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ABSTRACT 

 

 

Hardfacing process of nickel-tungsten carbide (Ni-WC) overlay using gas metal arc 
welding (GMAW) method has been applied on gray cast iron substrate and the effect on 
microstructure, macrostructure and hardness property of the deposited overlay has been 
investigated. In the automotive industry, burr formation defect is continuously occurred on 
the produced blanks of sheet metal shearing process caused by the wear of the trim cutter 
die. The problem is more profound when using gray cast iron die which possess low 
hardness property. Ni-WC is a very hard hardfacing material and has potential to be 
utilized as the hardfacing material on the gray cast iron die. The use of GMAW method for 
the purpose of the hardfacing process needs to be done attentively in the aspect of the heat 
input because the produced heat input of the process affects the microstructure of the 
overlay thus affecting the hardness property of the hardfacing overlay. The effect of 
process parameters on the hardness and microstructure of the overlay was studied because 
the parameters are related to the heat input of the process. The effect of process parameters 
on the overlay bead width and height was also studied because bead width and height are 
two of important aspects of a hardfacing overlay. Thermal cycle of the process was also 
studied as to understand the thermal cycle effect on the hardness and microstructure of the 
overlay. The effect of overlay beads overlapping percentage on the microstructure and 
hardness was studied as well as the overlapped region undergoes more thermal effect of the 
process. The process parameters were optimized for improving the overlay hardness as 
well as bead width and height. Response surface methodology (RSM) using Design Expert 
software was applied for the design of experiment (DOE) and process parameters 
optimization in this study. The proposed optimized parameters focusing on maximizing the 
hardfacing overlay hardness are having hardness values within the targeted range from 610 
HV60 to 810 HV60. The WC particles content was concluded as not significant in affecting 
the hardness value of the overlay at macro level. Heat input of the process has direct 
correlation to the bead height and width of the overlay but indirect correlation to the 
hardness of the overlay. The temperature reading of the hardfacing process as high as 
1351°C was recorded in the thermal cycle investigation and the temperature reading 
implies that such phases like borides and silicides could have formed in the overlay and 
dictating the overlay hardness value. Process optimization was done and the optimization 
focusing on maximizing the hardness value by the software suggested sets of parameters 
having reliability value close to 1. The suggested sets of parameters have potential to be 
employed for improving the hardness of the gray cast iron substrate surface.       
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ABSTRAK 

 

 

