

DEVELOPMENT OF MATHEMATICAL MODEL FOR MUSCLE ACTIVITY, PSYCHOPHYSICAL EXPERIENCE AND HEART RATE DURING MANUAL LOAD CARRYING

NURADILAH BINTI ZAHRI @ JOHARI

MASTER OF SCIENCE IN MANUFACTURING ENGINEERING

2017

C Universiti Teknikal Malaysia Melaka

Faculty of Manufacturing Engineering

DEVELOPMENT OF MATHEMATICAL MODEL FOR MUSCLE ACTIVITY, PSYCHOPHYSICAL EXPERIENCE AND HEART RATE DURING MANUAL LOAD CARRYING

Nuradilah binti Zahri @ Johari

Master of Science in Manufacturing Engineering

2017

DEVELOPMENT OF MATHEMATICAL MODEL FOR MUSCLE ACTIVITY, PSYCHOPHYSICAL EXPERIENCE AND HEART RATE DURING MANUAL LOAD CARRYING

NURADILAH BINTI ZAHRI @ JOHARI

A thesis submitted

in fulfillment of the requirements for the degree of Master of Science

in Manufacturing Engineering

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this thesis entitled "Development of Mathematical Model for Muscle Activity, Psychophysical Experience and Heart Rate during Manual Load Carrying" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Manufacturing Engineering.

Signature	:	
Supervisor Nam	ne :	
Date	:	

DEDICATION

Dedicated to my beloved husband, Mohd Hazman bin Marinamarican, my kids Muhammad Aniq and Hana Humaira, and my mother Che Esah binti Che Mat.

ABSTRACT

Manual materials handling (MMH) were categorized as highly risk physical activities if improperly conducted. As found in previous research, numbers of work-related musculoskeletal disorder (WRMSD) increased among the industrial workers caused by MMH. Hence, this research aims to find risk factors and its effect towards changes in muscle activity, heart rate, and psychophysical experience which specifically associated with manual load carrying activities. Mathematical models were develop to express the relationship between the risk factors towards muscle activity, heart rate, and psychophysical experience. Thirty subjects were asked to carry a load mass of water bottles while walking on certain distances on flat and inclination surfaces. Results revealed that load mass had significantly affected muscle activity and increased rating of perceived exertion on Trapezius (TRAP) and Erector Spinae (ES) muscle. On the other hand, walking inclination had significantly affected both right and left ES as well as increased heart rate but decrease psychophysical experience for TRAP and Right ES. Unlike TRAP muscle activity, the subjects rated that their working intensity increased with increasing of walking inclination on ES. The development of mathematical model described that with the increase in load mass, walking distance, and walking inclination, they might increase muscle activity and heart rate as well as psychophysical experience. These results provided guidance to predict the intensity of workers' muscle activity, heart rate, and psychophysical experience and to create safe working condition as they performed the asymmetrical manual load carrying.

ABSTRAK

Pengendalian bahan secara manual adalah dikategorikan sebagai aktiviti fizikal yang berisiko tinggi jika dikendalikan dengan salah. Kajian lampau mendapati bahawa penyakit bekaitan otot meningkat dalam kalangan pekerja industri disebabkan oleh aktiviti ini. Tujuan kajian ini adalah untuk mengenalpasti faktor risiko dan mengkaji kesan faktor risiko tersebut terhadap perubahan dalam aktiviti otot, kadar jantung dan pengalaman psikofizikal pekerja semasa melakukan aktiviti membawa beban secara manual. Model matematik juga dihasilkan untuk menyatakan hubungan antara faktor risiko terhadap aktiviti otot, kadar jantung dan pengalaman psikofizikal. Tiga puluh orang peserta menjalankan eksperimen dengan membawa botol air dengan berat yang berbeza sambil berjalan pada jarak yang berbeza di permukaan rata dan permukaan condong. Hasil kajian mendapati berat beban memberi kesan kepada aktiviti otot dan pengalaman psikofizikal pada otot Trapezius (TRAP) dan Erektor Spina (ES). Sebaliknya, berjalan pada permukanan rata dan menaiki tangga memberi kesan kepada kedua-dua belah kanan dan kiri ES, di samping meningkatkan kadar denyutan jantung. Berbeza dengan aktiviti otot TRAP, intensiti pekerjaan peserta meningkat pada otot ES semasa menaiki tangga. Berdasarkan model matematik yang dihasilkan, peningkatan jisim beban, jarak perjalanan dan menaiki tangga dapat meningkatkan aktiviti otot dan kadar jantung serta pengalaman psikofizikal. Hasil kajian ini dapat dijadikan panduan untuk meramalkan aktiviti otot pekerja, kadar jantung dan pengalaman psikofizikal di samping dapat mewujudkan keadaan persekitaran bekerja yang selamat.

