

## **Faculty of Electrical Engineering**

# IMPACTS OF SOLAR PHOTOVOLTAIC SYSTEM ON DISTRIBUTION NETWORK PERFORMANCE

Lau Cheiw Yun

Master of Science in Electrical Engineering

2017

C Universiti Teknikal Malaysia Melaka

## IMPACTS OF SOLAR PHOTOVOLTAIC SYSTEM ON DISTRIBUTION NETWORK PERFORMANCE

## LAU CHEIW YUN

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Electrical Engineering

**Faculty of Electrical Engineering** 

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2017

C Universiti Teknikal Malaysia Melaka

## DECLARATION

I declare that this thesis entitled "Impacts of solar Photovoltaic system on distribution network performance" is the result of my own research except as cited in references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

| Signature |                 |
|-----------|-----------------|
| Name      | : LAU CHEIW YUN |
| Date      |                 |
| Dute      | ·               |



## APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electrical Engineering.

| Signature | <u>.</u>                        |
|-----------|---------------------------------|
| Name      | : ASSOC. PROF. DR. GAN CHIN KIM |
| Date      |                                 |

## **DEDICATION**

Special gratitude to my beloved parent, Lau Leong Sin and Lim Lai Keng for their enduring love, tenacity and patience throughout all my walks of life. And also to my siblings, Lau Cheiw Yuet and Lau Chin Kiat who have motivated and supported me throughout my life. I love you all.

#### ABSTRACT

With the growth in energy demand and the depletion of fossil fuels, renewable energy resources have been seen as one of the most promising ways to sustain the future energy needs. However, the integration of renewables into the existing distribution networks can cause potential network problems. The issue is particularly acute if the renewable energy is generated from solar photovoltaic (PV) system with high variability. In this regard, this thesis deals with the modelling of a typical Malaysian distribution network that aims to analyze the impact of PV integration at distribution networks level. More specifically, the number of tap change for On-Load Tap Changer (OLTC) transformers is evaluated under various weather conditions; PV penetration levels as well as PV installed locations. The weather conditions were further categorized using variability index. In this way, the impact of solar variability can be properly assessed. The correlations of network losses and PV penetration levels have also been comprehensively analyzed. It is also important to highlight that actual solar PV generation data of various time resolution were collected and used in this work. This maintains the actual intermittency nature of PV generation. Furthermore, case studies have been performed for both low and medium voltage networks. The results suggest that sudden voltage variation and reverse power flow are the main concern of PV integration on the distribution network. The presented study shows that network losses are at the minimum level with a 50% PV penetration level. In addition, the findings suggest that high solar variability day could increase the tap change operations as much as 274% in average as compared to the network without PV system. In addition, a year-round analysis further suggests that the total annual tap change may operate 164% more frequently in average than a network without PV system.

#### ABSTRAK

Dengan pertumbuhan dalam permintaan tenaga dan kekurangan bahan api fosil, sumber tenaga boleh diperbaharui telah dijadikan sebagai salah satu cara yang paling digalakan untuk mengekalkan keperluan tenaga masa depan. Walaubagaimanapun, integrasi tenaga boleh diperbaharui pada rangkaian pengedaran yang sedia ada boleh menyebabkan masalah pada rangkaian. Isu-isu bertambah buruk sekiranya tenaga yang boleh diperbaharui yang dihasilkan daripada system solar fotovoltan (PV) dengan kepelbagaian yang tinggi. Dalam hal ini, tesis ini berkaitan dengan pemodelan rangkaian pengedaran Malaysia biasa yang bertujuan untuk menganalisis kesan integrasi PV di peringkat sistem pengedaran. Lebih khusus lagi, bilangan operasi On-Load Tap Changer (OLTC) telahpun dinilai dalam pelbagai keadaan cuaca; tahap penembusan PV serta lokasi PV dipasang. Keadaan cuaca telah dikategorikan menggunakan indeks kepelbagaian. Dengan cara ini, kesan kebolehubahan solar boleh dinilai dengan teliti. Profil voltan dan kerugian rangkaian juga dianalisis secara menyeluruh. Ia juga penting untuk fokus pada data generasi PV solar sebenar pelbagai resolusi masa telah dikumpulkan dan digunakan dalam kerja ini. Ini mengekalkan keadaan alam semula jadi yang sebenar bagi generasi PV. Tambahan pula, kajian kes telah dijalankan untuk kedua-dua rangkaian voltan rendah dan sederhana. Kajian ini menunjukkan bahawa variasi voltan secara tidak dijangkai dan aliran kuasa terbalik adalah isu utama integrasi PV pada rangkaian pengagihan. Kajian menunjukan bahawa kerugian rangkaian adalah dalam tahap minima dengan 50% tahap penembusan PV. Di samping itu, kajian ini juga mencadangkan bahawa hari kebolehubahan solar yang tinggi akan menambahkan bilangan operasi OLTC dengan sebanyak 274% sebagai purata berbanding dengan rangkaian yang tiada pemasangan PV. Selain itu, analisis tahunan mencadangkan bahawa bilangan operasi OLTC tahunan bertambah sebanyak 164% dalam purata berbanding dengan bilangan operasi OLTC dalam rangkaian yang tiada pemasangan system PV.

#### ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my main supervisor, Assoc. Prof. Dr. Gan Chin Kim for his essential guidance, supervision, support and encouragement on both practical and scientific manners from the initial towards the completion of this thesis.

I would also like to express my deepest acknowledgment to Mr. Mohamad Fani bin Sulaima and Mr. Kyairul Azmi bin Baharin, my co-supervisor and the lecturer for their guidance and support and motivation in completing this research work. Sincere gratitude also goes to my research mentor from Universiti Teknologi Malaysia (UTM), Prof. Dr. Zainal bin Salam for his valuable suggestion and useful ideas in all nice discussions. Special thanks for the research funding (FRGS(RACE)/2013/FKE/TK3/1F00199) and scholarship (ZAMALAH UTeM) from the Ministry of Higher Education Malaysia and UTeM in supporting this research work.

My sincere appreciation also extends to all my colleagues in solar research laboratory especially Ms. Sa'adah binti Daud and Ms. Nur Faziera binti Napis for their assistance and companionship at various critical occasions. My sincere thanks also goes to my beloved friend Mr. Zhang Guo-Bo for his enduring love and passion support throughout this work.

Last but not least, I would like to express my ultimate thanks go to my beloved parents and siblings for their moral and outstanding support in completing this thesis.

## **TABLE OF CONTENTS**

| A]<br>D]<br>A]<br>A]<br>A<br>[]<br>L]<br>L]<br>L] | PPRO<br>EDIC<br>BSTF<br>BSTF<br>CKN<br>CKN<br>ABLI<br>ST C<br>ST C<br>ST C | OWLE<br>E OF C<br>OF TAB<br>OF FIG<br>OF APP<br>OF ABB | N<br>DGEMENTS<br>ONTENTS<br>LES                                         | i<br>ii<br>iii<br>iv<br>vii<br>x<br>xv<br>xvi<br>xvi<br>xviii |
|---------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------|
|                                                   | HAP                                                                        |                                                        |                                                                         |                                                               |
| 1.                                                |                                                                            |                                                        | CTION                                                                   | 1                                                             |
|                                                   |                                                                            | Backgr                                                 | n statement                                                             | 1<br>2                                                        |
|                                                   |                                                                            |                                                        | ch objectives                                                           | 4                                                             |
|                                                   |                                                                            |                                                        | ch scope                                                                | 5                                                             |
|                                                   |                                                                            | Thesis                                                 | -                                                                       | 5                                                             |
| 2.                                                | LIT                                                                        | ERAT                                                   | URE REVIEW                                                              | 7                                                             |
|                                                   | 2.1                                                                        | Introdu                                                | iction                                                                  | 7                                                             |
|                                                   | 2.2                                                                        | Distrib                                                | ution network                                                           | 9                                                             |
|                                                   | 2.3                                                                        | PV sys                                                 | tem                                                                     | 11                                                            |
|                                                   |                                                                            | 2.3.1                                                  | PV module characteristic                                                | 11                                                            |
|                                                   |                                                                            | 2.3.2                                                  | Grid-connected PV systems                                               | 14                                                            |
|                                                   | 2.4                                                                        | Cloudy                                                 | y types, speed, and shapes                                              | 16                                                            |
|                                                   |                                                                            | 2.4.1                                                  | Cloudy types                                                            | 16                                                            |
|                                                   |                                                                            | 2.4.2                                                  | Cloud speed (CS)                                                        | 17                                                            |
|                                                   |                                                                            | 2.4.3                                                  | Cloud shape                                                             | 18                                                            |
|                                                   | 2.5                                                                        | Solar ii                                               | rradiance                                                               | 20                                                            |
|                                                   |                                                                            | 2.5.1                                                  | Solar variability                                                       | 21                                                            |
|                                                   |                                                                            | 2.5.2                                                  | Solar variability classification                                        | 24                                                            |
|                                                   |                                                                            | 2.5.3                                                  | Relationship between solar variability and PV output power              | 26                                                            |
|                                                   | 2.6                                                                        | Impact                                                 | s of passing-cloud on the distribution network connected with PV syster | n 27                                                          |

