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ABSTRACT 

 

 

Degradation and loss of articular cartilage in synovial joint has long been recognized as the 
main source of osteoarthritis (OA). It is generally accepted that the biomechanical 
properties of articular cartilage seem to be more sensitive to pathological changes of the 
tissue. Extensive studies of cartilage have been carried out to characterize the 
biomechanical properties using both experimental and analytical approaches. These 
properties were then applied in computational models to investigate the biomechanical 
behavior of the cartilage. However, analytical analysis was developed based on the theory 
which idealized the geometrical and physical conditions of the cartilage and subchondral 
bone. Furthermore, previous experimental studies require the cartilage to be isolated which 
could possibly damage the cartilage. These could be the main reason as the behavior of the 
cartilage across the synovial joint is yet to be fully understood because it appears that only 
part of the cartilage in synovial joint were previously being investigated. Therefore, the 
study aims to develop new approach to integrate the experimental and computational 
methods which could enable to characterize the elastic modulus and permeability of the 
cartilage across the synovial joint. Articular cartilage of bovine humeral head was used to 
perform the indentation test in order to obtain experimental data. The cartilage was 
measured using profile projector for development of finite element (FE) model. New 
approach to integrate the experiment data and FE model were developed to examine the 
cartilage biphasic elastic modulus and permeability. Based on the result, the elastic 
modulus increased by 150.6% when cartilage thickness was increase more than twice. 
Meanwhile, opposite trend was seen for permeability, where the permeability decrease as 
the cartilage became thicker with 118.9% percentage difference. This could indicate that 
the actual geometry of cartilage includes of cartilage thickness and curvature does effect 
the biomechanical properties of articular cartilage across synovial joint. These findings will 
be serving as a guide in enhancing tissue engineering developments for cartilage repair and 
as an input for computational studies.  
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ABSTRAK 

 

 

Kemerosotan dan kecederaan tulang rawan artikular pada sendi sinovia telah dikenalpasti 
sebagai punca utama osteoartritis. Ia telah diterima secara umum bahawa ciri-ciri 
biomekanik tulang rawan artikular adalah lebih sensitif kepada perubahan patologi pada 
tisu rawan. Kajian mendalam mengenai tulang rawan telah dijalankan untuk mengkaji 
ciri-ciri biomekanikal mengunakan kedua-dua teknik eksperimen dan analisis. Ciri-ciri 
biomekanik ini kemudiannya digunakan untuk model pengkomputeran untuk 
mengenalpasti sifat biomekanik tulang rawan artikular. Walaubagaimanapun, analisis 
yang telah dikembangkan berdasarkan teori yang berdasarkan geometri dan keadaan 
fizikal tulang rawan dan tulang subchondral yang ideal. Selain itu, dalam kajian terdahulu 
memerlukan tulang rawan artikular diasingkan dari keadaan asal yang mungkin 
menyebabkan kerosakan pada tisu tulang rawan. Ini merupakan penyebab utama kepada 
ketidakfahaman mengenai sifat tulang rawan pada sendi sinovia di sebabkan oleh hanya 
sebahagian dari tulang rawan pada sendi sinovia yang digunakan dalam kajian sebelum 
ini. Oleh itu, kajian ini bertujuan untuk membangunkan pendekatan baru untuk 
mengintegrasikan kaedah eksperimen dan pengkomputeran yang berupaya untuk 
mengenalpasti modulus elastik dan ketelapan tulang rawan artikular yang merangkumi 
seluruh sendi sinovia. Tulang rawan daripada humerus dari sendi bahu lembu telah 
digunakan untuk menjalankan ujian lekukan untuk mendapatkan data daripada 
eksperimen. Geometri tulang rawan telah diperolehi menggunakan profil projektor untuk 
membina model unsur tak terhingga. Pendekatan baru untuk mengintegrasikan eksperimen 
data dan model dari unsur tak terhingga telah dibangunkan untuk mengkaji dwifasa 
modulus elastik meningkat sebanyak 150.6% apabila ketebalan rawan meningkat melebihi 
dua kali ganda. Sementara itu, trend yang sebaliknya dilihat pada ketelapan, di mana nilai 
ketelapan menurun apabila rawan menjadi tebal. Ini adalah menandakan, nilai geometri 
sebenar rawan yang terdiri daripada ketebalan dan lengkungan rawan boleh 
mempengaruhi ciri-ciri biomekanikal tulang rawan artikular pada seluruh sendi sinovia. 
dan kebolehtelapan tisu tulang rawan artikular. Hasil daripada kajian ini mampu memberi 
panduan kepada perkembangan kejuruteraan tisu untuk pemulihan tulang rawan dan 
sebagai input kepada kajian pengkomputeran.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

Osteoarthritis (OA) is the most common joint disease and symptomatic health problem 

which lead to disability to middle age and older people (Egloff et al., 2012; Buckwalter 

and Martin, 2006). OA usually occurs at knee, hips, hand and spine. OA is caused by joint 

injury and degeneration of cartilage, which leads to the limitation in active joint 

movement. Joint injury is caused by exposing subchondral bone by accidents, poor training 

practices and improper gear. Pre-mature of OA may be occurs if the injury left untreated at 

early stage.  Meanwhile, the degeneration of cartilage is caused by wear and tear in joint. 

Wear and tear of cartilage normally is caused by factor of aging where it reduces the 

cartilage hydration. The hydrated cartilage become thin and lost, thus lead to painful joint. 

Usually, the damage of cartilage tissue initiates at the surface of cartilage, where it become 

porous and high in permeability (Grenier et al., 2014). This leads to the decreased of 

modulus of elasticity and reduction in load bearing capacity of the articular cartilage 

(Bhosale and Richardson, 2008). 

