference Signal	86
		4.2.2 Results for Controller Performances by using	
		Sinusoidal Reference Signal	90
		4.2.3 Results for Controller Performances by using	
		Multiple Trajectory Reference Signal	93
		4.2.4 Controller Robustness Analysis	96
	4.3	Summary	100
5.	CO	NCLUSION AND RECOMMENDATIONS FOR FUTURE WORK	X 102
	5.1	Summary of the Research	102
	5.2	Achievement of Research Objectives	103
	5.3	Significant Contributions of Research Output	104
	5.4	Recommendations for Future Work	104
REF	EREN	CES	106
	FNDI		130

LIST OF TABLES

TABLE	TITLE	PAGE
3.1	The parameters in the EHA system	55
3.2	List of terms and descriptions for the general equation of PSO	65
4.1	PID variables value obtained through ZN and PSO tuning method	89
4.2	Transient response analysis for step input reference signal	90
4.3	RMSE for sinusoidal input reference signal	92
4.4	RMSE for multi-step input reference signal	94
4.5	RMSE for multi-sine input reference signal	96
4.6	Robustness analysis for SMC and PID controller	99

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	General framework of linearization process	14
2.2	Typical nonlinear control system framework	20
2.3	General components for fuzzy intelligent controller system	32
3.1	The configuration of the EHA System	48
3.2	Electro-hydraulic servo-valve	51
3.3	Asymmetrical cylinder actuator	54
3.4	The general structure of SMC	57
3.5	The development process of the PSO algorithm	66
3.7	Physical model of the EHA system developed by using	
	MATLAB/Simulink	71
3.8	The block diagram of the EHA system	72
3.9	Step reference input signal	74
3.10	Sinusoidal reference trajectory	75
3.11	Multiple-step reference trajectory	76
3.12	Multiple-sine reference trajectory	77
3.13	Transient and steady-state error analysis	80
4.1	The response of the EHA system in open-loop and closed-loop	
	without the assistant of the controller	87

4.2	.2 The output response for SMC and PID controller by using	
	ZN and PSO tuning method	88
4.3	The output response of sinusoidal input reference signal	91
4.4	The output response of multi-step input reference signal	94
4.5	The output response of multi-sine input reference signal	95
4.6	Robustness analysis based on PID controller	97
4.7	Robustness analysis based on SMC	97
4.8	Controllers robustness analysis implemented in nominal plant	
	and pressure variation for the EHA system	98

LIST OF ABBREVIATIONS

APA - Absolute positioning accuracy

ABSC - Adaptive back-stepping control

ACO - Ant colony optimization

ABC - Artificial bee colony

AVSS - Active vehicle suspension system

BC - Block control

CPLD - Complex programmable logic device

CS - Cuckoo search

DE - Differential evolution

EHA - Electro-hydraulic actuator

EHS - Electro-hydraulic servo

FSC - Fuzzy state controller

FNN - Fuzzy neural-network

FLC - Fuzzy logic controller

GSP - Gough stewart platform

GA - Genetic algorithm

HLE - Human lower-limb exoskeleton

HFPIDCR - Hybrid FPID controller with couple rules

IO - Input-output

LQG - Linear quadratic gaussian

LQR - Linear quadratic regulator

MRAC - Model references adaptive control

MPA - Mean positioning accuracy

NN - Neural network

N-M - Nelder mead

PSO - Particle swarm optimization

PID - Proportional-integral-derivative

PVSS - Passive vehicle suspension system

QFT - Quantitative feedback theory

RI - Robustness index

RMSE - Root-mean-square-error

RMSE_{nom} - Root-mean-square-error for nominal plant condition

RMSE_{var} - Root-mean-square-error for plant's parameters varied condition

RT - Reference trajectory

SMC - Sliding mode control

SMCF - Sliding mode control and filter

SISO - Single-input and single-output

SA - Simulated annealing

VSC - Variable structure control

VSF - Variable structure filter

WPA - Weighted positioning accuracy

ZN - Ziegler-Nichols

LIST OF SYMBOLS

 V_{ν} - The voltage signal flow to the torque of the motor

 L_c - The inductance in the coil

 R_c - The resistance in the coil

 I_{ν} - The current signal flow to the servo-valve

 Q_R - The return flow of the fluid

 P_R - The return pressure of the fluid

 Q_S - The supply flow of the fluid

 P_S - The supply pressure of the fluid

 Q_1, Q_2 - The fluid flow in control port A and B

 P_1, P_2 - The pressure flow in control port A and B

 x_v - The position of the spool-valve

 ζ_{ν} - The damping ratio of the servo-valve

 ω_{ν} - The natural frequency of the servo-valve

Q - The flow rate of the fluid

 K_{ν} , $K_{\nu 1}$, $K_{\nu 2}$ - The gain of the servo-valve

 ΔP_{ν} - The pressure difference in the servo-valve

 P_s - The supply pressure

 V_t - The piping volume connected between the pump and the servo-valve

 Q_{pump} - The constant flow rate from the pump volume

 Q_L - The flow rate from the servo-valve volume

 V_1, V_2 - The volume of each chamber in hydraulic cylinder actuator

 V_{line} - The pipeline volume

 x_s - The cylinder total stroke

 A_1, A_2 - The chamber area respectively

 x_p - The actuator current position

 q_1, q_2 - The external leakage of hydraulic actuator

 q_{12}, q_{21} - The internal leakage of hydraulic actuator

 K_s - The coefficient of the spring

 B_s - The coefficient of the damper

 M_p - The moving mass

 F_p - Total force of the hydraulic actuator

 k_p, k_i, k_d - The gain for proportional, integral, and derivative

 λ - - forgetting factor

 φ - matrix regression

i - The value of particle or agent

d - The dimension of the problem

w - The inertia weight

k - The iteration of particle or agent

k+1 - The future iteration of particle or agent

v - The velocity of the algorithm

s - The searching point of the algorithm

 c_1 - The self-coefficient

 c_2 - The group / swarm-coefficient

rand₁ - The random value of self-coefficient

rand₂ - The random value of group-coefficient

pbest - The particle's self or personal best value

gbest - The particle's group / swarm or global best value

LIST OF PUBLICATIONS

List of Journals

Published:

