

Faculty of Electronic and Computer Engineering

INTEGRATION OF WIDEBAND LOW NOISE AMPLIFIER WITH NOTCH FILTER USING DEFECTED MICROSTRIP STRUCTURE

Nasrullah Bin Saifullah

Master of Science in Electronic Engineering

2017

C Universiti Teknikal Malaysia Melaka

INTEGRATION OF WIDEBAND LOW NOISE AMPLIFIER WITH NOTCH FILTER USING DEFECTED MICROSTRIP STRUCTURE

NASRULLAH BIN SAIFULLAH

A thesis submitted in fulfillment of requirements for the degree of Master of Science in Electronic Engineering

Faculty of Electronic and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2017

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitles "Integration of Wideband Low Noise Amplifier with Notch Filter using Defected Microstrip Structure" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	·
Name	: <u>NASRULLAH BIN SAIFULLAH</u>
Date	·

APPROVAL

I hereby declare that I have read this thesis and in my opinion, this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electronic Engineering.

Signature	:	
Name	:	ASSOC. PROF. DR. ZAHRILADHA BIN ZAKARIA
Date	:	

DEDICATION

To my beloved mother and father

ABSTRACT

Low noise amplifier is a crucial device in microwave wireless communication system which typically located in receiver parts. Wider bandwidth of low noise amplifier is theoretically much harder to be designed compared with narrowband. There are some designs has been presented in this thesis which covers wideband and ultra-wideband produced using Advanced Design System (ADS). Besides that, this research presents new methods designing low noise amplifier at wideband (4 GHz - 7 GHz) and ultra-wideband (3.1 GHz - 10.6 GHz) which cover 3 GHz and 7.5 GHz of bandwidth respectively. The first design operated at UWB frequencies implementing negative feedback which provide gain flatness throughout the frequency band. Furthermore, resistive matching provides good input and output matching for wide frequency range. The second design introduces inductive source degeneration which provides an improvement on S11 and S22 with very small degradation of noise figure. This design being supported by multi - section quarter wave transformer matching which provides wideband characteristic to the design. The third design is an improvement of second design by introducing balanced topology that provides good S11 and S22. The forth design implemented a wideband amplifier which designed using distributed amplifier with inductive source degeneration and multi-section guarter wave transformer matching. However, when designing wider bandwidth low noise amplifier, some existing standard such as IEEE 802.11 WLAN which operate at 5 GHz may cause an interference at the particular frequency band. As a way to prevent the interference from the current system that operates in the frequency band, a defected structure was presented to produce a notch response. Several designs of DMS was made which is G - Shaped, C -Shaped and U - Shaped to provide the best attenuation with desired rejection band. The best design which is U – Shaped DMS which has 15 dB attenuation and 1 GHz of rejection band. The integration of U – Shaped DMS habeen done for all of the design and the best design achieved is the second design which provide S11 and S22 of less than -8 dB from 3.1 GHz - 5 GHz and 6 GHz - 10.6 GHz. This design provide gain of more than 10 dB and noise figure of less than 4 dB. The achieved attenuation ratio is 26 dB with nearly 1 GHz rejection bandwidth. The benefit of integration of low noise amplifier with notch filter is the reduction of overall size while providing amplification and attenuation function simultaneously. This design is considered appropriate and a different solution for wireless and radar application without any additional or external connection between low noise amplifier and band – stop filter.

