

Faculty of Manufacturing Engineering

LEAD-FREE PIEZOELECTRIC ENERGY HARVESTER BASED ON OPTIMISED POTASSIUM SODIUM NIOBATE THIN FILM

Maziati Akmal binti Mat Harttar @ Mohd Hatta

Doctor of Philosophy

2017

🔘 Universiti Teknikal Malaysia Melaka

LEAD-FREE PIEZOELECTRIC ENERGY HARVESTER BASED ON OPTIMISED POTASSIUM SODIUM NIOBATE THIN FILM

MAZIATI AKMAL BINTI MAT HARTTAR @ MOHD HATTA

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2017

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "Lead-free piezoelectric energy harvester based on optimised potassium sodium niobate thin film" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

Signature	:	
Supervisor Name	:	
Date	:	

DEDICATION

To my beloved mother and father,

my husband and my son...

This humble work is dedicated for all of you who taught me to be patience in completing my work, who never fail to give continous support, du'as and encouragement during difficult time of this journey.

ABSTRACT

Piezoelectric energy harvester (PEH) is considered as a robust power source, which can power the electronic devices by scavenging small magnitudes of energy from ambient vibration. The fundamental advantage of PEH lies on the inherent ability of the piezoelectric material to generate electricity depending on the amount of vibration applied on the material. Although lead zirconate titanate (PZT) is the most common type of piezoelectric material used, the toxicity of PZT content has damaged the environment and health, in which it necessitates the discovery of lead-free piezoelectric material. Hence, potassium sodium niobate (KNN) is chosen as the potential candidate since good piezoelectric properties can be achieved by compositionally-engineered the perovskite structure. However, the thermal treatment of KNN at high temperature is challenging due to alkali metal cations volatility. In order to address this issue, a series of systematic reviews and a consecutive study on KNN energy harvester was conducted. In the present study, KNN thin films were fabricated via chemical solution deposition method. The effects of the annealing temperature and various number of coating layers on both the structural and electrical properties were looked into in order to find the optimum annealing temperature and coating layers to fabricate KNN thin films. The present study has shown that KNN thin film annealed at 650 °C presented a well-crystallised orthorhombic perovskite structure without the presence of secondary phase which confirmed by X-ray powder diffraction analysis. Crystallinity, molecular vibration, surface morphology, and resistivity were found to depend on the coating layers. Particularly, the optimum properties were found for KNN thin films with five coating layers. In addition, the structural and electrical properties were strongly affected by yttrium doping. All the thin films had a preferred (0 0 1) orientation with formation of pure orthorhombic perovskite structure. Small shift on Raman active mode, together with dense and homogenous surface morphology were obtained for 0.5 mol% yttrium-doped KNN. Besides, 0.5 mol% yttriumdoped KNN had intermediate electrical resistivity (2.153 \times 10⁶ Ω .cm), low dielectric loss (0.018 %), high dielectric permittivity (508), and high quality factor (25.730). Next, finite element modelling was performed to determine the resonance frequency of the asfabricated KNN thin film to generate the optimum voltage and power output. The performance of KNN energy harvester was compared with a commercial lead based material, namely PZT-5H. Both harvesters showed a comparable output power of 0.104 mW and 0.115 mW for KNN and PZT-5H, respectively. Further, energy harvester performance analysis involving finite element modelling and experimental testing recorded a maximum voltage of 0.968 V and a power output of 0.1067 mW, when 0.5 mol% yttrium-doped KNN was resonated at 2098.7 Hz. To compare with pure KNN, 0.5 mol% yttrium-doped KNN exhibited a relatively desirable electromechanical coupling factor about 0.49, which has the potential as an energy harvester to substitute PZT in the future.

