
 

 

ENHANCING ACCURACY OF CREDIT SCORING 
CLASSIFICATION WITH IMBALANCE DATA USING 

SYNTHETIC MINORITY OVERSAMPLING TECHNIQUE – 
SUPPORT VECTOR MACHINE (SMOTE-SVM) MODEL 

MUHAMMAD TOSAN BINGAMAWA 

MASTER OF COMPUTER SCIENCE 
(SOFTWARE ENGINEERING AND INTELLIGENCE) 

2017 
 



 

 

Faculty of Information and Communication Technology 

ENHANCING ACCURACY OF CREDIT SCORING 
CLASSIFICATION WITH IMBALANCE DATA USING SYNTHETIC 
MINORITY OVERSAMPLING TECHNIQUE – SUPPORT VECTOR 

MACHINE (SMOTE-SVM) MODEL 

Muhammad Tosan Bingamawa 

Master of Computer Science in Software Engineering and Intelligence 

2017 

 

 



 

ENHANCING ACCURACY OF CREDIT SCORING CLASSIFICATION WITH 
IMBALANCE DATA USING SYNTHETIC MINORITY OVERSAMPLING 
TECHNIQUE – SUPPORT VECTOR MACHINE (SMOTE-SVM) MODEL 

MUHAMMAD TOSAN BINGAMAWA 

A thesis submitted 
in fulfilment of the requirements for the degree of Master of Computer Science 

in Software Engineering and Intelligence 

Faculty of Information and Communication Technology 

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 

2017 

 



 

 

 

 

DECLARATION 

 

 

I declare that this thesis entitled “Enhancing Accuracy of Credit Scoring Classification with 

Imbalance Data Using Synthetic Minority Oversampling Technique – Support Vector 

Machine (SMOTE-SVM) Model” is the result of my own research except as cited in the 

references. The thesis has not been accepted for any degree and is not concurrently submitted 

in candidature of any other degree. 

 

 Signature :  ...................................................................  

 Name :  ...................................................................  

 Date :  ...................................................................  

 

  



 

 

 

 

APPROVAL 

 

 

I hereby declare that I have read this dissertation / report and in my opinion this dissertation 

/ report is sufficient in terms of scope and quality as a partial fulfilment of Master of 

Computer Science (Software Engineering and Intelligence). 

 

 

 

 Signature :  ..........................................................  

 Supervisor Name :  ..........................................................  

 Date :  ..........................................................  

 

  



 

 

 

 

DEDICATION 

 

 

To my beloved mother and father 

“Ibu Sukini and Bapak Ferry Priyono” 

 

To my beloved brother and sister 

“Muhammad Dhiyaa’us Zaman and Triesa Aprilia Cahayani” 

 

To my beloved family 

“Keluarga Besar Alm. Bp. Sagi Sastrorejo and Keluarga Besar Alm. Bp. Parno Widodo” 

 

To all my beloved friends 

 

To my beloved country 

“Indonesia” 

 



 

i 

 

 

ABSTRACT 

 

 

Credit is one of the business models that provide a significant growth. With the growth of 
new credit applicants and financial markets, the possibility of credit problem occurrence also 
become higher. Thus, it becomes important for a financial institution to conduct a 
preliminary selection to the credit applicants. In order to do that, credit scoring becomes one 
of the models used by a financial institution to perform a preliminary selection of potential 
customer. One of the most common techniques used to develop a credit scoring model is 
data mining classification task. However, this technique provides difficulties in classifying 
imbalanced data distribution. It is because imbalanced data problem may lead the classifier 
to perform misclassification by classified all of the data into majority class and perform 
poorly on minority class. In the case of credit scoring, credit data also have imbalanced data 
distribution. Therefore, classifying a credit data with imbalanced data distribution using 
unappropriated technique may lead the classification provides a wrong decision result for a 
financial institution. In this study, several methods for handle imbalanced data problem are 
identified. Moreover, an improvement of credit scoring model with imbalanced data problem 
in a financial institution using SMOTE-SVM model is also proposed in this study. This study 
is conducted in five phases which are data collection, data pre-processing, feature selection, 
classification, validation, and evaluation. For the experiments using SMOTE-SVM model, 
the experiments are conducted by taking a consideration in different data ratio and nearest 
neighbours used in SMOTE. The result of experiments provides that the accuracy and 
performance result are improved along with the balanced data using SMOTE-SVM model. 
The performance measurement using 10-fold cross validation and confusion matrix shows 
that SMOTE-SVM model can correctly classify most of the data in each class with the good 
result of accuracy, class precision, and class recall. Based on this result, an SMOTE-SVM 
model is believed to be effective in handling imbalanced data for credit scoring 
classification. 
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ABSTRAK 