ABSTRAK

Penguat hingar rendah merupakan alat penting dalam sistem komunikasi tanpa wayar gelombang mikro yang biasanya terletak di bahagian penerima. Jalur lebar yang lebih tinggi untuk penguat hingar rendah adalah secara teori jauh lebih sukar untuk direkabentuk jika dibandingkan dengan jalur sempit. Di samping itu, kajian ini membentangkan kaedah baru dalam merakabentuk penguat hingar rendah pada jalur lebar (4 - 7 GHz) dan jalur lebar ultra (3.1 – 10.6 GHz) yang masing - masing meliputi 3 GHz dan 7.5 GHz lebar jalur. Terdapat beberapa rekabentuk yang dibentangkan dalam tesis ini yang meliputi jalur lebar dan jalur lebar ultra dihasilkan menggunakan perisian Advanced Design System (ADS). Rekabentuk pertama beroperasi pada frekuensi UWB melaksanakan maklum balas negatif memberikan kerataan keuntungan sepanjang jalur frekuensi. Tambahan pula, pemadanan rintangan menyediakan masukan dan keluaran kehilangan balikan yang baik sepanjang jalur frekuensi. Rekabentuk kedua memperkenalkan kemerosotan sumber induktif yang menyediakan penambahbaikan pada masukan dan keluaran kehilangan balikan dengan kemerosotan kecil pada angka hingar. Ia disokong oleh pelbagai - seksyen gelombang suku pengubah dengan menyediakan ciri – ciri jalur lebar. Rekabentuk ketiga adalah hasil peningkatan rekabentuk kedua dengan menggunakan topologi seimbang yang menyediakan masukan dan keluaran kehilangan balikan yang tinggi. Rekabentuk keempat melaksanakan Satu rekabentuk jalur lebar direkabentuk menggunakan penguat diedarkan dengan sumber degenerasi induktif dan pelbagai seksyen suku gelombang pengubah. Walau bagaimanapun, apabila merekabentuk penguat hingar rendah berjalur lebar tinggi, beberapa standard yang sedia ada seperti IEEE 802.11 WLAN yang beroperasi pada 5 GHz boleh menyebabkan gangguan pada jalur frekuensi tertentu. Sebagai cara untuk menghalang gangguan dari sistem semasa yang beroperasi dalam frekuensi tersebut, struktur hakisan telah diperkenalkan untuk menghasilkan tindakbalas notch. Beberapa rekabentuk DMSs telah dibuat iaitu berbentuk - G, berbentuk - C dan berbentuk - U untuk menyediakan kelemahan yang tertinggi dengan jalur penolakan yang dikehendakki. Rekabentuk DMS yang terbaik berbentuk - U vang mempunyai 15 dB kelemahan dan 1 GHz jalur penolakanReka bentuk terbaik dicapai adalah reka bentuk kedua yang menyediakan S11 dan S22 kurang daripada -8 dB dari 3.1 GHz – 5 GHz dan 6 GHz – 10.6 GHz. Rekabentuk ini juga menyediakan keuntungan lebih dari 10 dB dan angka hingar kurang dari 4 dB. Kehilangan balikan yang dicapai ialah 26 dB dengan jalur penolakan menghampiri 1 GHz. Manfaat integrasi penguat hingar rendah yang rendah dengan penapis takuk adalah pengurangan saiz keseluruhan sambil memberikan penguatan dan fungsi pengecilan serentak. Reka bentuk ini dianggap sesuai dan penyelesaian yang berbeza untuk aplikasi tanpa wayar dan radar tanpa apa-apa sambungan tambahan atau luar Antara penguat hingar rendah dengan perhentian jalur.

ACKNOWLEDGEMENTS

First and foremost, I would like to take this opportunity to express my sincere acknowledgement to my supervisor Prof. Madya Dr. Zahriladha bin Zakaria from the Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka (UTeM) for his essential supervision, support, and encouragement towards the completion of this thesis.

I would also like to express my greatest gratitude to Azahari bin Salleh from Faculty of Electronic and Computer Engineering, co-supervisor of this research for his advice and suggestions in the evaluation of low noise amplifier. Special thanks to UTeM short-term grant funding for the financial support throughout this project.

Particularly, I would also like to express my deepest gratitude to my beloved mother and father, Saifullah bin Samsudin and Akbari Bee binti Badrulduja. Next, my postgraduate colleagues, Amyrul, Aizat, Anthony and Nazirul for their help completing this research.

TABLE OF CONTENTS

DECLARATION

ABSTRAK

CHAPTER

1.0

1.1

1.2

1.3

1.4

1.5

2.0

2.1

2.2

2.3

2.4

1.

2.

