

Faculty of Manufacturing Engineering

PREPARATION & CHARACTERIZATION OF ELECTROPHORETICALLY DEPOSITED BN FILM FOR SEMICONDUCTOR PACKAGE

Jayaganasan A/L Narayanasamy

Master of Science in Manufacturing Engineering

2017

🔘 Universiti Teknikal Malaysia Melaka

PREPARATION & CHARACTERIZATION OF ELECTROPHORETICALLY DEPOSITED BN FILM FOR SEMICONDUCTOR PACKAGE

JAYAGANASAN A/L NARAYANASAMY

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Manufacturing Engineering

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2017

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "Preparation & Characterization of Electrophoretically Deposited BN Film for Semiconductor Package" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Manufacturing Engineering.

Signature	:	
Supervisor Name	:	
Date	:	

DEDICATION

To my beloved family, lecturers and friends.

ABSTRACT

Boron Nitride (BN) is used in various applications such as in lubrication, as a releasing agent and also as a thermosetting insulator material and thermal enhancer because of its advanced material properties. Electrophoretic deposition (EPD) method is a new method for semiconductor industries and it has grown in the interest on making use of BN as a thermal interface material and electrical isolation in Transistor Outline (TO) packages. Hexagonal Boron Nitride (h-BN) stability in EPD suspension is essential to produce repeatability and reproducibility in the result of the deposition. However, h-BN particle has less functional group on its side wall to create bonding with the polymer matrix. In order to increase functional groups on its side wall, NaOH surface treatment which has been established by other researchers was performed. The purpose of this study is to prepare and characterise of the h-BN particles in EPD suspension using different types of suspension mediums and binders. The particle size characterization and Field-Emission Scanning Electron Microscopy (FESEM) on the as-received h-BN particle indicates that particle sizes were less than 1 µm but are in agglomerated forms in the De-ionized (DI) water suspension. Sedimentation test method of h-BN particles in four dispersion media (deionized water, Acetic acid solution, Sulphamic Acid & Ammonia) and using different binder (Polyethylene Glycol (PEG), Silane Coupling Agent, Polycationic 1 (PC 1), Polycationic 2 (PC 2). The result showed a combination of deionized water and PC 2 produced the highest stability for h-BN dispersion. Sedimentation test and zeta potential method were used to determine the optimum concentration of PC 2 addition in a h-BN suspension. EPD of h-BN was performed on TO package using different levels of PC 2 concentration (i.e. 0.2 - 1.0 wt%). Characterization of the EPD coating were performed in terms of thickness, microstructure analysis on surface and micrograph from FESEM, and surface roughness. The optimum concentration of PC 2 in order to achieve the highest h-BN stability was in the range of 0.3 - 0.4 wt%, with a corresponding deposition thickness of 8 µm. The obtained thickness was the highest among other samples, and had surface roughness of 570 nm. Critical factors that affected the deposition for h-BN EPD process were suspension ionic conductivity and excess PC 2 concentration. High conductivity and excess PC 2 concentration caused electric double layer of h-BN particles to be compressed thus resulting in a low deposition yield. Therefore, it is recommended that future works use ultra-pure DI water and excess binder of h-BN suspension need to be removed by centrifugal washing before undergoes EPD to reduce conductivity of h-BN suspension. Besides it also helps to achieve a high deposition thickness of h-BN for thermal conductive and electrical isolation application.