|    |     | 2.6.1   | Power fluctuation                                               | 27 |
|----|-----|---------|-----------------------------------------------------------------|----|
|    |     | 2.6.2   | Voltage fluctuation                                             | 31 |
|    |     | 2.6.3   | Power losses                                                    | 37 |
|    |     | 2.6.4   | Voltage regulators                                              | 38 |
|    | 2.7 | Voltage | e Regulating devices On-Load Tap Changer (OLTC) transformers    | 40 |
|    |     | 2.7.1   | Impacts of solar variability on OLTC operations                 | 42 |
|    | 2.8 | Summa   | ary                                                             | 42 |
| 3. | PR  | OJECT   | METHODOLOGY                                                     | 44 |
|    | 3.1 | Introdu | iction                                                          | 44 |
|    | 3.2 | Validat | tion of the network with OpenDSS                                | 45 |
|    |     | 3.2.1   | IEEE 4-bus test feeder                                          | 45 |
|    |     | 3.2.2   | Validation result fot IEEE 4 bus test feeder                    | 46 |
|    | 3.3 | Networ  | rk modeling                                                     | 48 |
|    |     | 3.3.1   | Cable modeling                                                  | 50 |
|    |     | 3.3.2   | Transformers modeling                                           | 51 |
|    |     | 3.3.3   | Demand modeling                                                 | 52 |
|    |     | 3.3.4   | PV System modeling                                              | 55 |
|    | 3.4 | OLTC    | basic control setting                                           | 57 |
|    | 3.5 | Simula  | tion for the base case                                          | 60 |
|    | 3.6 | Impact  | of weather conditions on network performance on LV and MV sides | 61 |
|    |     | 3.6.1   | Evaluation of OLTC tap change frequency                         | 67 |
|    | 3.7 | Impact  | of weather conditions on network performance on MV side         | 76 |
|    | 3.8 | Annual  | analysis for tap change on LV and MV sides                      | 77 |
|    | 3.9 | Summa   | ary                                                             | 77 |
| 4. | RE  | SULT A  | AND DISCUSSION                                                  | 78 |
|    | 4.1 | Introdu | iction                                                          | 78 |
|    | 4.2 | Base ca | ase                                                             | 78 |
|    |     | 4.2.1   | Power demand profiles                                           | 78 |
|    |     | 4.2.2   | Voltages profiles                                               | 80 |
|    |     | 4.2.3   | Tap changers                                                    | 81 |
|    |     | 4.2.4   | Network losses                                                  | 83 |
|    | 4.3 | Impact  | of weather conditions on network performances on LV side        | 84 |
|    |     | 4.3.1   | Evaluation of OLTC tap change frequency                         | 85 |
|    |     |         |                                                                 |    |