		2.4.2.5	Balanced Amplifier	24
	2.4.3	Matching	g Network	25
		2.4.3.1	Quarter Wave Transformer Matching	26
		2.4.3.2	Multisection Quarter Wave Transformer Matching	28
2.5	Require	ement of L	NA design	30
	2.5.1	Noise Fi	gure	30
	2.5.2	Two - po	ort power gain	33
		2.5.2.1	Operating Power Gain	33
		2.5.2.2	Transducer Power Gain	34
		2.5.2.3	Available Power Gain	34
	2.5.3	S – Parat	meter	35

2.5.3 S – Parameter

C) Universiti Teknikal Malaysia Melaka

	2.5.4	Stability		36
		2.5.4.1	Unconditional Stability Test	37
2.6	Microst	rip Structur	re	37
	2.6.1	Effective	Dielectric Constant	39
2.7	Review	of Low No	bise Amplifier and DMS notch filter	40
	2.7.1	Current D	evelopment of wideband Low Noise Amplifier	40
		using Mic	erostrip Technology	
	2.7.2	Current D	evelopment of Defected Structure	48
	2.7.3	Current D	evelopment of Integrated Low Noise Amplifier	54
20	C	and Notch	n Filter	(1
2.8	Summa	ry		61
RES	EARCH	METHO	DOLOGY	62
3.0	Introdu	ction		62
3.1	Flow C	hart of the	Project	63
3.2	Design	Specification	on of Low Noise Amplifier	66
3.3	Selectio	on of Micro	wave Transistor	67
3.4	Bias Po	int Selectio	n	68
3.5	Stabilit	y Analysis		71
3.6	Two po	rt power ga	ain	72
3.7	Noise F	igure calcu	lation	74
3.8	Design	1: Distribut	ted amplifier with resistive matching and	75
	negativ	e feedback		
	3.8.1	Stability A	Analysis	75
	3.8.2	Matching	Network	78
	3.8.3	Layout Tr	ansformation	80
3.9	Design	2: Negative	e feedback and inductive source degeneration	82
	with mu	ulti-section	quarter wave transformer matching	
	3.9.1	Stability A	Analysis	82
	3.9.2	Matching	Network	85
	3.9.3	Design wi	ith ideal Component	89
	3.9.4	Design wi	ith Microstrip Component	89
2 10	3.9.5	Layout Tr		91
3.10	Design	3: Balance	d Amplifier	93
	3.10.1	Design of	Quadrature Hybrid Coupler in Ideal Component	94
	5.10.2 2.10.2	Design Q	Delenced emplifier in microstrip component	95
2 1 1	5.10.5 Decim	A: Distribut	tod A mulifier with inductive source degeneration	90
3.11	Design	4. Distribu	userter wave transformer matching	98
	3 11 1	Stability /	Analysis	98
	3 11 2	Matching	Network	100
	3 11 3	Design wi	ith Ideal Component	100
	3 11 4	Design wi	ith Microstrin Component	103
	3 11 5	Lavout Tr	ransformation	106
3 12	Defecte	d Structure		108
5.12	3 12 1	Modelling	Structure of Defected Microstrip Structure (DMS)	108
	0.1.2.1	3.12.1.1	Modelling Structure of G – Shaped DMS	109
		3.12.1.2	Modelling Structure of C – Shaped DMS	110
		3.12.1.3	Modelling Structure of U – Shaped DMS	110

3.