ABSTRAK

Boron Nitride (BN) digunakan dalam pelbagai aplikasi seperti dalam pelinciran, sebagai ejen pelepasan dan juga sebagai bahan penebat haba serta pengkonduksian haba kerana sifat-sifat bahan termajunya. Kaedah penyaduran electrophoretik (EPD) adalah satu kaedah baru bagi industri semikonduktor, maka terdapat peningkatan minat ke atas penggunaan BN sebagai bahan antaramuka haba dan penebatan elektrik dalam pakej TO. Kestabilan heksagon Boron Nitride (h-BN) dalam ampaian EPD adalah penting untuk membolehkan pengulanngan dan penghasilan semula data penyaduran. Walau bagaimanapun, zarah h-BN mempunyai sedikit kumpulan berfungsi pada permukaan sisi untuk mewujudkan ikatan dengan matrik polimer. Dalam usaha untuk meningkatkan kumpulan berfungsi pada dinding sisi, rawatan permukaan NaOH telah dilakukan sepertimana yang telah diwujudkan oleh penyelidik lain. Tujuan kajian ini adalah untuk menyedia dan menciri zarah h-BN dalam ampaian EPD menggunakan jenis media ampaian dan pengikat berlainan. Pencirian saiz zarah dan Pengimbas Elektron Mikroskop (FESEM) ke atas zarah h-BN mentah menunjukkan saiznya kurang daripada 1 mikron tetapi dalam bentuk gumpalan di dalam ampaian air ternyahion (DI). Kaedah ujian pemendapan zarah h-BN dalam media ampaian berbeza (air ternyahion, pelarut asetik asid, acid sulfamic & Ammonia) dan menggunakan pengikat yang berbeza (poli etilena glikol (PEG), ejen Silane gandingan, Poli kationik 1 (PC 1), Poli kationik 2 (PC 2)) menunjukkan kombinasi air ternyahion dan PC 2 menghasilkan kestabilan paling tinggi berbanding dengan kombinasi medium ampaian dan pengikat lain bagi h-BN. Ujian pemendapan dan kaedah keupayaan zeta telah digunakan untuk menentukan kepekatan PC 2 optimum perlu ditambahkan ke dalam h-BN ampaian. EPD daripada h- BN telah dilakukan ke atas pakej menggunakan tahap kepekatan PC2 berbeza (i.e. 0.2-1.0 wt%). Pencirian saduran EPD termasuk ketebalan, analisis mikrostruktur pada permukaan dan keratan rentas menggunakan FESEM, dan kekasaran permukaan. Kepekatan optimum diperlukan oleh PC 2 untuk mencapai kestabilan tertinggi ialah dalam julat 0.3-0.4 wt%, dengan ketebalan penyaduran berkenaan pada 8 µm. Ketebalan penyaduran yang tertinggi mempunyai kekasaran permukaan sebanyak 570 nm. Faktor kritikal yang memberi kesan kepada penyaduran h-BN EPD adalah kekonduksian ionik dan kepekatan PC 2 berlebihan di dalam ampaian. Faktor ini menyebabkan dwi-lapisan elektrik zarah h-BN dimampatkan, mengakibatkan hasil penyaduran yang rendah. Maka, penyelidikan akan datang disyorkan menggunakan air DI ultra tulen, serta agen pengikat berlebihan bagi ampaian h-BN perlu diemparkan sebelum proses EPD. Kaedah ini akan menyumbang kekonduksian yang rendah, serta membantu mencapai ketebalan penyaduran h-BN yang tinggi untuk aplikasi konduksi haba dan penebatan elektrik.

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to my supervisor Dr. Lau Kok Tee from the Faculty of Manufacturing Engineering Universiti Teknikal Malaysia Melaka (UTeM) for his supervision, support and dedication towards the completion of this thesis. I would remember the quotes that he had always mentioned to me "Never give up" and this has given me the strength to withstand and to overcome all the challenges throughout the journey of completing my thesis. Furthermore, I would like to express my sincere acknowledgement to Dr. Muhammad Zaimi Bin Zainal Abidin, co-supervisor of this project for his advice and suggestions as well as for following up with me throughout the research activities. I would also like to express my deepest gratitude to the management of Infineon Technologies Sdn Bhd for providing me the financial support throughout this research. Special thanks to my mentor and facilitator, Mr. Chan Chee Ling and Mr. Yong Wae Chet, and also my superiors, Mr. Vigneswaran and Ms. Tan Sock Yan for their advice and guidance. My Appreciation also goes to Mr. Asok Kumar, Mr. Jagen, Ms. Low Hwee Yin, Mr. Syahir Abd Hamid, Mr. Prabahar, Mr. Naarayanan, Ms. Lim Lay Yeap, Ms. Ng Wan Yee, Mr. Charles Low Khai Yen, Ms. Tham Moong Sin and Ms. Goh Jia Yi for the their support and to Mrs. S. Indra Devi for her help in proof-reading the thesis. To my beloved family, my mother Vally, my wife Sathiya, and my daughters, Anithra, Mishalni and Vinishaa, special thanks to all of you for your understanding and for providing me the moral support while I completed this master degree.