 

 

Kredit adalah salah satu model perniagaan yang menyediakan satu pertumbuhan yang 
sangat pesat. Dengan pertumbuhan pemohonan kredit baru dan pasaran kewangan, 
kemungkinan besar masalah kredit juga akan meningkat. Justeru itu, sangat penting untuk 
institusi kewangan menjalankan satu pemilihan awal bagi pemohonan kredit. Oleh itu, 
permarkahan kredit dijadikan salah satu model yang digunapakai oleh syarikat kewangan 
dalam menjalankan satu pemilihan awal bagi pelanggan yang berpotensi. Salah satu teknik 
yang sering digunakan dalam pemarkahan model kredit adalah data melombong dalam 
klasifikasi. Walau bagaimanapun, teknik ini mempunyai masalah dalam mengklasifikasikan 
pengagihan data yang tidak seimbang. Masalah ini terjadi kerana ketidakseimbangan data 
yang boleh membawa pengelas melaksanakan kesalahan klasifikasi bagi kekelasan data 
oleh semua pengklasifikasi dalam kelas majoriti dan berfungsi dengan sangat teruk 
terhadap kelas minoriti. Dalam kes skor kredit, data kredit juga mempunyai taburan data 
yang tidak seimbang. Oleh itu, mengklasifikasikan data kredit dengan pengagihan data yang 
tidak seimbang menggunakan teknik yang tidak tepat boleh memberikan keputusan yang 
salah bagi institusi kewangan. Dalam kajian ini, beberapa kaedah untuk menyelesaikan 
masalah data yang tidak seimbang telah dikenal pasti. Selain itu, peningkatan model bagi 
pemarkahan kredit dengan masalah data yang tidak seimbang dalam institusi kewangan 
menggunakan model SMOTE-SVM juga dicadangkan dalam kajian ini. Kajian ini 
dijalankan dalam lima fasa iaitu pengumpulan data, pemprosesan data, pemilihan rencana, 
pengelasan, pengesahan, dan penilaian. Dalam eksperimen menggunakan model SMOTE-
SVM, eksperimen dijalankan dengan mengambil satu pertimbangan dalam nisbah data yang 
berbeza dan jiran-jiran terdekat digunakan dalam SMOTE. Keputusan eksperimen 
menunjukan bahawa keputusan lebih tepat dan prestasi diperbaiki dengan data yang 
ditunjukan adalah seimbang dengan menggunakan model SMOTE-SVM. Pengukuran 
prestasi menggunakan 10 kali ganda pengesahan silang dan kekeliruan matriks 
menunjukkan bahawa model SMOTE-SVM dapat mengklasifikasikan dengan betul 
kebanyakan data dalam setiap kelas dengan mendapat keputusan baik dari segi ketepatan, 
ketepatan kelas, dan penarikan balik kelas. Berdasarkan keputusan ini, model SMOTE-SVM 
boleh dipercayai dan sangat berkesan dalam mengendalikan data yang tidak seimbang 
untuk pengelasan permarkahan kredit. 
 

  



 

iii 

 

 

ACKNOWLEDGEMENTS 

 

 

First of all, I am grateful to Allah SWT, The Almighty God for establishing me to complete 

this master project. 

 

Second, I would like to take this opportunity to express my sincere acknowledgement to my 

supervisor Prof. Dr. Burairah Bin Hussin from Faculty of Information and Communication 

Technology University Technical Malaysia Malacca (UTeM) for his essential supervision, 

support, and encouragement towards the completion of this thesis. 

 

Third, I would like to express my greatest gratitude to Ministry of Education and Culture 

Indonesia, Ministry of Research Technology and Higher Education Indonesia, and also Dian 

Nuswantoro University that provides an opportunity and financial support to continuing 

master study in UTeM Malaysia. 