Articular cartilage is a smooth and glistening bluish-white tissue which covers the end 

surface of bones. The main function of articular cartilage is to transmit load between 

opposing joint surface, provides a low-friction gliding surface and shock absorber to 

minimize peak pressure on the subchondral bone. These functions are achieved from the 

unique material properties possesed by the cartilage. The cartilage tissue composes of fluid 
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and solid phase. About 80% of the weight is fluid where water is the main content in this 

phase.  The solid phase composes of proteoglycans and collagen. The cartilage tissue 

consist of four different zone with respect to depth, which from the surface to the 

subchondral bone are the superficial, middle, deep and calcified zones. This composition 

makes the articular cartilage structure inhomogeneous and possessed anistropic and 

nonlinear properties both in compression and tension. 

Various constitutive material models have been used to describe cartilage from single-

phase to multiphase models. However, the biphasic theory developed by Mow and co-

workers has been widely accepted to represent the solid and fluid phases of the cartilage 

nature (Mow et al., 1980). In biphasic theory, there are two important biomechanical 

properties considered which are elastic modulus and permeability. The elastic modulus 

represents the stiffness of the tissue, while the permeability indicates the resistance to fluid 

through the cartilage matrix. Both of these properties are commonly characterized using a 

combination of experimental and analytical method (Toyras et al., 2001; Colombo et al., 

2013). Although there are various  experimental methods used in previous studies, creep 

test using indenter was the most preferable. This is due to the specimen preparation where 

the intact cartilage tissue on the bone could be tested whithout separating cartilage and 

bone.  

Thus, the aim of this study is to investigate the effect of the actual geometry of 

articular cartilage across synovial joint on elastic modulus and permeability using 

combination of creep indentation test and simulation of axisymmetric finite element (FE) 

model. In experimental method, the deformation of cartilage tissue obtained from the creep 

indentation test. Meanwhile, axisymmetric FE model is developed in accordance to the 

measured thickness and curvature using Abaqus 6.9-1 (DS Simulia Corp., Providence, RI, 

USA) software.  
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1.2 Problem Statement 

 The investigaton of cartilage behaviour by using computational method assumed 

that the cartilage to be flat with uniform thickness. However, this assumption may 

not appropriate, as the joint is varies in thickness (Li et al., 2013; Toyras et al., 

2001; Shepherd and Seedhom, 1999). 

 In previous studies, the cartilage biomechanical properties was characterized based 

on idealized geometrical and physical condition (Latif et al., 2013; Choi and Zheng, 

2005) This may contribute to inacuracy of the characterized properties because the 

geometrical and physical conditions of cartilage in nature are inhomogeneous 

across the synovial joint.  

 

1.3 Objective 

The study embarks on the following objectives: 

 To establish an experimental method to perform indentation test across the articular 

cartilage. 

 To integrate the new approach of experimental and computational methods to 

characterize the elastic modulus and permeability of the cartilage. 

 To determine the elastic modulus and permeability of articular cartilage across the 

synovial joint using the new integration of experimental and computational 

approaches. 

 

1.4 Scope of Study 

The design of indentation test apparatus is developed and fabricated to perform creep 

and thickness testing. Computational method using axisymmetric FE model is developed 

according to the measured thickness and curvature of articular cartilage using Abaqus 6.9-
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1 (DS Simulia Corp., Providence, RI, USA). The data from both experimental and 

computational method are used to characterize the biphasic properties of articular cartilage 

which are elastic modulus and permeability. The parameter that is investigated in this study 

is the effect of cartilage thickness to characterized the biomechanical properties across 

synovial joint.  

 

1.5 Significance of Study 

 The developed method of the present study could potentially be used to 

characterize the elastic modulus and permeability of cartilage for other synovial joints. The 

accuracy of characterized properties could be as input for computational studies which 

could generate better results. These finding will be serving as guide in enhancing tissue 

engineering developments for cartilage repair and as an input for computational studies. 

 

1.6 Outline of Thesis 
 
 This thesis consists of six chapters as per the following sequence: 

Chapter 1: Introduction 

 This chapter introduces the general information about OA disease, causes of OA 

and articular cartilage. This chapter also states the problem statement, objective, scope and 

significance of this study.  

 

Chapter 2: Literature Review 

 This chapter consists of eigtht sections, which each section explains more about  

the topic. Topics contained in this chapter described the types of human joint and focused 

on the synovial joint and its anatomy, OA, articular cartilage and its composition, structure 

and function, biphasic theory of articular cartilage, characterization of the biomechanical 
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properties of articular cartilage, computational modeling in development of finite element 

model of articular cartilage and bone, and lastly, animal model. 

 

Chapter 3: Methodology 

 This chapter is divided into two major sections which are experimental and 

computational methods.  The earlier section focused on the preparation of the experimental 

method which includes the development of indentation apparatus and material and 

specimen preparations. The later section describes how the indentation test was conducted 

to obtain the data of deformation of cartilage tissue. Followed by the procudure of cartilage 

thickness measurement and cartilage curve measurement to provide the actual geometry of 

the cartilage tissue that will be used on the computational method. For the computational 

technique, the data obtained from the experimental technique are used to develop the FE 

model that will be used to merge to provide a new value of biomechanical properties of 

articular cartilage. 

 

Chapter 4: Results 

 This chapter presents the result obtained from the experimental, computational and 

both methods. The creep deformation of articular cartilage was shown for experimental 

results. The results of the computational simulation presents the effect of thickness of 

articular cartilage on contact pressure and pore pressure. The last two section show the 

biomechanical properties across synovial joint and the effect of cartilage thickness on 

characterized biomechanical properties. This result was obtained by the combination of 

experimental and computational techniques.  

 

 