TABLE OF CONTENTS

API DEI ABS AC TAI LIS LIS LIS LIS	PROV DICA STRA STRA KNO BLE (T OF T OF T OF	TION CT	i ii iv vii viii xvi xv xxi
	APTH		
1.		RODUCTION	1
		Background of the Study Problem Statement	1 4
		Research Objectives	6
	1.4	Scope of Research	6
2.	LIT	ERATURE REVIEW	
	2.1	Thermal Issue in Semiconductor Package	8
	2.2	Properties of BN as Thermal Interface Materials	11
		2.2.1 Boron Nitride: Comparison of Allotropes	11
		2.2.2 Crystal Structure of h-BN	13
		2.2.3 Materials Properties of h-BN	14
	2.2	2.2.4 Thermal and Electrical Properties of h-BN	14
	2.3 2.4	Surface Functionalization of h-BN Ceramic Particles	16 22
		Binders Different Coating Methods	22 27
	2.5	Basic Mechanism of EPD	29
	2.0	2.6.1 Hamaker's Equation	30
		2.6.2 Factors Affecting Aqueous Based EPD	31
		2.6.2.1 Stability of Suspension	31
		2.6.2.1.1 Particle Size	31
		2.6.2.1.2 Conductivity of Suspension	33
		2.6.2.1.3 Zeta Potential	34
		2.6.3 EPD-related Parameters	38
		2.6.3.1 Applied Voltage	38
		2.6.3.2 Deposition Time	39
		2.6.3.3 Concentration of Solid in Suspension	39
		2.6.4 Post-deposition Processes	41
2	DE4		

3. RESEARCH METHODOLOGY

3.1 Overview

42

	3.2	Raw Material Preparation	45
		3.2.1 h-BN Powder	45
	3.3	NaOH Treatment of h-BN Particles	45
	3.4	Cleaning of the As-received and Surface Functionalized	
		h-BN Particles	46
	3.5	Sedimentation Test	47
		3.5.1 Dispersion Medium Selection	47
		3.5.2 Binder Selection	48
		3.5.3 PC 2 Binder Concentration Selection	49
	3.6	Zeta Potential Characterisation	52
		EPD of Surface Functionalized h-BN Particles	54
		3.7.1 Binder Selection	55
		3.7.2 PC 2 Binder Concentration Selection	56
		3.7.3 Voltage Selection	57
	3.8	Particle Size Analysis	58
		Microstructural Characterisation	59
		EPD Yield Characterisation	61
		Surface Roughness Characterisation	62
		Thickness Characterisation	63
4.	RES	ULT AND DISCUSSION	
	4.1	Particle Size Distribution and Microstructure of h-BN Particles	65
	4.2	Sedimentation Test Results of As-received BN in Different Dispersion	
		Medium	68
	4.3	Conductivity Value of Filtrate from Cleaning Process of BN Particles	71
		4.3.1 Cleaning of Raw h-BN	72
		4.3.2 Conductivity Value of Filtrate from Treated h-BN	73
	4.4	Sedimentation Test Results of Treated BN in DI Medium using	
		Different Binder Selection and Suspension Reusability Study	74
	4.5	EPD Results obtained using Surface Treated BN Particles Suspension	
		with Different Binder Addition	78
	4.6	Effect of PC2 Concentration	79
		4.6.1 Sedimentation Test Result	80
		4.6.2 Zeta Potential and Conductivity of Treated Boron Nitride	
		Suspension Result	84
		4.6.3 Surface Coverage Results	88
		4.6.4 Surface Analysis Using SEM	90
		4.6.4.1 Cross Section Microstructure Analysis of h-BN Particles	
		using SEM	92
		4.6.5 Surface Roughness of h-BN Coating	93
		4.6.6 Coating Thickness	94
		4.6.7 EDX Analysis	101
	4.7	Effect of EPD Voltage on Deposit Yield	104
5.		ICLUSION AND RECOMMENDATIONS	100
	5.1	Conclusion	109
		5.1.1 Characterisations of As-received and NaOH Treated h-BN	100
		Particles Suspension for EPD	109