|    |      | 4.3.2    | Evaluation of network losses under various penetration levels on LV net  | work<br>99  |
|----|------|----------|--------------------------------------------------------------------------|-------------|
|    | 4.4  | Impact   | of weather conditions on network performance on MV side                  | 102         |
|    |      | 4.4.1    | Evaluation of OLTC tap-change frequency                                  | 102         |
|    |      | 4.4.2    | Evaluation of network losses under various penetration levels on MV net  | work<br>117 |
|    | 4.5  | Annual   | analysis for tap change on LV and MV sides                               | 122         |
|    | 4.6  | Summa    | ıry                                                                      | 125         |
| 5. | CO   | NCLUS    | ION AND RECOMMENDATIONS FOR FUTURE RESEARCH                              | 128         |
|    | 5.1  | Conclu   | sion and research contributions                                          | 128         |
|    |      | 5.1.1    | Modeling of Malaysian distribution network                               | 128         |
|    |      | 5.1.2    | Quantification of the impact of weather conditions                       | 129         |
|    |      | 5.1.3    | Evaluation of the impact of solar PV integration on distribution network | 130         |
|    | 5.3  | Signific | cance of results                                                         | 130         |
|    | 5.4  | Recom    | mendation for future works                                               | 132         |
| RI | CFEI | RENCE    | S                                                                        | 133         |
| Ał | PPEN | NDICES   |                                                                          | 149         |
|    | App  | pendix A | 1                                                                        | 149         |
|    | App  | pendix A | 2                                                                        | 154         |
|    | App  | pendix B | 1                                                                        | 156         |
|    | App  | pendix B | 2                                                                        | 160         |
|    | App  | oendix C |                                                                          | 167         |

## LIST OF TABLES

| TABLE | TITLE                                                               | PAGE |
|-------|---------------------------------------------------------------------|------|
| 2.1   | Normal conditions for LV and MV systems                             | 10   |
| 2.2   | Different types of grid-connected PV systems                        | 15   |
| 2.3   | Types of clouds                                                     | 17   |
| 2.4   | Cloud shape type                                                    | 19   |
| 2.5   | Clear Sky Index (CSI) with sky conditions                           | 23   |
| 2.6   | Categories for daily variability conditions based on the CI and VI  | 25   |
| 3.1   | Validation of OpenDSS 4-bus test feeders phase voltages with IEEE   | 47   |
|       | test results                                                        |      |
| 3.2   | Validation of OpenDSS 4-bus test feeders phase currents with IEEE   | 48   |
|       | test results                                                        |      |
| 3.3   | Cable type and size that used in this studied network               | 50   |
| 3.4   | Line code for different types of cables used in the modeled network | 51   |
| 3.5   | Technical parameters for transformers of the modeled network        | 51   |
| 3.6   | Transformers coding in OpenDSS                                      | 52   |
| 3.7   | UTeM's PV system model                                              | 56   |
| 4.1   | Number of tap changes for OLTC on transformers at MV and LV sides   | 83   |

| 4.2  | Detailed of the daily energy consumption and network losses without       | 84  |
|------|---------------------------------------------------------------------------|-----|
|      | PV                                                                        |     |
| 4.3  | Number of tap changes of OLTC 3 on a sunny day and a cloudy day           | 87  |
| 4.4  | Percentages of daily tap changes for five categories of solar variability | 88  |
|      | day                                                                       |     |
| 4.5  | Percentages of tap change with different TD setting under five different  | 94  |
|      | solar variability day                                                     |     |
| 4.6  | Number of tap changes on the specific feeder D                            | 98  |
| 4.7  | Number of tap changes for randomly allocated PV system                    | 98  |
| 4.8  | Effects of PV allocation on OLTC's tap changes frequency under            | 99  |
|      | different solar variability days                                          |     |
| 4.9  | Total losses with the variation of percentages of PV penetration level    | 100 |
|      | on a sunny day at LV side of the modeled network                          |     |
| 4.10 | Number of tap changes of MV transformer (OLTC 1) on a sunny day           | 103 |
|      | and a cloudy day PV profiles                                              |     |
| 4.11 | Number of tap changes of MV transformer (OLTC 2) on a sunny day           | 103 |
|      | and a cloudy day PV profiles                                              |     |
| 4.12 | Number of tap changes of LV transformer (OLTC 3) on a sunny day           | 104 |
|      | and a cloudy day PV profiles                                              |     |
| 4.13 | Percentage of tap changes of MV transformers and LV transformer           | 105 |
|      | compared with base case                                                   |     |
| 4.14 | Number of tap changes on LV transformer                                   | 122 |
| 4.15 | Number of tap changes for MV transformers                                 | 124 |

| 4.16 | Summary of the tap operations at LV side of the network | 126 |
|------|---------------------------------------------------------|-----|
| 4.17 | Summary of the tap operations at MV side of the network | 126 |
| 4.18 | Percentages of annual increment at LV side              | 127 |
| 4.19 | Percentages of annual increment at MV side              | 127 |