 

Last but not least, I would also like to express my deepest gratitude to my beloved parents, 

Ibu Sukini and Bapak Ferry Priyono, my beloved brother and sister, Muhammad Dhiyaa’us 

Zaman and Triesa Aprilia Cahayani, and my beloved family, Keluarga Besar Alm. Bp. Sagi 

Sastrorejo and Keluarga Besar Alm. Bp. Parno Widodo, for their moral support in 

completing this degree. 

 

Special thanks to all my peers in UTeM and Indonesia for their support during the study. 

Lastly, thank you to everyone who had been become parts of realisation of this project. 

 

  



 

iv 

 
TABLE OF CONTENTS 

PAGE 
DECLARATION 
APPROVAL 
DEDICATION 
ABSTRACT i 
ABSTRAK ii 
ACKNOWLEDGEMENTS iii 
TABLE OF CONTENTS iv 
LIST OF TABLES vi 
LIST OF FIGURES viii 
LIST OF ABBREVIATIONS ix 
LIST OF APPENDICES xi 
 
CHAPTER 
1. INTRODUCTION 1 

1.1. Background of Study 1 
1.2. Statement of the Purpose 3 
1.3. Problem Statement 4 
1.4. Research Question 4 
1.5. Research Objectives 5 
1.6. Research Scope and Limitation 5 
1.7. Organization of the Thesis 5 
1.8. Chapter Summary 6 

 
2. LITERATURE REVIEW 8 

2.1. Introduction 8 
2.2. Data 10 
2.3. Credit Scoring 16 
2.4. Imbalance Data 18 
2.5. Classification 22 
2.6. Feature Selection 24 
2.7. Validation and Evaluation 27 
2.8. Related Study 28 
2.9. Chapter Summary 33 

 
3. RESEARCH METHODOLOGY 34 

3.1. Introduction 34 
3.2. Type of Research Method 34 
3.3. Research Design 35 

3.3.1. Business Understanding Phase 36 
3.3.2. Data Understanding Phase 36 
3.3.3. Data Preparation Phase 36 
3.3.4. Modelling Phase 37 
3.3.5. Evaluation Phase 37 
3.3.6. Deployment Phase 38 

 
 



 

v 

3.4. Proposed Method 38 
3.4.1. Data Collection 40 
3.4.2. Data Pre-processing 44 
3.4.3. Feature Selection 46 
3.4.4. Classification 46 
3.4.5. Validation and Evaluation 49 

3.5. Research Tools 50 
3.6. Chapter Summary 51 

 
4. DATA PREPARATION AND EXPERIMENTAL RESULT 52 

4.1. Introduction 52 
4.2. Data Preparation 52 

4.2.1. Data Selection and Data Integration 53 
4.2.2. Data Cleaning 53 
4.2.3. Data Transformation 54 
4.2.4. Feature Selection 55 

4.3. Experiment Result 56 
4.3.1. Classification Result of Original Sample Data 57 
4.3.2. Classification Result of SVM with Resample 58 
4.3.3. Classification Result of SMOTE-SVM 61 

4.3.3.1. Result of SMOTE-SVM with Data Ratio 70% : 15% : 15% 62 
4.3.3.2. Result of SMOTE-SVM with Data Ratio 60% : 20% : 20% 64 
4.3.3.3. Result of SMOTE-SVM with Data Ratio 50% : 25% : 25% 66 
4.3.3.4. Result of SMOTE-SVM with Data Ratio 40% : 30% : 30% 68 
4.3.3.5. Result of SMOTE-SVM with Data Ratio 33% : 33% : 33% 70 

4.4. Chapter Summary 72 
 
5. DISCUSSION RESULT 73 

5.1. Introduction 73 
5.2. Validation and Evaluation 73 
5.3. Discussion Result 78 

5.3.1. Original Data Result 78 
5.3.2. SVM with Resample Result 79 
5.3.3. Comparison of SMOTE-SVM Result 81 
5.3.4. Point of Discussion 90 

5.4. Threats of Validity 90 
5.5. Chapter Summary 91 

 
6. CONCLUSION AND FUTURE WORK 92 

6.1. Introduction 92 
6.2. Project Summary 92 
6.3. Conclusion 94 
6.4. Future Work 95 

 
REFERENCES 97 
APPENDIX A 104 
 
  



 

vi 

 

 

LIST OF TABLES 

 

 