ABSTRAK

Penuai tenaga piezoelektrik (PEH) dianggap sebagai sumber kuasa mantap, yang dapat memberi kuasa kepada peranti elektronik dengan cara memerangkap magnitud kecil tenaga daripada getaran ambien. Kelebihan asas PEH terletak pada keupayaan yang ada pada bahan piezoelektrik untuk menjana tenaga elektrik bergantung kepada jumlah getaran yang dikenakan kepada bahan. Walaupun plumbum titanat zirkonat (PZT) adalah bahan piezoelektrik yang paling biasa digunakan, ketoksikan kandungan PZT telah merosakkan alam sekitar dan kesihatan, menyebabkan perlunya penemuan bahan piezoelektrik bebas plumbum. Oleh itu, kalium natrium niobat (KNN) dipilih sebagai pilihan berpotensi kerana sifat-sifat piezoelektrik yang baik dapat dicapai melalui pengubahsuaian komposisi struktur perovskit. Walau bagaimanapun, rawatan haba KNN pada suhu tinggi adalah mencabar kerana kemeruapan logam alkali kation. Untuk menangani isu ini, siri tinjauan sistematik dan kajian berturut-turut terhadap penuai tenaga KNN dilakukan. Dalam kajian ini, filem nipis KNN direka melalui kaedah pemendapan larutan kimia.. Kesan suhu penyepuhlindapan dan pelbagai bilangan lapisan salutan pada kedua-dua sifat-sifat struktur dan elektrik dikaji untuk mencari suhu optimum penyepuhlindapan dan lapisan lapisan untuk menghasilkan filem nipis KNN. Menurut analisis yang dijalankan, filem nipis KNN disepuh lindap pada 650 °C mempunyai struktur perovskit ortorombik yang dibentuk tanpa kehadiran fasa sekunder setelah dibuktikan dengan analisa pembelauan X-ray. Penghabluran, getaran molekul, morfologi permukaan, dan kerintangan didapati bergantung kepada setiap bilangan lapisan salutan. Terutamanya, sifat-sifat optimum ditemui dalam filem nipis KNN dengan lima lapisan salutan. Di samping itu, sifat-sifat struktur dan elektrik amat dipengaruhi oleh pendopan yttrium. Semua filem-filem nipis mempunyai orientasi pilihan (0 0 1) dengan pembentukan struktur perovskit ortorombik tulen. Perubahan kecil pada mod aktif Raman, beserta morfologi permukaan yang homogen dan padat telah diperoleh untuk 0.5 mol% yttriumdidopkan KNN. Di samping itu, 0.5 mol% yttrium-didopkan KNN mempunyai kerintangan elektrik yang sederhana (2.153 \times 10⁶ Ω .cm), kehilangan dielektrik yang rendah (0.018 %), ketelusan dielektrik yang tinggi (508), dan faktor kualiti tinggi (25.730). Seterusnya, pemodelan unsur terhingga dijalankan untuk menentukan frekuensi resonans filem KNN sebagaimana yang telah difabrikasi, untuk menjana output kuasa dan voltan optimum. Prestasi penuai tenaga KNN dibandingkan dengan bahan berasaskan plumbum komersial, iaitu PZT-5H. Kedua-dua penuai menunjukkan kuasa output yang setanding iaitu 0.104 mW dan 0.115 mW bagi KNN dan PZT-5H. Seterusnya, analisis prestasi penuai tenaga melibatkan pemodelan unsur terhingga dan pengujian eksperimen merekodkan voltan maksimum sebanyak 0.968 V dan output kuasa 0.1067 mW, apabila 0.5 mol% yttriumdidopkan KNN bergema pada 2098.7 Hz. Untuk membandingkan dengan KNN tulen, 0.5 mol% yttrium-didopkan KNN menunjukkan faktor gandingan elektromekanik yang diingini bernilai 0.49, yang berpotensi sebagai penuai tenaga untuk menggantikan PZT pada masa hadapan.

ACKNOWLEDGEMENTS

First, I credit none more than my principal supervisor, Associate Professor Dr. Mohd Warikh for his continuous support, advice and feedbacks for the completion of this work. His guidance has been truly priceless to me. I would also like to thank my co-supervisor, Dr. Umar Al-Amani for his thoughtfulness and knowledge. Not to forget Dr. Muhammad Zaimi for his constructive feedbacks and valuable comments on any possible improvements of my study.