ACKNOWLEDGEMENT

In this opportunity, I would like to express my highest gratitude to my supervisor Mr. Nor Akramin bin Mohamad for his continuous supervision and support as well as sharing information and advices upon completing my research work.

I would also like to express gratitude to my co-supervisor Dr. Isa bin Halim for the advices and suggestion to improve my project. I appreciate UTEM for the short term funding as financial support throughout this project.

Besides, special thanks to my husband Mohd Hazman bin Marinamarican, my mother Che Esah binti Che Mat, my kids Aniq and Hana, my mother in law Wan Suriani binti Wan Abdul Ghani and father in law Marinamarican bin Abdullah, including all the family members and friends for the continuous and valuable support. Last but not least, thank you to my friends Noor Rawaida, Intan Fatihah, Hafizah and Mohd Hafiz and Kazimi for helping me towards completing this project. Finally, thank you to those who involved directly and indirectly in this research project.

TABLE OF CONTENTS

			11101
		RATION	
	PROV		
		TION	
	STRA		i
ABSTRAK ACKNOWLEDGEMENT TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES			ii
			iii
			iv
			vii
			x xiv
	LIST OF APPENDICES LIST OF ABBREVIATIONS		
		PUBLICATIONS	xv xvii
LIS	IUF	rublications	XVII
CH	АРТЕ	CR .	
1.		TRODUCTION	1
		Introduction	1
		Problem Statement	2
		Objectives	4
		Scope of Study	4
		Limitation	5
		Potential Benefits of the Research	5
	1.6	Thesis Outline	6
2.	LIT	TERATURE REVIEW	7
	2.0	Introduction	7
	2.1	Principle of Manual Materials Handling	7
		Ergonomics Risk Factor	12
	2.3	Types of Risk Factors	15
		2.3.1 Load	15
		2.3.2 Environmental Factor	16
		2.3.3 Work Demand	18
		2.3.4 Characteristics of the Workers/Operators	19
	2.4	Manual Material Handling Design Approach	21
		2.4.1 Physiological Approach	21
		2.4.2 Biochemical Approach	22
		2.4.2.1 Muscle Activity	23
		2.4.2.2 Surface Electromyography (sEMG)	23
		2.4.3 Psychophysical Approach	24
	2.5	2.4.4 Summary of Previous Research for Sample and Method	26
	2.5	Summary	28

PAGE

3.	ME	THODOLOGY	29
	3.1	Research Design	29
	3.2	Research Methodology	31
		3.2.1 Literature Review	31
		3.2.2 Direct Observation	32
		3.2.3 Development of Questionnaire	32
	3.3	Participants	34
		3.3.1 Ethical Consideration	34
	3.4	Data Collection	36
		3.4.1 Design of Experiment	36
		3.4.2 Materials and Experiment Platform	38
		3.4.3 Experimental Procedure	43
		3.4.3.1 Skin Preparation for Surface Electromyography	44
		(sEMG) Electrode Attachment	
		3.4.3.2 Procedure	45
	3.5	Data Analysis	52
	3.6	Expected Results	54
4.	RE	SULTS	55
	4.1	Identifying the Risk Factors from Questionnaire Survey	55
		4.1.1 Section A: Descriptive Statistic of Demographic Information	56
		4.1.2 Section B: Operation and Job Description	56
		4.1.3 Section C: Operation Constraint and Health Problem	58
		4.1.4 Section D: Causal to Discomfort	59
		4.1.5 Summary	60
	4.2	Experimental Analysis: Analysis of Muscle Activity, Heart Rate	61
		(Quantitative), and Psychophysical Experience (Qualitative)	
		4.2.1 Descriptive Statistic for Muscle Activity, Heart Rate, and	65
		Psychophysical Experience	
		4.2.2 Normality Test	69
		4.2.3 Hypothesis Testing	83
		4.2.4 Summary	88
	4.3	Statistical Analysis	89
		4.3.1 ANOVA for Muscle Activity	89
		4.3.2 ANOVA for Heart Rate	94
		4.3.3 ANOVA for Psychophysical Experience	96
		4.3.4 Summary	101
	4.4	Main Effects Plot	102
		4.4.1 Main Effect Plot for Muscle Activity	102
		4.4.2 Main Effect Plot for Heart Rate	105
		4.4.3 Main Effect Plot for Psychophysical Experience	106
		4.4.4 Summary	110
	4.5	Interaction Plot	110