	5.1.2	Characterisation of Microstructure and Deposit Yield of the	
		h-BN Coating	111
5.2	Recon	nmendation	112
REFERENCES		113	
APPENI	DICES		124

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Properties of h-BN, A ₂ O ₃ , AlN and SiO ₂	15
2.2	Different Techniques to Deposit HA Coating	28
2.3	Characteristics of Electrodeposition Techniques	29
3.1	Technical Data of h-BN particle from Nova Scientific	45
3.2	Chemical Compositions of BN Suspensions for Both Sedimentation	
	Test and EPD Process	49
3.3	PC 2 Solution Concentration	51
3.4	Zeta Potential Specifications Limit	53
3.5	List of Materials and Functions	54
3.6	EPD Setup for Position of Deposition Electrode (TO Package) Based	
	on the h-BN Particles and Binders Type	56
3.7	Main Specifications of SEM Hitachi SU8230 at Infineon	
	Technologies Failure Analysis Laboratory	60
4.1	Sedimentation Test Results of h-BN Particles Suspension at Different	
	pH Levels	70
4.2	Result of Conductivity Value of Filtration of Raw h-BN	72
4.3	Result of DI Water Conductivity Value of Treated h-BN	73
4.4	Particle Size Comparison by Different Methods	90

vii

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	General Semiconductor Package Construction Overview	1
1.2	Example of a Transistor with Bending of Terminals and Heatsink	3
1.3	Interface Surface between Heatsink and Mold Compound	5
2.1	Total Power Loss Factors Involved in a Semiconductor Package with	
	Insulated Gate Bipolar Transistor (IGBT)	9
2.2	(a) Rear Side of a Transistor Package and (b) Thermal Interface	
	Material in Semiconductor Package	10
2.3	An Example of Various BN Crystalline multiform. (a) Alter Stacking	
	between A and B Atoms along the c-Axis Defines the Ordering for h-	
	BN. (b) Rhombohedral BN (r-BN) is Similar to h-BN, but with a	
	Tilted Basal Plane. (c) Wurtzite BN (w-BN) is a Metastable Form.	
	(d) c-BN Assumes the Zinc-Blende Structure	12
2.4	Structure of h-BN	13
2.5	SEM Images of (a) Raw h-BN and (b) Surface-functionalized h-BN	17
2.6	FTIR Spectra of Raw and Surface-Functionalized h-BN with TEOS	18
2.7	Surface Functionalization of h-BN into IhBN and OhBN	19
2.8	FTIR Spectra of h-BN, IhBN and OhBN	20
2.9	Synthesis Route for Surface-functionalized h-BN	21

2.10	XPS of Survey Scans of Surface Treated h-BN	22
2.11	Cathodic Electrodeposition of Ceramic Particles with Absorbed a)	
	Neutral and b) Charged Polymeric Binders	23
2.12	Schematic Structure Representation of PVA (Poly Vinyl Alcohol),	
	PDAD (Poly (Diallyldimethylammonium)), PEI (Polyethylene	
	Imine) and PEG (Polyethylene glycol-400)	23
2.13	Comparison of Effects of Cationic Additives at 150 $\mu l/100$ ml on the	
	Zeta Potential of BaTiO ₃ powder, 500 g/l in Ethanol: Water 30:70	
	vol%. {2 {Polyimines (PEI and Copolymer) and 2 Quaternary	
	Ammonium Salts (PDADMAC and Polyquaternium-2)}	24
2.14	Comparison of Effects of Anionic Additives at 150 $\mu l/100$ ml on Zeta	
	Potential of BaTiO ₃ Powder, 500 g/l in Ethanol: Water 30:70	
	vol%. {OROTAN-681 (Na Salt of Polyacrylic Acid), 850E (NH ₄ Salt)	
	and 731 K (K Salt), PAA (Polyacrylic Acid)}	25
2.15	Dependence of the Deposit Yields on the Addition Levels of	
	PDADMAC with Average Molecular Weight of 100,000-200,000	
	amu and 400,000 - 500,000 amu. Schematic Diagram of Charging	
	Agent-adsorbed Particles at Different Addition Levels	26
2.16	EPD Cell Showing Positively Charged Particles in Suspension	
	Moving Towards the Negative Electrode	30
2.17	SEM Images of Deposited YBCO Films on Silver Substrate at 10 V	
	for 180 seconds. (Film A: Particle Size = $3 \mu m$; Film B: Particle Size	
	$= 0.06 \ \mu m)$	32