Special thanks also go to the MIMOS FA lab members for sharing their knowledge about atomic force microscopy, transmission electron microscopy and focused ion beam analysis. In addition, I am thankful to Mrs. Faezahana from Microelectronic and Nanotechnology-Shamsudin Research Centre of UTHM for her direction in X-ray diffraction study. My appreciation also goes to Dr. Aliza Aini from IIUM for her training and assistance in developing electrical measurement and finite element modelling. To all the technical staffs at Faculty of Manufacturing of UTeM, the skills and knowledge they possessed had helped me a lot.

I wish to express my gratitude to all my friends, in particular Sis Noraini, Hanisah, Nurul, Amira, Madihah, Azuwa, Suraya Laily, Nur Aidawaty and Chiew Tsung Heng for their kind cooperation and inspiration. Above all, I wish to thank my parents, Mrs. Robitoh and Mr. Mohd Hatta for their unconditional love and endless support during my difficult time. You two are the best! I deeply thankful to my husband (Muhammad Alif) and my son (Muhammad Haziq) for not complaining me when I was not around and letting me your shoulder to cry on all these years. I knew I had spent a lot of time on this work. Without all of you, this thesis would never have been possible. Last but not least, the financial supports by Ministry of Higher Education Malaysia and International Islamic University Malaysia are gratefully acknowledged.

TABLE OF CONTENTS

D] A]	ECLAR pprov	ATION	N	IAG
D A A A A A C L L L L L L L L L L L	EDICA BSTRA BSTRA CKNOV ABLE C IST OF IST OF IST OF IST OF IST OF	FION CT K WLED(DF CON TABLI FIGUF APPEN ABBRI SYMB PUBLI	GEMENTS NTENTS ES RES NDICES EVIATIONS OLS ICATIONS	i iii iv vii ix xv xvi xvii xvii xix
CI	HAPTE	R		
1.	INTRO	ODUCI	TION	1
	1.1	Backg	ground	1
	1.2	PIOUR	rch objectives	47
	1.5	Scope	of research	7
	1.4	Signif	icance of study	8
	1.6	Thesis	s organisation	9
2.	LITE	RATUI	RE REVIEW	10
	2.1	Introd	uction	10
	2.2	Piezoe	electric principle and the crystal structure	13
		2.2.1	Piezoelectricity	14
	• •	2.2.2	Crystal systems and structure of piezoelectric materials	17
	2.3	Select	ion of piezoelectric material	21
		2.3.1	Lead-based piezoelectric materials	21
		2.3.2	Lead-free piezoelectric materials	24
		2.3.3	Potassium sodium niobate as a promising lead-free candidate	27
		2.3.4	Dopant Engineering of Kinn Para corth doponta	22
		2.3.5	Vitrium as donant in niezoelectric materials	35
	24	Eabric	pation of KNN thin films	39
	2.7	2.4.1	Chemical solution deposition	40
		2.4.2	Pulsed laser deposition	45
		2.4.3	Radio frequency magnetron sputtering	47
	2.5	Piezoe	electric energy harvester	49
		2.5.1	Modelling of piezoelectric energy harvester	49
		2.5.2	Resonance frequency	50
		2.5.3	Piezoelectric mode of conversion	52
	2.6	Revie	w on the development of piezoelectric energy harvester	54
		2.6.1	Energy harvesting micro-electro-mechanical system	54
		_	(MEMS) device based on thin film piezoelectric cantilevers	_
		2.6.2	MEMS-based piezoelectric power generator array	55