## **LIST OF FIGURES**

| FIGURE | TITLE                                                                 | PAGE |
|--------|-----------------------------------------------------------------------|------|
| 2.1    | Equivalent circuit of a single PV cell                                | 12   |
| 2.2    | I-V characteristic with irradiance variation                          | 13   |
| 2.3    | I-V characteristic curve with temperature variation                   | 14   |
| 2.4    | Grid-connected PV components                                          | 15   |
| 2.5    | Transfer function from irradiance (G) to inverter output power (Pinv) | 26   |
| 2.6    | Sun irradiance versus PV's power output                               | 28   |
| 2.7    | 12-hour PV power generation                                           | 29   |
| 2.8    | Experimental setup for three-phase LV distribution network            | 30   |
| 2.9    | PV's power output and voltage profiles with 0%, 50% and 90% of PV     | 32   |
|        | penetration levels                                                    |      |
| 2.10   | PV's power output and voltage fluctuations                            | 33   |
| 2.11   | Load demand and PV generation (a) summer (b) winter                   | 35   |
| 2.12   | Voltage profiles on (a) summer (b) winter                             | 36   |
| 2.13   | Relationship between PV output power with sun radiation               | 37   |
| 2.14   | Equivalent diagram and OLTC representation                            | 40   |
| 2.15   | OLTC basic arrangement                                                | 41   |
| 3.1    | 4-bus test feeder                                                     | 46   |

| 3.2  | The generic distribution network in Malaysia                          | 49 |
|------|-----------------------------------------------------------------------|----|
| 3.3  | Daily residential demand pattern with five-minute resolution          | 54 |
| 3.4  | Daily aggregated five-minute resolution MV demand profiles            | 54 |
| 3.5  | Thin film rooftop PV system                                           | 55 |
| 3.6  | Inverter room for data collection purpose                             | 56 |
| 3.7  | Connection of PV systems at LV side                                   | 57 |
| 3.8  | Relationship of three basic OLTC's control settings                   | 59 |
| 3.9  | Flowchart of base case simulation                                     | 61 |
| 3.10 | 5-min resolution of a sunny day PV generation profile                 | 62 |
| 3.11 | 5-min resolution of a cloudy day PV generation profile                | 62 |
| 3.12 | 1-min resolution PV generation profile on clear sky day               | 64 |
| 3.13 | 1-min resolution PV generation profile on overcast day                | 65 |
| 3.14 | 1-min resolution PV generation profile on mild variability day        | 65 |
| 3.15 | 1-min resolution PV generation profile on moderate variability day    | 66 |
| 3.16 | 1-min resolution PV generation profile on high variability day        | 66 |
| 3.17 | The flowchart of the weather conditions simulation                    | 68 |
| 3.18 | Flowchart of the case studies with the different PV penetration level | 70 |
| 3.19 | Flowchart of TD settings variation                                    | 72 |
| 3.20 | Flowchart of the effect of time resolution                            | 74 |
| 3.21 | Flowchart of the effect of PV system allocation                       | 76 |
| 4.1  | MV transformers loading                                               | 79 |
| 4.2  | LV transformers loading                                               | 79 |
| 4.3  | Voltage profiles on MV side                                           | 80 |

| 4.4  | Voltage profiles on LV side                                           | 81  |
|------|-----------------------------------------------------------------------|-----|
| 4.5  | Tap change at MV side                                                 | 82  |
| 4.6  | Tap change at LV side                                                 | 82  |
| 4.7  | Transformers loading at transformers 3 on a sunny day and a cloudy    | 86  |
|      | day                                                                   |     |
| 4.8  | Tap position of OLTC at transformers 3 on a sunny day and a cloudy    | 86  |
|      | day                                                                   |     |
| 4.9  | Number of tap changes per day versus five different sample days       | 88  |
| 4.10 | Number of tap changes versus percentages of PV penetration            | 90  |
| 4.11 | The relationship between PV penetration level with number of tap      | 91  |
|      | changes for five sample of PV generation profiles                     |     |
| 4.12 | Number of tap changes versus TD settings                              | 92  |
| 4.13 | Number of tap changes of LV transformer versus different TD setting   | 94  |
|      | with five categories of solar variability samples                     |     |
| 4.14 | Number of tap changes with different time resolution generation       | 96  |
| 4.15 | Relationship between number of tap changes with time resolution for   | 97  |
|      | five categories PV profiles                                           |     |
| 4.16 | Relationship between losses and large PV penetration level on a sunny | 101 |
|      | day                                                                   |     |
| 4.17 | Number of tap changes of MV transformers and LV transformer with      | 105 |
|      | five different solar variability profiles                             |     |
| 4.18 | Number of tap changes with different percentages of PV penetration    | 106 |
|      | level for MV transformers and LV transformer on a sunny day           |     |