C Universiti Teknikal Malaysia Melaka

	3.13	Integra	ted Low Noise Amplifier with DMS Notch Filter	111
		3.13.1	Design 1: Integrated Negative feedback	111
			and inductive source degeneration with multi-section quarter	
			wave transformer matching with U – Shaped DMS	
		3.13.2	Design 2: Integrated Negative feedback and	113
			inductive source degeneration with multi-section	
			quarter wave transformer matching with U – Shaped DMS	
		3.13.3	Design 3: Integrated Balanced Amplifier with U – Shaped DMS	\$ 113
		3.13.4	Design 4: Integrated Distributed Amplifier	115
			with inductive source degeneration and multi-section	
			quarter wave transformer matching with U – Shaped DMS	
	3.14	Fabrica	ation and Measurement Process	117
	3.15	Summa	ary	117
4.	DES	IGN OF	F LOW NOISE AMPLIFIER	118
	4.0	Introdu	iction	118
	4.1	Transis	tor Analysis	118
		4.1.1	Biasing Analysis	119
		4.1.2	Stability Analysis	121
		4.1.3	Two Port Power Gain Analysis	122
	4.2	Distrib	uted amplifier with resistive matching	123
		and neg	gative feedback	104
		4.2.1	Stability Analysis	124
		4.2.2	S – Parameter Simulation	128
		4.2.3	Nosie Figure	129
	4.2	4.2.4 D	Layout Simulation	130
	4.3	Design	2: Negative reedback and inductive source degeneration	131
		with m	ulti-section quarter wave transformer matching	101
		4.3.1	Inductive Source Degeneration with Negative Feedback	131
		122	Analysis Motohing Analysis	124
		4.3.2	Matching Analysis Design with Ideal Component	134
		4.3.3	Design with Ideal Component	133
		4.5.4	Levent Simulation	120
	1 1	4.3.3 Design	2: Balanced Amplifier	137
	4.4		Simulation of Quadrature Hybrid Coupler in Ideal Component	130
		4.4.1	Simulation of Quadrature Hybrid Coupler in Microstrip	139
		4.4.2	Component	139
		113	Balanced Amplifier Design	1/0
	15	Design	A: Distributed Amplifier with inductive source	1/12
	ч.5	degene	ration and multi-section quarter wave transformer matching	142
		4 5 1	Inductive Source Degeneration Analysis	142
		4.5.1	Design in Ideal Component	145
		453	Design with Microstrin Component	146
		454	Lavout Simulation	146
	46	Compa	rison of Low Noise Amplifier with Other Researcher	147
	47	Summe	arv	150
	•••	~ ********	ن - ۲	

5.	INT	EGRAT	TED LOW NOISE AMPLIFIER AND DEFECTED	
	STR	RUCTU	RE	151
	5.0	Introdu	action	151
	5.1	Simula	ation of Defected Microstrip Structure (DMS)	151
		5.1.1	Defected Microstrip Structure (DMS) with Conventional G-shaped	152
		5.1.2	Defected Microstrip Structure (DMS) with Conventional C-shaped	153
		5.1.3	Defected Microstrip Structure (DMS) with Conventional U-shaped	155
	5.2	Integra	ated DMS with Low Noise Amplifier Microstrip Structure	156
		5.2.1	Integrated U – Shaped with Distributed amplifier with resistive matching and negative feedback	156
		5.2.2	Integrated U – Shaped with negative feedback and inductive source degeneration with multi-section quarter wave transformer matching	161
		5.2.3	Integrated U – Shaped with Balanced Amplifier	166
		5.2.4	Integrated U – Shaped with Distributed Amplifier with inductive source degeneration and multi-section guarter wave transformer matching	168
	5.3	Compa Respon	arison of Integrated Low Noise Amplifier and Notch nse with Other Researchers	173
	5.4	Summ	ary	175
6.	CO	NCLUSI	ION AND FUTURE WORK	177
	6.0	Conclu	ision	177
	6.1	Future	Work and Recommendation	180
REF	EREN	CES		181
AIF	LINDI	ULD .		109

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Five basic dc biasing for GaAs FET	15
2.2	Performance comparison between previous researched for	
	microstrip low noise amplifier	46
2.3	Performance comparison between previous achievements for low no	oise
	amplifier integrated notch filter	60
3.1	Specification of integrated Ultra-wideband LNA with notch filter	67
3.2	Comparison of Gain and Noise Figure of Microwave Transistor	
	(Gain and Noise Figure in dB)	68
3.3	Conversion of physical length and width of microstrip transmission	
	lines	90
3.4	Conversion of physical length and width of microstrip transmission	
	lines	95
3.5	Conversion of physical length and width of microstrip transmission	
	lines	104
4.1	Comparison between simulated and calculated value of the gains	123
4.2	Comparison between previous researchers with this work based on	
	wideband Low Noise Amplifier	149
5.1	Comparison between previous researchers and this work based on	
	Integrated low noise amplifier with notch filter	175

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Block Diagram of a simplified RF receiver	2
1.2	The amplitude response of Notch Filter	3
2.1	Comparison between the narrowband, moderate band and wideband	1
	Response	14
2.2	Common source Topology	17
2.3	Cascoded Topology	18
2.4	Implementation of resistor feedback (a) Series feedback resistor,	
	(b) Shunt feedback resistor	19
2.5	Equivalent circuit of GaAs FET transistor (a) Without negative	
	feedback, (b) With negative feedback	19
2.6	Model of negative feedback of LNA	22
2.7	Equivalent circuit of GaAs FET, (a) without inductive source	
	degeneration, (b) with inductive source degeneration	23
2.8	Balanced amplifier topology 90° hybrid coupler	24
2.9	Basic Lossless matching network	26
2.10	Single section quarter wave matching	26
2.11	Quarter wave transformer characteristic for single section	27
2.12	Single quarter wave transformer with two reflecting junction	28
2.13	Three section quarter-wave transformer	30