		2.6.3 2.6.4	A free standing thick film piezoelectric energy harvester Two-layered piezoelectric bender device for micro-power	56 57
		2.6.5	generator Sensors and energy harvesters based on piezoelectric thick film	58
		2.6.6	Lead-free (K,Na)NbO ₃ piezoelectric thin-film energy harvesters	59
	2.7	Perfor	mance assessment for current piezoelectric energy harvesters	60
	2.8	Summ	lary	62
3.	METH	IODOI	LOGY	63
	3.1	Introd	uction	63
	3.2	Experi	imental design	63
	3.3	Raw n	naterial	65
	3.4	Prepar	ation of KNN thin films	66
		3.4.1	Substrate preparation and cleaning	66
		3.4.2	Fabrication of pure KNN thin films	67
		3.4.3	Fabrication of yttrium-doped KNN thin films	70
	3.5	Charae	cterisation and analysis	72
		3.5.1	Thermogravimetric analyis and differential thermal analysis	72
		3.5.2	Crsytallographic and molecular vibration using XRD and Raman	72
			3.5.2.1 Crystallographic refinement and analysis	73
			3 5 2 2 Stacking fault and texture coefficient evaluation	76
		353	Surface information using FESEM EDX TEM and AFM	76
		3.5.4	Electrical properties (resistivity, dielectric and piezoelectic)	78
	3.6	Finite	element modelling with COMSOL Multiphysics	80
		3.6.1	Material definition	81
		3.6.2	Boundary conditions	82
		3.6.3	Meshing	84
		3.6.4	Eigen frequency and frequency domain analysis	84
	3.7	Experi	imental validation	85
	3.8	Summ	ary	87
4.	RESU	LTS A	ND DISCUSSION	88
	4.1	Introd	uction	88
	4.2	Optim	isation of the annealing temperature	88
		4.2.1	Thermal analysis of KNN dried gel	89
		4.2.2	Crystalline structure and phase formation	91
		4.2.3	Surface morphology and elemental composition	93
		4.2.4	Resistivity of KNN thin films annealed at different temperatures	96
	4.3	Optim	isation of coating layers	97
		4.3.1	Crystalline structure and phase formation	98
		4.3.2	Vibrational modes of KNN molecules	101
		4.3.3	Surface morphology of KNN thin films	103
		4.3.4	Resistivity of KNN thin films with various number of coating layers	107

	4.4	Effects of yttrium doping on the properties of KNN-based thin films	107
		4.4.1 Crystalline structure and phase formation	108
		4.4.2 Vibrational mode of KNN molecules	110
		4.4.3 Surface morphology and elemental composition	113
		4.4.4 Surface topography and roughness	120
		4.4.5 Resistivity of pure and doped KNN films	121
		4.4.6 Dielectric permittivity and dielectric loss	123
		4.4.7 Mechanical quality factor	127
	4.5	Simulation of KNN thin film performances as energy harvester	128
		4.5.1 Eigen frequency analysis	128
		4.5.2 Frequency analysis for voltage and power output	131
	4.6	Experimental validation	134
		4.6.1 Voltage and power output	134
		4.6.2 Electromechanical coupling coefficient	136
5.	CON	CLUSION AND RECOMMENDATIONS FOR	138
	FUTU	RE WORK	
	5.1	Conclusion	138
	5.2	Recommendations for future work	140
RE	FERE	NCES	142
AP	PEND	CES	178

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Numerous type of vibration sources	12
2.2	Electrical properties of selected lead-based piezoelectric materials	23
2.3	The general requirement of thin films for piezoelectric applications	28
2.4	Summary of electrical properties of piezoelectric materials doped	38
	with yttrium	
2.5	Condensation steps result in the formation of M-O-M bond	44
2.6	KNN thin films fabrication using chemical solution deposition	45
	method	
2.7	Previous works on piezoelectric energy harvester	61
3.1	The starting chemicals for precursors	65
3.2	Specification of 3-inch silicon wafer	66
3.3	Factors to be considered during refinement and the solving method	74
3.4	Materials properties from COMSOL library	83
3.5	Experimental equipment and description	87
4.1	Texture coefficient values of KNN thin films annealed at different	93
	temperature	
4.2	Lattice parameters for KNN thin films deposited with various	99
	coating layers obtained using Rietvield refinement	

vii

4.3	Strain and lattice parameters for yttrium-doped KNN thin films	110
4.4	Total displacement of two piezoelectric materials subjected to	131
	different frequency mode	