TABLE TITLE PAGE 

2.1 Confusion Matrix Table with 2 Classes 28 

2.2 State of The Art of Credit Scoring and Imbalance Data 30 

3.1 Sample of Customer Data 41 

3.2 Detail Attributes Explanation for Customer Data 42 

3.3 Sample of Customer Payment History Data 43 

3.4 Detail Attribute Explanation for Customer Payment History Data 44 

3.5 Example of Confusion Matrix with 3 Classes 49 

4.1 Data Transformation Description 55 

4.2 Information Gain Calculation for Each Attribute 56 

4.3 Class Distribution and Data Ratio after Resample 59 

4.4 Experiments of SVM with Resample 60 

4.5 Experiments of SMOTE-SVM with Data Ratio 70% : 15% : 15% 62 

4.6 Experiments of SMOTE-SVM with Data Ratio 60% : 20% : 20% 65 

4.7 Experiments of SMOTE-SVM with Data Ratio 50% : 25% : 25% 67 

4.8 Experiments of SMOTE-SVM with Data Ratio 40% : 30% : 30% 69 

4.9 Experiments of SMOTE-SVM with Data Ratio 33% : 33% : 33% 71 

5.1 Comparison Result of Class Precision and Class Recall in Previous Study 75 

5.2 Confusion Matrix Result Using Original Data Sample 78 

5.3 Confusion Matrix Result Using Resampling with Data Ratio 89% : 5%: 6% 80 



 

vii 

5.4 Comparison Data Ratio Changing in Experiments 82 

5.5 Comparison Result of SMOTE-SVM 83 

5.6 Confusion Matrix Result Using Data Ratio 70% : 15% : 15% 85 

5.7 Confusion Matrix Result Using Data Ratio 60% : 20% : 20% 86 

5.8 Confusion Matrix Result Using Data Ratio 50% : 25% : 25% 87 

5.9 Confusion Matrix Result Using Data Ratio 40% : 30% : 30% 88 

5.10 Confusion Matrix Result Using Data Ratio 33% : 33% : 33% 89 

 

  



 

viii 

 

 

LIST OF FIGURES 

 

 

FIGURE TITLE PAGE 

2.1 K-Chart 9 

2.2 KDD Phase (Fayyad et al., 1996) 11 

2.3 Comparison of Feature Selection (a) and Feature Extraction (b) (Zhao, 2011) 25 

3.1 CRISP-DM (Larose, 2005) 35 

3.2 Step By Step Process 39 

3.3 SMOTE-SVM Model 47 

3.4 SVM Model (Ping and Yongheng, 2011) 48 

3.5 SPSS Statistics Application 50 

3.6 Weka Application 51 

4.1 Classification Performance Using Original Sample Data 58 

4.2 Comparison of Accuracy using SVM with Resampling 61 

4.3 Comparison Accuracy of SMOTE-SVM with Data Ratio 70% : 15% : 15% 64 

4.4 Comparison Accuracy of SMOTE-SVM with Data Ratio 60% : 20% : 20% 66 

4.5 Comparison Accuracy of SMOTE-SVM with Data Ratio 50% : 25% : 25% 68 

4.6 Comparison Accuracy of SMOTE-SVM with Data Ratio 40% : 30% : 30% 70 

4.7 Comparison Accuracy of SMOTE-SVM with Data Ratio 33% : 33% : 33% 72 

5.1 Comparison of Accuracy Result 84 

5.2 Comparison of Average Class Precision Result 84 

5.3 Comparison of Average Class Recall Result 84 



 

ix 

 

 

LIST OF ABBREVIATIONS 

 

 

ANN - Artificial Neural Network 

BN - Bayesian Network 

BS - Beam Search 

CRISP-DM - Cross-Industry Standard Process for Data Mining 

DA - Discriminant Analysis 

DTM - Decision Tree Method 

GA - Genetic Algorithm 

GR - Gain Ratio 

IG - Information Gain 

KDD - Knowledge Discovery in Database 

KNN - k-Nearest Neighbours 

LDA - Linear Discriminate Analysis 

LG - Logistic Regression 

LR - Linear Regression 

MAR - Missing at Random 

MBND - Missing by Natural Design 

MCAR - Missing Completely at Random 

MNAR - Missing not at Random 

ROC Curve - Receiver Operating Characteristic Curve 

RST - Rough Sets 



 

x 

SMOTE - Synthetic Minority Over-sampling Technique 

SOM - Self Organization Map 

SPSS - Statistical Package for the Social Science 

SVM - Support Vector Machine 

 