	4.5.1 Summary	117
4.6	Fitted Model	118
4.7	Model Validation	136
	4.7.1 Summary	141

5.	DIS	CUSSION	142
	5.1	Effect of Risk Factors towards Muscle Activity	142
	5.2	Effect of Risk Factors towards Heart Rate	144
	5.3	Effect of Risk Factors towards Psychophysical Experience	145
	5.4	Relationship of Load Mass, Walking Distance, and Walking Inclination towards Muscle Activity, Heart Rate, and Psychophysical Experience	147
	5.5		150
6.	CO	NCLUSION AND RECOMMENDATIONS	152
	6.1	Evaluating Risk Factors	152
		Analyzing Muscle Activities and Heart Rate (Quantitative) using Design of Experiment	153
	6.3		153
	6.4	Development of Mathematical Model	154
		Contributions of Study	155
		Recommendations for Future Study	155
REI	FERE	NCES	156
APF	PEND	ICES	169

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1	Summary of Research Related on MMH Activity in Various	9
	Working Sectors	
Table 2.2	Manual Materials Handling Practiced in Industries	12
Table 2.3	Ergonomic Risk Factors Associated with MMH and Its Effects	14
	to Workers' Health	
Table 2.4	Summary of Risk Factors from Previous Research	20
Table 2.5	Scale of Rating of Perceived Exertion (Source: Borg, 1982)	25
Table 2.6	Reviews Number on Sampling and Method by Previous	27
	Researchers	
Table 3.1	Table of Methods Used Associated with Objectives	31
Table 3.2	Questionnaire Development	33
Table 3.3	Inclusion and Exclusion Criteria	34
Table 3.4	Dependent Variables and Independent Variables	37
Table 3.5	Design of Experiment (DOE)	38
Table 3.6	Table for Heart Rate Measurement	50
Table 3.7	Expected Outcome for the Research	54
Table 4.1	Demographic Information of 25 Respondents	56
Table 4.2	Results for Section B of the Questionnaire	57

13 C Universiti Teknikal Malaysia Melaka

Table 4.3	Results for Section C of the Questionnaire	59
Table 4.4	Sample Data of Muscle Activity	62
Table 4.5	Sample Data of Heart Rate	63
Table 4.6	Sample Data of Psychophysical Experience	64
Table 4.7	Demographic Details for 30 Participants in the Experiment	65
Table 4.8	Descriptive Statistic of Muscle Activity for Every Task and	66
	Muscles	
Table 4.9	Descriptive Statistic of Heart Rate for Every Task	67
Table 4.10	Descriptive Statistic of Psychophysical Experience (Borg Scale)	68
	for Every Task and Muscles	
Table 4.11	ANOVA for Trapezius Muscle Activity	90
Table 4.12	ANOVA for Right Erector Spinae Muscle Activity	91
Table 4.13	ANOVA for Left Erector Spinae Muscle Activity	92
Table 4.14	New ANOVA for Muscle Activity (after eliminating non-	93
	significant terms)	
Table 4.15	ANOVA for Heart Rate	95
Table 4.16	New ANOVA for Heart Rate	96
Table 4.17	ANOVA for Trapezius Psychophysical Experience	97
Table 4.18	ANOVA for Right Erector Spinae Psychophysical Experience	98
Table 4.19	ANOVA for Left Erector Spinae Psychophysical Experience	99
Table 4.20	New ANOVA for Psychophysical Experience (after eliminating	100
	non-significant terms)	
Table 4.21	Results of Adjusted R-Squared After Refitting Model	130