viii

LIST OF FIGURES

FIGURE	TITLES	PAGE
1.1	Comparison of the available power and life of energy sources	2
1.2	Vibration-to-electricity transduction via piezoelectric material	3
1.3	The important breakthrough of KNN-based ceramics	6
2.1	Number of publications on three types of vibration-to-electricity	13
	transduction mechanisms	
2.2	Schematic of basic piezoelectric principle	15
2.3	Piezoelectric structure (a) Before polarisation, (b) After	18
	polarisation	
2.4	Interrelationship of piezoelectric and subgroups on the basis of	19
	symmetry	
2.5	Perovskite ABO3 structure with the A and B cations on the	20
	corner and the centre position, respectively. Oxygen anions	
	occupy the faces surrounding the B-site	
2.6	Morphotropic phase boundary of PZT	22
2.7	(a) Dielectric permittivity, (b) Coupling coefficient of lead-free	26
	piezoelectric based ceramics materials	
2.8	A schematic representation of KNbO3-NaNbO3 phase diagram	28

2.9	(a) Perovskite ABO ₃ cell, (b) the projection of subcell along b-	30
	axis, (c) four adjacent subcell projections, omitting Nb and O	
	atoms	
2.10	Typical Raman spectra of KNN with different composition of K	31
	and Na	
2.11	Microstructure of yttrium-doped BNT (a) undoped material, (b)	36
	optimum yttrium content, (c) higher yttrium content	
2.12	Typical procedures of chemical solution deposition	41
2.13	Schematic diagram of pulsed laser deposition	46
2.14	Simplified radio frequency magnetron sputtering setup	48
2.15	Cantilever beam energy harvester with equivalent model of	50
	spring mass system	
2.16	(a) d_{33} operating mode of energy harvester and (b) d_{31} operating	53
	mode of with top interdigitated electrode	
2.17	Side and top view of piezoelectric energy harvester	55
2.18	Unimorph cantilever energy harvester	56
2.19	Sacrificial layer fabrication of piezoelectric energy harvester	57
2.20	Schematic illustration of piezoelectric bender device with	58
	different piezoelectric thicknesses (a) 160 µm, (b) 180 µm, (c)	
	220 µm and (d) 260 µm	
2.21	PZT thick films screen printed on the metal shim	59
2.22	Cross sectional SEM images of KNN films energy harvester	60
3.1	The flowchart for the experimental design	64
3.2	Silicon wafer was cut into equivalent dimension	67

3.3	Spin coating profile for KNN thin films deposition	68
3.4	Spin coating steps for fabrication of KNN thin films	69
3.5	Heating profile for KNN thin films	69
3.6	Flow-chart for KNN thin films fabrication via chemical solution	70
	deposition technique	
3.7	Preparation flow of yttrium-doped KNN thin films	71
3.8	General steps in Rietvield refinement	73
3.9	KNN data refinement using Rietvield method	75
3.10	The schematic diagram of four-point resistivity measurement	78
	setup	
3.11	Impedance analyser for dielectric and piezoelectric measurement	79
3.12	Simulation flow for MEMS piezoelectric energy harvester	81
3.13	Unimorph cantilever energy harvester in in 2D representation	82
3.14	Tetrahedral meshing model	84
3.15	(a) Experimental setup for piezoelectric energy harvester (PEH)	86
	analysis, (b) The schematic representation for PEH testing	
4.1	(a) TGA/DTA curves, (b) DTG curve of dried KNN gel at	90
	120 °C	
4.2	XRD patterns of KNN thin films annealed at different	92
	temperatures	
4.3	FESEM images of single layer KNN films annealed at (a) 600	94
	^o C, (b) 650 ^o C and (c) 700 ^o C	
4.4	The spatial distribution of K, Na, Nb and O elements on Si	95
	substrate using FESEM-EDX analysis	