  



 

xi 

 

 

LIST OF APPENDICES 

 

 

APPENDIX TITLE PAGE 

A Model Building in Weka Application 104 

 



 

1 

 

CHAPTER 1 

 

INTRODUCTION 

 

1.1. Background of Study 

Credit is one of the business models that provide a significant increase of growth. It 

is proved by the significant increase of the credit card users in the last decade. However, the 

type of credit is not only available in a credit card form. Recently, the form of credit can be 

various, such as automotive loans (car, motorcycle, and any other vehicles), home loans, and 

also business loans. With many various types of credit and the ease of requirement in 

applying credit loan, makes many people want to apply new credit loans to a financial 

institution. Previously, a bank is the most common parties used to apply for a credit loan. 

But recently, there are a lot of relevant parties that are concerned about credit activity. With 

the growth of credit applicants and financial markets, the possibility of the credit problem 

occurrence is also become higher (Lang and Sun, 2014). An example of the problem that 

frequently occurs in the credit activity is lost credit or bad credit. That problem might be 

happening due to several reasons. One simple example of the reason is regarding the 

financial aspect of the credit customer during the credit repayment period. Because of that 

reason, the customer might not fulfil the obligation to repay the loan instalment. Therefore, 

it is very important for a financial institution that offers credit services to consider the 

prospective credit applicants who deserve to get the credit loan. 

In order to overcome a credit problem, credit scoring model is developed to help the 

financial institution in managing the credit risk problem, especially for lost credit problem. 

Credit scoring is one of the models used to perform a preliminary selection of potential 
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customer at the earlier phase in requesting credit loans. The basic concept of credit scoring 

model is to predict the credit score of new credit applicants by comparing their data with the 

performance of past credit customer data that has been analysed (Wang and Huang, 2009; 

Marikkannu and Shanmugapriya, 2011). From this credit scoring result, the financial 

institution can decide whether the new credit applicants will be accepted or rejected. With 

the effective use of credit scoring implementation, credit scoring model is widely 

implemented as a decision support system in the financial institution. 

Along with the development of the technology, credit scoring model and technique 

is also constantly improved. Various method can be implemented in the development of 

credit scoring models such as statistical model, machine learning, and artificial intelligent 

(Zhang et al., 2008; Ping, 2009). Besides that, there is also data mining technique used in 

the implementation of credit scoring model. According to Zhang and Wang (2011), the use 

of data mining for developing credit scoring model can perform effective classification. Data 

mining is a technique used to extract hidden knowledge from the set of data. It provides 

several performances for data analysis such as classification, clustering, association, 

estimation, prediction, and description (Larose, 2005). In the implementation in credit 

scoring model, classification is a technique used to differentiate and classify new credit 

applicant whether it is categorised as a bad or good credit. Several classification techniques 

like a neural network, decision tree, naïve bayes, k-nearest neighbour, and support vector 

machine are often used by the researchers to propose an effective credit scoring model. 

The research about credit scoring model itself is increasingly important. It is because 

the development of credit scoring model can help the financial institution to reduce the 

occurrence of credit risk problem. From several techniques of classification that is available, 

Support Vector Machine (SVM) are believed to be less prone to the class imbalance problem 

than other classifications learning algorithms (Sun et al., 2009). Moreover, SVM also has 
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highly accurate, owing to their ability to model complex nonlinear decision boundaries. 

However, there are several problems that might occur in the implementation of credit scoring 

using classification technique. Misclassification is the most significant problem that needs 

to be concerned. Moreover, in the credit scoring model, the most important task is to classify 

the credit applicants whether it is categorised as good credit or bad credit. With a large 

amount of real world data, it is generated that the data may have a significant problem in the 

data distribution. This problem arose because of the numbers of different classes are differ 

greatly each other. This problem is known as an imbalanced data problem. Customer credit 

data also have this imbalance data problem, where the differences of class with “good” 

category have become the majority data. While customer credit with “bad” category only 

has a few percentage of the whole credit data. With high differences in the data amount 

between each class, the classification task may perform misclassification result. This 

problem may cause performance error for the credit scoring model. That is why building 

classification model in the case of credit scoring with the enhancement of handling 

imbalance credit data becomes a new challenge that still interesting to be discussed. 