Proses pengerasmukaan menggunakan bahan aloi nikel-tungsten karbida (Ni-WC) telah 
dilakukan ke atas substrat besi tuang kelabu menerusi kaedah kimpalan arka gas logam 
(GMAW) dan kajian mengenai kesan proses tersebut ke atas mikrostruktur serta 
kekerasan lapisan telah dilakukan. Masalah gerigi sentiasa berlaku pada kepingan keluli 
yang dihasilkan menerusi proses ricih dalam industri automotif dan masalah ini adalah 
disebabkan oleh kehausan pada dai yang terdapat pada mesin proses ricih. Masalah ini 
lebih cenderung berlaku pada dai besi tuang kelabu yang mempunyai nilai kekerasan yang 
rendah. Ni-WC adalah bahan pengerasmukaan yang sangat keras dan mempunyai potensi 
untuk digunakan sebagai bahan pengerasmukaan ke atas dai besi tuang kelabu. 
Penggunaan kaedah GMAW untuk tujuan proses pengerasmukaan perlu dilakukan 
dengan penuh perhatian terhadap aspek input haba kerana input haba yang terhasil boleh 
memberi kesan terhadap mikrostruktur lapisan pengerasmukaan tersebut dan seterusnya 
memberi kesan terhadap sifat kekerasan lapisan pengerasmukaan tersebut. Kesan 
parameter-parameter proses terhadap kekerasan dan mikrostruktur lapisan 
pengerasmukaan dikaji kerana parameter-parameter proses mempunyai kaitan terhadap 
input haba yang dihasilkan. Kesan parameter-parameter proses terhadap kelabaran dan 
ketinggian kumai lapisan pengerasmukaan juga dikaji kerana kelabaran dan ketinggian 
kumai merupakan dua aspek penting pada lapisan pengerasmukaan. Kitaran haba proses 
juga dikaji untuk memahami kesan kitaran haba terhadap kekerasan dan mikrostruktur 
lapisan pengerasmukaan. Kesan jumlah peratusan tindihan antara kumai-kumai lapisan 
pengerasmukaan juga dikaji kerana kawasan tindihan antara kumai-kumai tersebut 
mengalami kesan tindakan haba yang lebih berbanding kawasan luar tindihan. 
Parameter-parameter proses telah dioptimakan untuk menambahbaik kekerasan serta 
kelebaran dan ketinggian kumai lapisan pengerasmukaan. Kaedah gerak balas permukaan 
menerusi perisian Design Expert telah diaplikasikan untuk tujuan rekabentuk eksperimen 
dan pengoptimaan parameter-parameter proses bagi kajian ini. Set-set parameter 
optimum untuk tujuan memaksimumkan nilai kekerasan lapisan pengerasmukaan yang 
dicadangkan mempunyai nilai-nilai kekerasan yang berada dalam julat yang disasarkan 
iaitu antara 610 HV60 hingga 810 HV60. Kandungan zarah-zarah tungsten karbida tidak 
signifikan dalam mempengaruhi nilai kekerasan lapisan pada tahap makro. Input haba 
proses mempunyai kaitan secara langsung terhadap ketinggian dan kelebaran kumai 
lapisan pengerasmukaan dan tidak secara langsung terhadap nilai kekerasan lapisan. 
Bacaan suhu setinggi 1351°C telah dicatatkan semasa kajian terhadap kitaran haba dan 
bacaan suhu tersebut menandakan bahawa fasa-fasa seperti borida dan silisida 
berkemungkinan telah terbentuk dalam lapisan yang dihasikan dan mempengaruhi variasi 
nilai kekerasan lapisan tersebut. Proses pengoptimaan telah dilakukan pada akhir kajian 
dan set-set parameter untuk memaksimumkan nilai kekerasan lapisan pengerasmukaan 
yang dicadangkan oleh perisian Design Expert mempunyai nilai kebolehpercayaan 
menghampiri 1. Set-set parameter yang telah dicadangkan mempunyai untuk diaplikasikan 
bagi meningkatkan nilai kekerasan permukaan substrat besi tuang kelabu.              
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CHAPTER 1 

 

INTRODUCTION 

 

1.0   Background Study 

Metal deposition process is a process where a filler metal is deposited onto a 

substrate for the purpose of improving the properties of the substrate. The deposition 

process is commonly employed in a wide range of industries, either for the maintenance or 

manufacture of new components (Buchanan et al., 2007). Cladding is a metal deposition 

process which can be done through welding processes such as gas metal arc welding 

(GMAW), shielded metal arc welding (SMAW), gas tungsten arc welding (GTAW), 

plasma arc welding (PAW) and electroslag welding (ESW) (Rao et al., 2011). Some 

researchers identify the process as hardfacing and weld-deposited wear resistant overlays 

(Badisch and Kirchgaßner, 2008; El Banna et al., 2000; Katsich and Badisch, 2011; 

Mendez et al., 2014). 

At present, there are two common material systems used for the hardfacing process; 

Ni-WC and CCO (Mendez et al., 2014). In the Ni-WC material system, the NiCrBSi alloy 

acts as the matrix or the binder for the system whereas the WC are the reinforcement 

particles possessing high hardness in mechanical property. These WC particles are 

essential in achieving the wear properties in the overlays. On the other hand, the CCO 

material system, mainly consisting of iron, chromium, and carbon, does not initially come 

with the carbide particles. The carbides are nucleated within the melt of the overlays. 