C Universiti Teknikal Malaysia Melaka

4.5	Resistivity of KNN thin films correspond to the different	97
	annealing temperatures	
4.6	XRD patterns of KNN thin films with various number of coating	98
	layers annealed at 650 °C	
4.7	Change in the lattice strain as a function of coating layers with	100
	schematic representation of the mechanism	
4.8	Variation of stacking fault probability of KNN thin films	101
4.9	Raman spectra of KNN thin films grown at various number of	102
	coating layers with magnified symmetrical modes. • Indicates the	
	signal from the substrate	
4.10	Raman shift and FWHM of KNN films with various number of	103
	coating layers	
4.11	FESEM images and grain size distribution of KNN thin films	104
	derived from different coating layers (a) single layer, (b) three	
	layers and (c) five layers.	
4.12	Formation of cracks at six layer coating demonstrated in different	105
	magnifications (a) 25.0 kX, (b) 50.0 kX	
4.13	Cross section of KNN films with different coating layer (a)	106
	single layer, (b) three layers, (c) five layers	
4.14	Resistivity of KNN thin films with various number of coating	107
	layers	
4.15	The XRD patterns for pure and yttrium-doped KNN thin films	108
	that were formulated using various yttrium concentrations	

xii

- 4.16 Raman spectra of synthesised KNN with various yttrium 111 concentrations. Indicates the signal from Si substrate
- 4.17 Raman shift and FWHM of yttrium-doped KNN at 618 cm⁻¹ 112 frequency mode
- 4.18 FESEM micrographs of five layers KNN thin films deposited on 114
 Si substrate with different yttrium concentrations (a) 0 mol%, (b)
 0.1 mol%, (c) 0.3 mol%, (d) 0.5 mol%, (e) 0.7 mol%, and (f) 0.9
 mol%. The inset depicts the apparent presence of pore
- 4.19 HRTEM view of KNN films (a) HRTEM lamellae view of 0.5 116
 mol% Y-doped KNN at 64 kX, (b) Magnified views of 0.5 mol%
 Y-doped KNN at 180 kX, (c) HRTEM view of 0.9 mol% Ydoped KNN at 64 kX
- 4.20 Grain size histogram of KNN films with different yttrium 117 concentrations (a) 0 mol%, (b) 0.1 mol%, (c) 0.3 mol%, (d) 0.5 mol%, (e) 0.7 mol%, and (f) 0.9 mol%
- 4.21EDX analysis of KNN films (a) pure KNN (b) 0.5 mol% yttrium-119doped KNN film and (c) 0.9 mol% yttrium-doped KNN film
- 4.22 3D AFM topography at 1 μm x 1 μm scanned area (a) pure 121
 KNN, (b) 0.1 mol% yttrium-doped KNN film, (c) 0.5 mol%
 yttrium-doped KNN film d) 0.9 mol% yttrium-doped KNN film
- 4.23 Resistivity of KNN thin films as a function of dopant 123 concentrations
- 4.24 Frequency dependent (a) dielectric permittivity, (b) dielectric 124 loss measured at room temperature

xiii

C) Universiti Teknikal Malaysia Melaka

4.25	(a) Dielectric permittivity of KNN films as a function of yttrium	126
	content, b) Dielectric loss of KNN films as a function of yttrium	
	content measured at typical frequency of 1 kHz	
4.26	Effect of yttrium doping on the quality factor of KNN thin films	127
4.27	Eigen frequency analysis performed on pure KNN	129
4.28	Eigen frequency analysis performed on PZT-5H	130
4.29	Output voltage as a function of frequency obtained from	132
	frequency analysis (a) KNN, (b)PZT	
4.30	Generated power obtained from frequency analysis (a) KNN,	133
	(b) PZT-5H	
4.31	Output voltage attained from experimental study for pure KNN	135
	and 0.5 mol% yttrium –doped KNN	
4.32	Output power as a function of frequency	136
4.33	(a) Impedance analysis at the frequency ranging from 2090 to	137
	2110 Hz, (b) electromechanical coupling factor	

LIST OF APPENDICES

APPENDIX	TITLE	PAGE 178			
A	Calculation of chemical compositions to prepare				
	potassium sodium niobate and yttrium-doped potassium				
	sodium niobate thin films				