 

1.2. Statement of the Purpose 

The purpose of this research is to propose an enhancement technique in order to 

provide a good credit scoring model used by a financial institution. The proposed model will 

be effective in handling imbalance data credit and also provide a good classification result 

in terms of accuracy and performance. 
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1.3. Problem Statement 

With the demand of new credit applicants, it becomes important for a financial 

institution to conduct a preliminary selection to the credit applicants. The selection can be 

performed using the credit scoring model in order to differentiate between good credit and 

bad credit. With many various techniques that can be implemented in credit scoring model, 

data mining has become one of the common technique used to develop a credit scoring 

model. By using data mining classification approach, it would be possible to perform an 

early selection of the credit customer before granting them credit loans. However, 

classification approach provides difficulties in classifying the imbalance data distribution. 

Classify imbalance data using unappropriated technique may lead the classification result 

into the wrong result. In the case of credit scoring data, credit data often have imbalanced 

data distribution. Which means the distribution portion of good credit compare with bad 

credit is not well distributed. Since credit scoring model is used as decision support system 

in the financial institution, it is become important to have a credit scoring model that can 

perform well in terms of performance and accuracy with the ability on handling imbalance 

credit data. In this study, the analysis to provide an improvement on credit scoring model 

with imbalance dataset in the financial institution is conducted. 

 

1.4. Research Question 

Based on the problem stated, research question for this research can be derived as 

follows: 

1. What is the suitable method to handle imbalance data? 

2. How to improve classification technique for credit scoring model that has 

imbalanced data distribution in the credit data? 
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1.5. Research Objectives 

Based on the research questions, this research will pursue three objectives, which 

are: 

1. To propose Synthetic Minority Oversampling Technique for imbalance data 

problem. 

2. To enhance credit scoring classification with SMOTE-SVM model. 

3. To validate credit scoring classification performances with SMOTE-SVM 

model. 

 

1.6. Research Scope and Limitation 

The scope and limitation of this research will be as follows: 

1. The data used in this study is a credit data provided by Multindo Auto Finance, 

Semarang, Indonesia. 

2. The algorithm used to handle imbalance data is SMOTE. 

3. The classification technique used to model the credit scoring is SVM. 

4. The experiment follows CRISP-DM as a standard data mining procedure. 

5. The experiment is performed by using Weka and SPSS application. 

 

1.7. Organization of the Thesis 

This study provides six chapter for this project report. Chapter 1 is the introduction 

part of this study. This chapter provides information about the origins of the research. 

Moreover, this chapter also provides a brief outlining of a background of the study, and 

problem statement that is followed by the research question, research objective, the scope of 

the study, as well as project report review and chapter summary. 
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Chapter 2 is the literature review part of this study. This chapter will provide related 

literature and studies on the research problem. Moreover, this chapter also describes some 

of the theoretical aspects such as data, data mining, credit scoring, imbalance data, 

classification task, feature selection, validation and evaluation method, and chapter 

summary. 

Chapter 3 is the methodology. This chapter discusses the methodology used to 

achieve the research objectives, including research design, step by step process, and 

proposed model. 

Chapter 4 will explains how the experiments are conducted in this study. In this 

chapter, step by step process of the experiments is performed. Moreover, experiments using 

proposed technique which is SMOTE-SVM model to handle imbalance data problem in 

classification task is done. 

Chapter 5 will be discuss about the experimental result in the chapter 4. The 

discussion will be including validation and evaluation used to validate and evaluate the 

experiments result. 

Chapter 6 will discuss the general summary of the project including research 

background, problem study, proposed method used, experiments and discussion result of this 

study. Moreover, conclusion of this study is provided in chapter 6. Furthermore, the 

limitations as well as the suggestion for future work is also provided. 

 

1.8. Chapter Summary 

In the conclusion, this chapter describes the background of the study that related to 

the credit scoring implementation in bank or finance company. The problem statement 

describes in this research is the improvement of classification technique for credit scoring 

model which has imbalance dataset problem. The objective of this study is to propose an 
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improvement method of credit scoring that specifies the problem of this research in the 

problem statement. This chapter also provides the outline of the objective, scope of the study 

and also the statement of the purpose. 

 

  