Table 4.22	Summary on Model Relationship for Muscle Activity, Heart	135
	Rate, and Psychophysical Experience	
Table 4.23	Validation of Model for Muscle Activity (TRAP)	137
Table 4.24	Validation of Model for Muscle Activity (Right ES)	137
Table 4.25	Validation of Model for Muscle Activity (Left ES)	138
Table 4.26	Validation of Model for Heart Rate	139
Table 4.27	Validation of Model for Psychophysical Experience (TRAP)	140
Table 4.28	Validation of Model for Psychophysical Experience (Right ES)	140
Table 4.29	Validation of Model for Psychophysical Experience (Left ES)	140
Table 5.1	Summary of Risk Factors versus Muscle Activity	144
Table 5.2	Summary of Risk Factors versus Heart Rate	145
Table 5.3	Summary of Risk Factors versus Psychophysical Experience	147
Table 5.4	Summary of Mathematical Model for Muscle Activity	148
Table 5.5	Summary of Mathematical Model for Heart Rate	149
Table 5.6	Summary of Mathematical Model for Psychophysical	150
	Experience	

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 3.1	Flow Chart of Research Design	30
Figure 3.2	Flow Chart of Enrolment of Participants	35
Figure 3.3	Flow Chart of Research Methodology	36
Figure 3.4	Loads: Water Bottle	39
Figure 3.5	a) Transmitter TELEMYO 2400 T G2 by Noraxon with 100	40
	meter transmission, b) TeleMyo [™] 2400R G2 Mini Receiver by	
	Noraxon with 8 analog input channel, c) Lead/PreAmp-pinch	
	electrode terminal	
Figure 3.6	Placement of Electrode for Trapezius and Erector Spinae	41
Figure 3.7	POLAR Heart Rate Monitor and Transmitter	41
Figure 3.8 (a)	Distance for Flat surface	42
Figure 3.8 (b)	Distance for Climbing stairs	43
Figure 3.9	Pre-Task Procedure	44
Figure 3.10	List of Consumable	45
Figure 3.11	Sequence of Experimental Procedure for Carrying Loads on Flat	46
	Surface	
Figure 3.12	Experimental Procedure for Carrying Loads on Flat Surface	47
Figure 3.13	Sequence of Experimental Procedure for Carrying Loads while	48
	Climbing Stairs	

Figure 3.14	Experimental Procedure for Carrying Loads while Climbing	49
	Stairs	
Figure 3.15	Borg Scale for Trapezius and Erector Spinae	51
Figure 3.16	Developing Mathematical Model	53
Figure 4.1	Body Parts Discomfort	58
Figure 4.2	Result for Section D of the Questionnaire	60
Figure 4.3 (a)	Normal Probability Plot of Trapezius Muscle Activity	70
Figure 4.3 (b)	Normal Histogram of Trapezius Muscle Activity	71
Figure 4.4 (a)	Normal Probability Plot of Right ES Muscle Activity	72
Figure 4.4 (b)	Normal Histogram of Right ES Muscle Activity	73
Figure 4.5 (a)	Normal Probability Plot Left ES Muscle Activity	74
Figure 4.5 (b)	Normal Histogram of Left ES Muscle Activity	75
Figure 4.6 (a)	Normal Probability Plot of Heart Rate (After Experiment)	76
Figure 4.6 (b)	Normal Histogram Plot of Heart Rate (After Experiment)	77
Figure 4.7 (a)	Normal Probability Plot of Rating Perceived Exertion on	78
	Trapezius (TRAP)	
Figure 4.7 (b)	Normal Histogram of Rating Perceived Exertion on Trapezius	79
	(TRAP)	
Figure 4.8 (a)	Normal Probability Plot of Rating Perceived Exertion on	80
	Right ES	
Figure 4.8 (b)	Normal Histogram of Rating Perceived Exertion on	81
	Right ES	
Figure 4.9 (a)	Normal Probability Plot of Rating Perceived Exertion on Left ES	82