| 4.19 | Number of tap changes with different percentages of PV penetration | 107 |
|------|--------------------------------------------------------------------|-----|
|      | level for MV transformers and LV transformer on a cloudy day       |     |
| 4.20 | Number of tap changes for MV transformer 1 versus PV penetration   | 108 |
|      | level under five different solar variability profiles              |     |
| 4.21 | Number of tap changes for MV transformer 2 versus PV penetration   | 108 |
|      | level under five different solar variability profiles              |     |
| 4.22 | Number of tap changes for LV transformer 3 versus PV penetration   | 109 |
|      | level under five different solar variability profiles              |     |
| 4.23 | Number of tap changes for MV transformers (OLTC 1 & 2) and LV      | 110 |
|      | transformer (OLTC 3) on a sunny day profile                        |     |
| 4.24 | Number of tap changes for MV transformers (OLTC 1 & 2) and LV      | 110 |
|      | transformer (OLTC 3) on a cloudy day profile                       |     |
| 4.25 | Number of tap changes of MV transformer 1 versus TD settings under | 111 |
|      | five different solar variability profiles                          |     |
| 4.26 | Number of tap changes of MV transformer 2 versus TD settings under | 112 |
|      | five different solar variability profiles                          |     |
| 4.27 | Number of tap changes of LV transformer 3 versus TD settings under | 112 |
|      | five different solar variability profiles                          |     |
| 4.28 | Number of tap changes of MV transformers and LV transformer with   | 114 |
|      | different time resolution on a sunny day                           |     |
| 4.29 | Number of tap changes of MV transformers and LV transformer with   | 114 |
|      | different time resolution on a cloudy day                          |     |

| 4.30 | Number of tap changes for MV transformer versus PV time resolution    |     |
|------|-----------------------------------------------------------------------|-----|
|      | under five different solar variability profiles                       |     |
| 4.31 | Number of tap changes for MV transformer versus PV time resolution    | 116 |
|      | under five different solar variability profiles                       |     |
| 4.32 | Number of tap changes for LV transformer versus PV time resolution    | 117 |
|      | under five different solar variability profiles                       |     |
| 4.33 | Network losses with different PV penetration level on a sunny day and | 118 |
|      | a cloudy day                                                          |     |
| 4.34 | Network losses versus PV penetration level on a clear sky day         | 119 |
| 4.35 | Network losses versus PV penetration level on an overcast day         | 120 |
| 4.36 | Network losses versus PV penetration level on a mild variability day  | 120 |
| 4.37 | Network losses versus PV penetration level on a moderate variability  | 121 |
|      | day                                                                   |     |
| 4.38 | Network losses versus PV penetration level on a high variability day  | 121 |

## LIST OF APPENDICES

| APPENDIX | TITLE                                                        | PAGE |
|----------|--------------------------------------------------------------|------|
| A1       | IEEE 4-bus test feeder system                                | 149  |
| A2       | OpenDSS codes for IEEE 4-bus test feeder                     | 154  |
| B1       | Parameters for the modelled distribution network in Malaysia | 156  |
| B2       | OpenDSS & MATLAB codes for the modelled network in Malaysia  | 160  |
| С        | Publications                                                 | 167  |

## LIST OF ABBREVIATIONS

| AC   | Alternating Current                               |
|------|---------------------------------------------------|
| BW   | Bandwidth                                         |
| CI   | Clearness Index                                   |
| СОМ  | Component Object Model                            |
| CSI  | Clear Sky Index                                   |
| CSV  | Comma-Separated Value                             |
| СТ   | Current Transformers                              |
| DC   | Direct Current                                    |
| DG   | Distributed Generation                            |
| DHI  | Diffuse Horizontal Irradiance                     |
| DLL  | Dynamic Link Library                              |
| DNI  | Direct Normal Irradiance                          |
| EPRI | Electrical Power Research Institute               |
| EU   | European                                          |
| FiT  | Feed in Tariff                                    |
| GHI  | Global Horizontal Irradiance                      |
| IEC  | International Electrotechnical Commission         |
| IEEE | Institute of Electrical and Electronics Engineers |
| Ip   | Primary Current                                   |
|      | xvi                                               |