2.18	Zeta Potential and Conductivity of the Lead Zirconate Titanate	
	(PZT) Suspension at Various pH in Ethanol	33
2.19	Suspension Stability by the Range of Zeta Potential	36
2.20	Zeta Potential of the Al ₂ O ₃ Particle in a Suspension	37
2.21	Deposit Weight of the 3 Vol. $\%$ Al ₂ O ₃ Suspensions as a Function of	
	Time at Fixed Current of 3 mA/cm ² for Different pH	37
2.22	Deposition Weight of ZnO as a Function of Applied Voltage	38
2.23	Deposition Yield as a Function of Deposition Time at Constant	
	Current Density for Three Different Suspensions	39
2.24	Deposition Yield as a Function of Deposition Time at Constant	
	Current Density for Three Different TiO ₂ Particles Concentrations	
	in Ethanol Suspension	40
3.1	Flow chart of methodology	44
3.2	NaOH Treatment Equipment Setup	46
3.3	Filtrations System	47
3.4	Zeta Potential Analyzer	52
3.5	Electrophoretic Deposition System	54
3.6	Particle Size Analyser	59
3.7	FESEM / EDX	61
3.8	Electronic Balance	62
3.9	Surface Roughness Analyzer	63
3.10	Cross Section View Sample (Cold-mounted)	64
4.1	Nova Hexagonal Boron Nitride Particle size Distribution	65

4.2	Nova Hexagonal Boron Nitride Particle size Distribution Vol %	66
4.3	SEM image; (i) As-received h-BN and (ii) After Surface Treatment	67
4.4	Sedimentation Result (± 1mm) at Different Level of pH and	
	Monitoring Result at 0 Hour & after 5 Days	69
4.5	Sedimentation Test results for DI Water with Hexagonal Boron	
	Nitride by Days	69
4.6	Schematic Diagram of the Described Sedimentation Mechanism	71
4.7	Filtrate's Conductivity against Number of Filtration of Raw h-BN	
	Particles	73
4.8	Filtrate's Conductivity against Number of Filtration of h-BN	
	Treated Particles	74
4.9	Sedimentation Test Results (i.e. After One Day Period) of	
	Suspension Produced using Different Binders Before (Left Tube)	
	and After (Right Tube) EPD Process	75
4.10	(a) pH Before and After EPD, (b) pH Change in Different	
	Suspensions	77
4.11	Boron Nitride Particles Deposited on TO's Package	79
4.12	Sedimentation Test for h-BN Suspension with Different Binder	
	Concentration at 0 hour (in wt%)	80
4.13	Sedimentation Test (± 1mm) for h-BN Suspension with Different	
	Binder Concentration after 11 days (in wt%)	81
4.14	Sedimentation Test (± 1mm) for h-BN Suspension with Different	
	Binder Concentration after 30 days (in wt%)	82