- Soon, C. C., Ghazali, R., Jaafar, H. I. and Hussein, S. Y. S., 2015. "PID Controller Tuning Optimization using Gradient Descent Technique for an Electro-hydraulic Servo System," *J. Teknol. Sci. Eng.*, vol. 77, no. 21, pp. 33–39. (Indexed by SCOPUS)
- Soon, C. C., Ghazali, R., Jaafar, H. I., Hussein, S. Y. S., Sam, Y. M. and Rahmat, M. F., 2016. "Controller Parameter Optimization for an Electro-hydraulic Actuator System based on Particle Swarm Optimization," *J. Teknol. Sci. Eng.*, vol. 78, no. 6–13, pp. 101–108. (Indexed by SCOPUS)

Accepted for Publication:

- Soon, C. C., Ghazali, R., Jaafar, H. I., Hussein, S. Y. S., Sam, Y. M. and Rahmat, M.
 F., 2016. "The Effects of Parameter Variation in Open-Loop and Closed-Loop Control Scheme for an Electro-hydraulic Actuator System," *Accepted for publication in International Journal of Control and Automation*, vol. 9, no. 11, Notice of Acceptance: 20 Jan 2016, Expected to be Published: Nov 2016. (indexed by SCOPUS)
- Soon, C. C., Ghazali, R., Jaafar, H. I., Hussein, S. Y. S., Rozali, S. M. and Rashid,
 M. Z. A., 2016. "Position Tracking Optimization for an Electro-hydraulic Actuator System," Accepted for publication in Journal of Telecommunication, Electronic and

- Computer Engineering (JTEC). Notice of Acceptance: 26 May 2016. (indexed by SCOPUS)
- Soon, C. C., Ghazali, R., Jaafar, H. I., Hussein, S. Y. S., Rozali, S. M. and Rashid,
 M. Z. A., 2016. "Optimization of Sliding Mode Control Using Particle Algorithm
 for an Electro-Hydraulic Actuator System," Accepted for publication in Journal of
 Telecommunication, Electronic and Computer Engineering (JTEC). Notice of
 Acceptance: 26 May 2016. (indexed by SCOPUS)

List of Conferences

Published:

- Soon, C. C., Ghazali, R., Jaafar, H. I. and Hussein, S. Y. S., 2015. "Optimizing PID Controller for an Electro-hydraulic Servo System via Gradient Descent Technique,"
 Proceedings of Mechanical Engineering Research Day 2015 (MERD'15), 31 Mac,
 Melaka, Malaysia. (Indexed by Thomson Reuters, Web of Science)
- 2. Soon, C. C., Ghazali, R., Jaafar, H. I. and Hussein, S. Y. S., 2016. "Optimal PID Sliding Surface for Sliding Mode Control based on Particle Swarm Optimization Algorithm for an Electro-hydraulic Actuator System," *Proceedings of Mechanical Engineering Research Day 2016 (MERD'16)*, 31 Mac, Melaka, Malaysia. (indexed by Thomson Reuters, Web of Science)

Accepted for Publication:

1. Soon, C. C., Ghazali, R., Jaafar, H. I. and Hussein, S. Y. S., 2016. "Robustness Analysis of an Optimized Controller via Particle Swarm Algorithm," *Accepted for publication in International Conference on Computational Science and Engineering*,

(C) Universiti Teknikal Malaysia Melaka

ICCSE. Notice of Acceptance: 29 April 2016. Kota Kinabalu, Sabah, Malaysia. (Indexed by SCOPUS)

LIST OF APPENDIX

APPENDIX	TITLE	PAGE
A	Particle Swarm Optimization Source Code	111

CHAPTER 1

INTRODUCTION

1.1 Introduction to Electro-hydraulic Actuator System

The power distribution by fluid power is historical and well acknowledge discipline, which is an energy transmitted through the medium of pressurized fluid. The growing of fluid power technology has fulfilled the demand in the control of an increased quantities of mass with higher precision and acceleration through the lowest power consumption. The hydraulic servomechanism with the characteristic of high power-to-weight ratio became an ideal component, especially dealing with the requirement of high weight and precise motion with the limited working space.

In the areas of manufacturing assembly line, machining tools, and aerodynamic control, quick response with accurateness at the high power level are the crucial factors that yielding the integration of the electronic components into the hydraulic servomechanism. In the field of electronics, the data and information can be easily processed and transduced (Maskrey and Thayer, 1978), while the demand in high force and high speed can be delivered by the hydraulic servomechanism. Thus, an integration that absorbs the features of both electronic and hydraulic servomechanism forming the Electro-Hydraulic Actuator (EHA) system, which produces more reliable, more efficient, and better performance that could meet one expectations.

(C) Universiti Teknikal Malaysia Melaka