However, the CCO system is lower in wear resistance than the Ni-WC. 
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Gray cast iron is the most common type of cast iron. It has moderate strength, 

excellent damping and machinability, but poor ductility. The tensile strength of gray cast 

iron is up to 275 MPa (Bushery, 2010). However, it has low hardness values of 260 to 340 

HV. The common problem when performing sheet metal shearing process using a trim 

cutter die made from gray cast iron in the manufacturing of automotive components made 

from low or medium steel sheet is the formation of burr at the edge of the produced blank 

(Miyazu, 2012). The formation of the burr is expected to be reduced if the trim cutter die 

has the hardness value is the range of 610 to 810 HV (Miyazu, 2012). Hardfacing process 

using GMAW method is seen to be a potential process that can be utilized to increase the 

surface hardness of gray cast iron trim cutter die as the method is relatively low in cost and 

flexible in practicality (Lundbäck and Lindgren, 2011; Scott, 2011). 

However, applying a hardfacing process using GMAW method upon a gray cast 

iron is difficult because of the inherent brittleness characteristic of the material 

(Pouranvari, 2010). Therefore, a suitable filler material is needed for the application of the 

process on gray cast iron substrate as the substrate is susceptible to cracking and nickel 

alloy has been proven as the correct choice for the filler (Pouranvari, 2010). The presence 

of nickel content in the alloy enables Ni-WC tubular wire to be a potential filler material 

for the GMAW based hardfacing process on gray cast iron substrate. 

It is crucial to govern the heat input of the process using Ni-WC filler as it is 

necessary to prevent the WC particles which are required for the desired wear resistance 

characteristic, from melting and dissolving in the overlay (Badisch and Kirchgaßner, 2008; 

Mendez et al., 2014).  In order to understand the hardfacing process based on GMAW 

method, the Ni-WC tubular wire was deposited on gray cast iron substrate in terms of 

singular and overlapping beads overlay. A better understanding on the microstructural 

evolution and the yielded hardness of the material would be achieved through the process.  
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1.1 Problem Statement 

 The hardness value of gray cast iron is relatively low which is in the range of 260 to 

340 HV (Sandvik, 2010). A sheet metal shearing process on low and medium carbon steel 

sheet metal using gray cast iron trim cutter die will result in burr formation at the edge of 

the produced blank (Miyazu, 2012). According to Noresam from Miyazu Malaysia Sdn. 

Bhd. (2012), by increasing the hardness of the trim cutter die to the range from 610 until 

810 HV, the burr formation is expected to reduce. Hardfacing or cladding is a deposition 

process which has a potential to be used to increase the hardness of the trim cutter die. 

There are studies have been done on hardfacing process using laser as the heat 

source and it is proved to be an effective method (Fernández et al., 2005; Huang et al., 

2011; Tong et al., 2010). According to Fernández et al. (2005), laser cladding technique 

can be used to melt a wide range of materials onto a metallic substrate and the coatings 

have minimal dilution, very low porosity, and a perfect union with the substrate. Tong et 

al. (2010) state that the laser cladding provides good metallurgical bonds, minimal dilution, 

and low distortion of the parts. Huang (2011) states that laser cladding provides lower 

dilution, lower distortion and better processing flexibility if compared to other methods 

such as GTAW or SMAW. However, laser cladding technique requires relatively high cost 

machinery and the industry prefer lower cost equipment such as arc heat source machinery. 

Hardfacing process by means of GMAW offers high deposition rates at a relatively low 

cost as stated by Lundbäck and Lindgren (2011) and it is suitable to be utilized for the 

hardfacing process on the gray cast iron die in the industry.  

The use of GMAW method for the purpose of hardfacing process in the industry 

nevertheless needs to be done attentively in the aspect of the heat input because the 

produced heat input of the process could jeopardize the desired microstructure of the 

overlay (Mendez et al., 2014). Ni-WC hardfacing wire is a popular hardfacing alloy 
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