4.15	Progress of Sedimentation Height of Suspension with Different PC 2	
	Concentration after 11 and 30 Days.	83
4.16	Zeta Potential Value of Treated BN as Functions of PC 2	
	Concentrations. Zeta Potential of As-received BN is shown as	
	Reference Data	84
4.17	eta Potential and Conductivity alue of Treated oron Nitride	
	uspension ea sured at 00 5 C, Corresponding to Different	
	Level of PC 2 Concentrations, wt%.	85
4.18	Hexagonal Boron Nitride deposited using Electrophoretic Deposition	
	at Different Concentrations of PC2 as shown in the Picture	88
4.19	Cross Section View of BN Deposition at the Interface between	
	Molding Compound and Heatsink surface. (a) Deposition Covered	
	the Interface and (b) Exposed Interface	89
4.20	Surface Microstructure (Left: 1000X and Right: 10000 X) of BN	
	using Different PC 2 Concentrations ((a), (b), (c), (d) and (e)).	91
4.21	Cross Sectional Microstructure Analysis of BN Coating Produced	
	using Different Levels of PC 2 Concentration in wt% ((a), (b), (c), (d)	
	& (e)). Arrows shows Locations of Micro-voids.	92
4.22	Root Mean Square Surface Roughness of h-BN Coating Deposited	
	using Different Levels of PC2 Concentration	94
4.23	h-BN Coating Thickness Distribution at Different PC2 Concentration	
	Levels. Outliers are shown as Black Dots Located outside the	
	Quantiles bar Scale.	95

xii

4.24	Average h-BN Coating Thickness and the Suspension Zeta Potential	
	Response at Different Levels of PC 2 Concentration	95
4.25	Average Thickness and Suspension Conductivity Response at	
	Different Levels of PC 2 Concentration	97
4.26	Boron Nitride Deposited Thickness and Distribution at along Cross	
	Section Plane at Different Concentration Level of PC 2 ((a), (b), (c),	
	(d) & (e))	100
4.27	Boron Nitride Coating's EDX Result at Different PC Con centrations	
	((a), (b), (c), (d) & (e))	103
4.28	Deposition Yield with Surface Treated and Non-treated BN Particles	
	at Different Levels of Voltage	105
4.29	Boron Nitride with Surface Treated and Non-treated Particle	
	Deposition Ampere and Conductivity at Different Level of Voltage	
	(TR – Treated, NTR – Non-treated, A- Ampere & C- Conductivity)	106
4.30	h-BN particles Electrophoretic Mobility and Electrical Conductivity	
	for Surface Treated (TR) and Non-Treated (NTR) BN Suspensions.	107

xiii

LIST OF APPENDICES

APPEND	IX TITLE	PAGE
А	Theoretical Calculation of Dielectric Strength of BN	124
В	Electrophoretic Mobility Calculations	125

xiv

LIST OF ABBREVIATIONS,

SYMBOLS AND NOMENCLATURE

μ	-	Electrophoretic Mobility
μL	-	Micro Litre
μm	-	Micro Meter
μS/cm	-	Conductivity Unit
А	-	Ampere
A	-	Surface Area
Al	-	Aluminium
Al ₂ O ₃	-	Aluminum Oxide / Alumina
AlN	-	Aluminium Nitride
amu	-	Average Molecular Weight
В	-	Boron
B_2O_3	-	Boron Trioxide
BaTiO ₃	-	Barium Titanium Oxide
BCP	-	Biphasic Calcium Phosphate
BD	-	Breakdown
BDV	-	Breakdown Voltage
BJT	-	Bipolar Junction Transistors
BN	-	Boron Nitride

С	-	Carbon
С	-	Celcius
C/W	-	Temperature Resistance Unit
CaO	-	Calcium Oxide
c-BN	-	Cubic Boron Nitride
CH ₃	-	Methyl Group
СНО	-	Aldehyde group
Cl	-	Chlorine
cm ²	-	Centi Meter Square
cm ⁻³	-	Centi Meter Cubic
CN	-	Cyanide Functional Group
DB	-	Dielectric Breakdown
DI	-	Deionized Water
E	-	Electric Field Strength
EC	-	Electrical Conductivity
EDX	-	Energy-dispersive X-ray spectroscopy
ELD	-	Electrolytic Deposition
EPD	-	Electrophoretic Disposition
eV	-	Electron Volt
f(Ka)	-	Henry's Function
Fe ₂ O ₃	-	Ferum Oxide
FET	-	Field-effect Transistors
FTIR	-	Fourier Transform Infrared Spectroscopy
g	-	gramme