2.14	Illustration of signal to noise ratio in system	31
2.15	Two-port network showing incident and reflected waves	35
2.16	Basic Microstrip structure	38
2.17	Basic block diagram of LNA	41
2.18	Schematic design on UWB LNA	43
2.19	Schematic diagram of LNA	44
2.20	Fabricated LNA	44
2.21	Schematic design of X-band LNA	45
2.22	Topology of the amplifier designed with distributed element	46
2.23	Topology of amplifier designed with lumped element	46
2.24	Proposed LNA design in form of (a) schematic diagram and	
	(b) Fabricated form	47
2.25	Simulated and measured noise figure	47
2.26	Structure (a) DMS and (b) DGS	49
2.27	Frequency Response for DMS (solid line) and DGS (dotted line)	50
2.28	Structure of (a) U – Slot DMS notch filter and (b) Parametric	
	study of U – Slotted notch filter by varying length of slot	51
2.29	DMS structure (a) Fabricated Spiral – Shaped DMS and	
	(b) Comparison between simulated and fabricated result	52
2.30	Structure of (a) DMS and DGS for dual band notch filter	
	(b) Response for DMS and DGS separately	53
2.31	Structure of (a) L – Shaped DMS notch filter and	
	(b) Frequency Response varying the total length of L – Shaped	54
2.32	Simulated proposed LNA integrated notch filter for	
	(a) S11 / S22 and (b) gain	55

2.33	Schematic Diagram of LNA with Notch filter	57
2.34	Performance of proposed LNA with notch filter (a) S11	
	and gain and (b) Noise Figure	57
2.35	LNA with notch filter	58
2.36	S21 parameter result	59
3.1	Flow chart of the project	64
3.2	Schematic diagram of FET Curve Tracer	69
3.3	Schematic diagram of S – Parameter and Noise Figure versus	
	Bias Voltages	70
3.4	Biasing circuit of the low noise amplifier	71
3.5	Stability checking with biasing circuit using ADS	72
3.6	Schematic diagram of stabilization technique using negative feedback	76
3.7	Stabilization technique using negative feedback with cascaded	
	transistor	77
3.8	Schematic diagram of LNA with resistive matching	79
3.9	Schematic diagram of LNA for layout transformation	81
3.10	Layout of LNA using resistive matching with holes	82
3.11	Stabilization technique using negative feedback and inductive	
	source degeneration	83
3.12	Schematic diagram of negative feedback with microstrip inductive	
	source degeneration	84
3.13	Impedance matching for gain and noise figure which obtained by	
	using S – Parameter simulation tool in ADS software	85
3.14	Ideal transmission line of input quarter wave transformer	87
3.15	Ideal transmission line of output quarter wave transformer	88

3.16	Schematic diagram of low noise amplifier using ideal transmission	
	lines	89
3.17	Schematic of UWB LNA using negative feedback and inductive	
	source degeneration with non-ideal transmission lines	90
3.18	Schematic of LNA with transmission lines	92
3.19	Layout of LNA design	93
3.20	Quadrature hybrid coupler with 90° phase difference	93
3.21	Schematic diagram of quadrature hybrid coupler	94
3.22	Microstrip Quadrature Hybrid Coupler	95
3.23	Schematic diagram of Balanced Amplifier in microstrip component	97
3.24	Stabilization technique using inductive source degeneration	99
3.25	Double stage with inductive source degeneration amplifier	99
3.26	Impedance matching for gain and noise figure which obtained by	
	using S – Parameter simulation tool in ADS software	100
3.27	Input impedance of multi-section quarter wave transformer	101
3.28	Output matching of multi-section quarter wave transformer	102
3.29	Ideal transmission line of LNA with multi-section quarter wave	
	Transformer	103
3.30	The microstrip form of low noise amplifier with multi-section	
	quarter wave transformer	105
3.31	Schematic diagram of LNA layout transformation	107
3.32	Layout of the LNA	108
3.33	Equivalent circuit of Defected Microstrip Structure (DMS)	109
3.34	Conventional G – Shaped Defected Microstrip Structure (DMS)	109
3.35	Conventional C - Shaped Defected Microstrip Structure (DMS)	110