LIST OF ABBREVIATIONS

AFM	-	Atomic force microscopy
DTA	-	Differential thermal analysis
EDX	-	Energy dispersive X-ray spectroscopy
FEM	-	Finite element modelling
FESEM	-	Field emission scanning electron microscopy
FWHM	-	Full width half maximum
GOF	-	Goodness-of-fit
HRTEM	-	High resolution transmission electron microscopy
IEEE	-	Institute of Electrical and Electronics Engineering
JCPDS	-	Joint committee on powder diffraction standards
К	-	Potassium
KNN	-	Potassium sodium niobate
Na	-	Sodium
Nb	-	Niobium
PZT	-	Lead zirconate titanate
РЕН	-	Piezoelectric energy harvester
TGA	-	Thermogravimetric analysis
XRD	-	X-ray diffraction
Y	-	Yttrium

xvi

LIST OF SYMBOLS

A	-	Acceleration magnitude
С	-	Damping constant
D	-	Charge displacement
d	-	Piezoelectric coefficient
E	-	Electric field
E_p	-	Young Modulus of piezoelectric material
E_s	-	Young modulus of substrate
\mathcal{E}_{r}	-	Permittivity
Eo	-	Permittivity in free space
f_a	-	Anti-resonance frequency
f_r	-	Resonance frequency
k	-	Electromechanical coupling factor
L	-	Inductance
М	-	Seismic mass
Р	-	Power output
R	-	Resistance
R_{wp}	-	Weighted profile <i>R</i> -factor
R_{exp}	-	Expected <i>R</i> -factor
S	-	Strain
Т	-	Stress

xvii

t_p	-	Thickness of piezoelectric layer
t_s	-	Thickness of substrate
<i>tan</i> δ	-	Dielectric loss
Q	-	Quality factor
V	-	Voltage output
ω	-	Excitation frequency
w_p	-	Width of piezoelectric material
Ws	-	Width of substrate
χ^2	-	Goodness of fit
Z_p	-	Neutral axis of piezoelectric layer
Z_S	-	Neutral axis of substrate
ξ	-	Dimensionless damping ratio

xviii

C Universiti Teknikal Malaysia Melaka

LIST OF PUBLICATIONS

Journals

- Maziati Akmal, M.H., Warikh, A.R.M., Azlan, U.A.A., Azam, M.A., and Ismail, S., 2016. Effect of Amphoteric Dopant on the Dielectric and Structural Properties of Yttrium Doped Potassium Sodium Niobate Thin Film. *Materials Letters*, 170, pp. 10–14. *ISI Indexed*
- Akmal, M.H.M., Warikh, A.R.M., Azlan, U.A.A., Azam, M.A., Anand, T.J.S., and Moriga, T., 2016. Structural Evolution and Dopant Occupancy Preference of Yttrium-Doped Potassium Sodium Niobate Thin Films. *Journal of Electroceramics*, pp. 1–8. *ISI Indexed*
- Maziati Akmal, M.H., Warikh, M., Rashid, A., Azlan, U.A.H., Azmi, A., Azam, M.A., Moriga, T., 2016. Influence of Yttrium Dopant on the Structure and Electrical Conductivity of Potassium Sodium Niobate Thin Films. *Materials Research*, 19, pp. 1–6. *ISI Indexed*
- Maziati Akmal, M.H., Azlan, U.A., Mohd Warikh, A.R., and Nurul Azuwa, A., 2015. Enhanced Structural and Electrical Properties of Lead-freeY-Doped (K, Na) NbO₃ Thin Films. *Jurnal Teknologi*, 21, pp. 67–71. *Scopus Indexed*
- Maziati Akmal, M.H., Warikh, M., Rashid, A.B.D., Al, U., and Azlan, A., 2015. Rare-Earth Doped Potassium Sodium Niobate (KNN): A Review. Ceramics-Silikaty, 59(2), pp. 158–163. *ISI Indexed*