xvi

gm/cm ³	-	Density unit
GPa	-	Giga Pascal
H^{+}	-	Hydrogen Ions
H ₂ O	-	Water
HA	-	hydroxyapatite
h-BN	-	Hexagonal Boron Nitride
HCl	-	Hydrochloric Acid
HNO ₃	-	Nitric Acid
IC	-	Integrated Circuit
IEP	-	Isoelectric Point
IGBT	-	Insulated Gate Bipolar Transistor
IhBN	-	Isocyanate – Hexagonal BN
K	-	Kelvin
K kHz	-	Kelvin Kilo Hertz
	- -	
kHz	- - -	Kilo Hertz
kHz kV	- - -	Kilo Hertz Kilo Voltage
kHz kV kV/mm		Kilo Hertz Kilo Voltage Dielectric Strength Unit
kHz kV kV/mm kV/s		Kilo Hertz Kilo Voltage Dielectric Strength Unit Kilo Voltage per Second (Voltage Breakdown)
kHz kV kV/mm kV/s M		Kilo Hertz Kilo Voltage Dielectric Strength Unit Kilo Voltage per Second (Voltage Breakdown) Molarity
kHz kV kV/mm kV/s M mA		Kilo Hertz Kilo Voltage Dielectric Strength Unit Kilo Voltage per Second (Voltage Breakdown) Molarity Mili Ampere
kHz kV kV/mm kV/s M mA mA/cm ²		Kilo Hertz Kilo Voltage Dielectric Strength Unit Kilo Voltage per Second (Voltage Breakdown) Molarity Mili Ampere Curent Density Unit
kHz kV kV/mm kV/s M mA mA/cm ² Mg		Kilo Hertz Kilo Voltage Dielectric Strength Unit Kilo Voltage per Second (Voltage Breakdown) Molarity Mili Ampere Curent Density Unit

xvii

ml	-	Mili Litre
mm	-	Mili Meter
MOS	-	Metal Oxide Semiconductors
MOSFET	-	Metal Oxide Semiconductor Field-effect Transistors
mS	-	Mili Siemens
mS/cm	-	Conductivity Unit
mV	-	millivolt
Ν	-	Nitrogen
Na	-	Natrium
NaOH	-	Natrium Hydroxide
NH ₂	-	Amine Functional Group
NH ₃	-	Ammonia
NH ₄	-	Ammonium
Ni	-	Nickel
nm	-	Nono Meter
NTR	-	Non-treated
O_2	-	Oxygen
ОН	-	Hydroxyl Functional Group
OhBN	-	Organized Hexagonal BN
PAA	-	Polyacrylic Acid
PC 1	-	Polycationic 1
PC 2	-	Polycationic 2
PCB	-	Printed Circuit Board
PDADMAC	-	Poly(Diallyldimethylammonium Chloride)

xviii

PEG	-	Poly Ethylene Glycol
PEI	-	Polyethylene Imine
PVA	-	Poly Vinyl Alcohol
PZT	-	Lead Zirconate Titanate
R ²	-	R Square
r-BN	-	Rhombohedral Boron Nitride
Rth	-	Temperature Resistance
SEM	-	Scanning Electron Microscopy
SiO ₂	-	Silicon Dioxide
Si-OH	-	Silanol Functional Group
SnO_2	-	Stanum Oxide
t	-	Time
TC	-	Thermal Conductivity
TEOS	-	Tetraethyl Orthosilicate
Ti-6Al-4V	-	Titanium – Aluminium – Vanadium
TIM	-	Thermal Interface Material
TiO ₂	-	Titanium Dioxide
ТО	-	Transistor Outline
TR	-	Treated,
UPS	-	Uninterruptible Power Supply
V	-	Particle Velocity
V	-	Voltage
W	-	Waat
W	-	Weight

xix