C Universiti Teknikal Malaysia Melaka

| LDC     | Line Drop Compensation                            |
|---------|---------------------------------------------------|
| LV      | Low Voltage                                       |
| MATLAB  | Matrix Laboratory                                 |
| MV      | Medium Voltage                                    |
| MW      | Mega Watt                                         |
| NERC    | North America Electric Reliability Corporation    |
| NERL    | National Renewable Energy Laboratory              |
| NLTC    | No-Load Tap Changers                              |
| OLTC    | On-Load Tap Changers                              |
| OpenDSS | Open Distribution System Simulator                |
| p.u.    | Per Unit                                          |
| PV      | Photovoltaic                                      |
| RE      | Renewable Energy                                  |
| SEDA    | Sustainable Energy Development Authority Malaysia |
| ST      | Surunhanjaya Tenaga                               |
| TD      | Time Delay                                        |
| TNB     | Tenaga Nasional Berhad                            |
| UNITEN  | Universiti Tenaga Nasional                        |
| Up      | Primary voltage                                   |
| U.S.    | United States                                     |
| UTeM    | Univeristi Teknikal Malaysia Melaka               |
| VI      | Variability Index                                 |
| VT      | Voltage Transformers                              |
| WVM     | Wavelet Variability Model                         |
|         | xvii<br>O Universiti Teknikal Malaysia Melaka     |

### LIST OF PUBLICATIONS

#### Journal

- [1] Lau, C. Y., Gan, C. K., Baharin, K. A., & Sulaima, M. F. (2015). A review on the impacts of passing-clouds on distribution network connected with solar photovoltaic system. *International Review of Electrical Engineering (I.R.E.E.)*, 10(3), 449–457. (Scopusindexed)
- [2] Lau, C. Y., Gan, C. K., Z. Salam, & Sulaima, M. F. (2016). Impact of solar photovoltaic system on transformers tap changer in low voltage distribution network. *Energy Procedia*, *In-Press (Scopus Indexed)*

#### Conference

[3] Lau, C. Y., Gan, C. K., Tie, C. H., Baharin, K. A., & Sulaima, M. F. (2015). Passing-cloud effects of solar photovoltaic system on distribution network voltages. 2015 9<sup>th</sup> International Power Engineering and Optimization Conference (PEOCO), 551–555.

#### **CHAPTER 1**

#### **INTRODUCTION**

#### 1.1 Background

The world heavy reliance on fossil energy resources has brought numerous impacts on the environment such as climate change due to greenhouse gas emissions. To address this matter, Renewable Energy (RE) sources, such as solar, wind, biomass, tidal, and ocean thermal are being exploited as alternatives. Among these, the solar Photovoltaic (PV) appears to be the most promising option due to its inexhaustible resource from the sun. Driven by the governmental support and the advancement in PV technology, the number of PV installations have increased dramatically in the past few years. According to the futuristic expansion plans from various countries such as China, India, Germany, US, California, and Canada, there are many PV power projects installed with high PV capacity (Wong & Wills 2011; Bondre & Nambiar 2011; Grigoleit et al. 2014; Elkind et al. 2013; Small 2011). Furthermore, the total expected PV power generation capacity targeted in Europe is 84.4 GW by 2020 (Pearsall 2011).

In the Malaysia context, the introduction of Feed-in Tariff (FiT) scheme in year 2011 has prompted an increasing number of grid-connected PV system installation in Malaysia (KeTTHA 2011). In addition, a total of 985 MW of RE generations is targeted by the year 2015. In terms of PV development target, a total of 190 MW is expected to be connected to the utility grid by the year 2020 (The Economic Planning Unit 2010). The relative large integration of PV system in the distribution grid is expected to cause some network problems. For instance, the output of the PV panels is heavily depending on the solar irradiance level. In this regard, the