xii C Universiti Teknikal Malaysia Melaka

3.36	Conventional U - Shaped Defected Microstrip Structure (DMS)	110
3.37	Schematic diagram of Integrated Distributed amplifier with	
	resistive matching and negative feedback with U – Shaped DMS	112
3.38	Schematic diagram of negative feedback and inductive source	
	degeneration with multi-section quarter wave transformer matching	
	with U – Shaped DMS	113
3.39	Schematic diagram of Integrated Balanced Amplifier with U – Shaped	
	DMS	114
3.40	Schematic diagram of Distributed Amplifier with inductive source	
	degeneration and multi-section quarter wave transformer matching	
	with U – Shaped DMS	116
3.41	Vector Network Analyzer and fabricated structure of low noise	
	amplifier	117
4.1	I – V curve tracer of the transistor	119
4.2	Performance of transistor based on difference biasing point	
	(a) Minimum Noise Figure versus VGS and VDS,	
	(b) Maximum Available Gain versus VGS and VDS and	121
4.3	Stability condition of the transistor	122
4.4	Simulated value of the gains throughout entire frequency band	123
4.5	Effect of negative feedback on (a) Stability, (b) gain and	
	(c) noise figure	125
4.6	Parametric Study of stability with varying feedback resistor	126
4.7	Parameter comparison between various topologies (a) Stability,	
	(b) Gain and (c) Noise Figure	127

4.8	Effect of Resistive Matching to (a) Stability, (b) S11,	
	(c) S22 and (d) Gain	129
4.9	Effect of Resistive Matching on Noise Figure	130
4.10	Simulated LNA with microstrip transmission line matching	
	(a) S11 and S22 and (b) Gain and Noise Figure	131
4.11	Stability comparison varies inductive source degeneration value	132
4.12	Parametric Study of inductive source degeneration to	
	(a) S11, (b) S22, (c) Gain and (d) Noise Figure	134
4.13	Comparison between calculation and optimization for input and output	
	matching.	135
4.14	Simulated LNA with ideal matching (a) S11, S22 (b) Gain and	
	Noise Figure	136
4.15	Simulated LNA with microstrip transmission line matching	
	(a) S11, S22 (b) Gain and Noise Figure	137
4.16	Simulated LNA with additional microstrip transmission line for layout	
	transformation (a) S11, S22 (b) Gain and Noise Figure	138
4.17	Parametric study of hybrid coupler	139
4.18	Simulated S – Parameter of microstrip hybrid coupler	140
4.19	Simulated result of Balanced Amplifier (a) S11, S22 (b) Gain and	
	Noise Figure	141
4.20	Inductive Source Degeneration effect to (a) Stability, (b) S11, (c) S22,	
	(d) Gain and (e) Noise Figure	144
4.21	Effect of amplifier after implement matching network to (a) S11, S22,	
	(b) Gain and Noise Figure	145

4.22	Simulated LNA with microstrip transmission line matching (a) S11,	
	S22 (b) Gain and Noise Figure	146
4.23	Simulated LNA with additional microstrip transmission line for layout	
	transformation (a) S11, S22 (b) Gain and Noise Figure	147
5.1	Effect of notch response of G – Shaped DMS by varying dimension	
	of (a) l_2 and (b) l_3	153
5.2	Effect of notch response of C – Shaped DMS by varying dimension	
	of (a) l_2 and (b) l_3	154
5.3	Effect of notch response of U – Shaped DMS by varying dimension	
	of (a) h_2 and (c) l_2	156
5.4	3 - D view of Integrated U – Shaped with Distributed amplifier with	
	resistive matching and negative feedback	157
5.5	Effect of U – Shaped DMS for (a) S11 and (b) S22	158
5.6	Effect of U – Shaped DMS for (a) Gain and (b) Noise Figure	159
5.7	The Fabricated of integrated U – Shaped with Distributed amplifier	
	with resistive matching and negative feedback low noise amplifier	160
5.8	Comparison between simulated and measured value of integrated low	
	noise amplifier with U – Shaped DMS in term of (a) S11 and (b)	
	S22	160
5.9	Comparison between simulated and measured value of integrated low	
	noise amplifier with U – Shaped DMS in term of (a) gain and (b) noise	
	figure	161
5.10	3 – D view of Integrated U – Shaped with negative feedback and	
	inductive source degeneration with multi-section quarter wave	
	transformer matching	162