Figure 4.9 (b)	Normal Histogram of Rating Perceived Exertion on Left ES	83
Figure 4.10	Main Effects Plot for Trapezius Muscle Activity	103
Figure 4.11	Main Effects Plot for Right Erector Spinae (ES) Muscle Activity	104
Figure 4.12	Main Effects Plot for Left Erector Spinae (ES) Muscle Activity	105
Figure 4.13	Main Effects Plot for Heart Rate	106
Figure 4.14	Main Effects Plot for Trapezius (TRAP) Psychophysical	107
	Experience	
Figure 4.15	Main Effects Plot for Right Erector Spinae (ES) Psychophysical	108
	Experience	
Figure 4.16	Main Effects Plot for Left Erector Spinae (ES) Psychophysical	109
	Experience	
Figure 4.17	Interaction Plot for Trapezius (TRAP) Muscle Activity	111
Figure 4.18	Interaction Plot for Right Erector Spinae (ES) Muscle Activity	112
Figure 4.19	Interaction Plot for Left Erector Spinae (ES) Muscle Activity	113
Figure 4.20	Interaction Plot for Heart Rate	114
Figure 4.21	Interaction Plot for Trapezius (TRAP) Psychophysical	115
	Experience	
Figure 4.22	Interaction Plot for Right Erector Spinae (ES) Psychophysical	116
	Experience	
Figure 4.23	Interaction Plot for Left Erector Spinae (ES) Psychophysical	117
	Experience	
Figure 4.24	Model Summary for TRAP Muscle Activity	120
Figure 4.25	Model Summary for Right ES Muscle Activity	122

Figure 4.26	Model Summary for Left ES Muscle Activity		
Figure 4.27	Model Summary for Heart Rate		
Figure 4.28	Model Summary for Heart Rate (Refitted)		
Figure 4.29	Model Summary for TRAP Psychophysical Experience		
Figure 4.30	Model Summary for TRAP Psychophysical Experience		
	(Refitted)		
Figure 4.31	Model Summary for Right ES Psychophysical Experience	129	
Figure 4.32	Model Summary for Right ES Psychophysical Experience	131	
	(Refitted)		
Figure 4.33	Model Summary for Left ES Psychophysical Experience	133	
Figure 4.34	Model Summary for Left ES Psychophysical Experience	134	
	(Refitted)		

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Questionnaire Survey on Mineral Water Bottle Transportation	169
В	Borang Maklumat Subjek	176
С	Borang RPE (Borg Scale)	180

LIST OF ABBREVIATIONS

AD Anderson-Darling -ANOVA Analysis of Variance -Design of Experiment DOE -ES Erector Spine -L Load -LES Left Erector Spinae -LPG Liquid Petroleum Gas -MANOVA -Multivariate Analysis of Variance MMH Manual Material Handling _ NIOSH National Institute for Occupational Safety and Health -OSH Occupational Safety and Health -R-Sq R Squared -REAT Rehabilitation and Assistive Technology -REC Research Ethic Community -RES **Right Erector Spinae** -Surface Electromyography sEMG -SOCSO Social Security Organization -TRAP Trapezius _

VIF	-	Variance Inflation Factor
WD	-	Walking Distance
WI	-	Walking Inclination
WRMSD	-	Work-Related Musculoskeletal Disorder

LIST OF PUBLICATIONS

Al Amin,M., Nuradilah,Z., Isa H., Nor Akramin,M., Febrian,I and Taufik. A Review in Ergonomics Risk Factors and Health Associated with Manual Materials Handling. Advanced Engineering Forum Vol. 10 (2013) pp 251-256.

CHAPTER 1

INTRODUCTION

1.0 Introduction

News on occupational injuries involving industrial workers has widely spread all over the countries in Malaysia. Most of the researchers played their roles by investigating the causes and effects for the incidents to occur among the workers. Every aspects associated with the incidents were being focused on their investigation. In this research, the aspects related to both physiological and psychological were investigated. Generally, physiology is defined as a scientific study of normal functions of living things, including ways of human bodies functioning. On the other hand, psychophysical is the study of the relationship between the physical stimuli and the effect they has interpreted in mind. This research focused on finding the physiological effects such as how muscle activities of the workers reacted while they were performing the physical activities. In continuity, the study tended to find how human heart rates were affected by performing the physical activities. Psychophysical experiences of workers were evaluated other than of physiology study. Their perception upon performing the physical tasks were evaluated which was parallel to direct measurement of muscle activity and heart rate. An occupational injury often occurs among the workers who are involved in manufacturing industries and service sectors. This is due to the frequency of involvement in direct physical work such as manual materials handling. Manual material handling (MMH) activities in the industry refers to activities such as lifting, carrying, holding, lowering, pushing, and pulling. This research was mainly focusing on occupational problems among

24