5.11	Effect of U – Shaped DMS for (a) S11 and (b) S22	163
5.12	Effect of U – Shaped DMS for (a) Gain and (b) Noise Figure	164
5.13	The fabricated of integrated U – Shaped DMS with negative feedback	
	and inductive source degeneration with multi-section quarter wave	
	transformer matching low noise amplifier	165
5.14	Comparison between simulated and measured value of integrated low	
	noise amplifier with U – Shaped DMS in term of (a) S11 and (b) S22	165
5.15	Comparison between simulated and measured value of integrated low	
	noise amplifier with U – Shaped DMS in term of (a) gain and (b) noise	
	figure	166
5.16	Effect of U – Shaped DMS for (a) S11 and (b) S22	167
5.17	Effect of U – Shaped DMS for (a) Gain and (b) Noise Figure	168
5.18	3 - D view of Integrated U – Shaped with Distributed Amplifier with	
	inductive source degeneration and multi-section quarter wave	
	transformer matching	169
5.19	Effect of U – Shaped DMS for (a) S11 and (b) S22	169
5.20	Effect of U – Shaped DMS for (a) Gain and (b) Noise Figure	170
5.21	The fabricated of integrated U – Shaped DMS with distributed	
	amplifier with inductive source degeneration and multi-section quarter	
	wave transformer matching low noise amplifier	171
5.22	Comparison between simulated and measured value of integrated low	
	noise amplifier with U – Shaped DMS in term of (a) S11 and (b) S22	172
5.23	Comparison between simulated and measured value of integrated low	
	noise amplifier with U – Shaped DMS in term of (a) gain and (b) noise	
	figure	173

LIST OF ABBREVIATION

ADC	-	Analog – to – Digital Converter
ADS	-	Advanced Design System
BJT	-	Bipolar Junction Transistor
CMOS	-	Complementary Metal-Oxide Semiconductor
DC	-	Direct Current
DMS	-	Defected Microstrip Structure
DGS	-	Defected Ground Structure
DSP	-	Digital Signal Processing
DS–UWB	-	Direct-sequence Ultra-wideband
FCC	-	Federal Communications Commission
FET	-	Field Effect Transistor
GaAs	-	Gallium Arsenic
GPS	-	Global Positioning System
HBT	-	Heterojunction Bipolar Transistor
IDS	-	Drain-Source Current
IEEE	-	Institute of Electrical and Electronics Engineers
LNA	-	Low Noise Amplifier
LC	-	Inductor Capacitor
LO	-	Local Oscillator
MB-OFDN	/I- I	Multi-Band Orthogonal Frequency Division Multiplexing
MOSFET	-	Metal – Oxide Semiconductor Field Effect Transistor
MESFET	-	Metal-Semiconductor Field-Effect Transistor

xvii C Universiti Teknikal Malaysia Melaka

NTIA	-	National Telecommunications and Information Administration
pHEMT	-	pseudomorphic High Electron Mobility Transistor
RF	-	Radio Frequency
SNR	-	Signal to Noise Ratio
TEM	-	Transverse Electromagnetic
TSMC	-	Taiwan Semiconductor Manufacturing Company
UWB	-	Ultra – Wideband
VDS	-	Drain-Source Voltage
VGS	-	Gate-Source Voltage
VNA	-	Vector Network Analyzer
VSWR	-	Voltage Standing Wave Ratio
WLAN	-	Wireless Local Area Network

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Α	Conversion Between Two – Port Network Parameters	189
В	MGF4937AM Datasheet	190
С	Input Matching for Design 2	195
D	Output Matching for Design 2	196
Ε	Input Matching for Design 4	197
F	Output Matching for Design 4	198