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ABSTRACT 

 
Modal Analysis is a common practice to define parameters of structure under 

scientific view. The properties that come along need to be enlightened so that 

every circumstance appeared can be tackled in proper manner. Experimental 

Modal Analysis (EMA) is a well-known procedure for determining modal 

parameters. The EMA is regarded as an ‘indoor tools’ to examine modal 

parameters. Meanwhile, Operational Modal Analysis (OMA) on the other hand 

acts as an ‘outdoor tools’, or operated at site. OMA tests in most engineering 

applications are not comparable to typical EMA tests. During a typical OMA 

test, the structure has different boundary conditions than the typical free-free 

conditions of an EMA test. Therefore, it can be expected that OMA results in 

many (or even most) engineering applications will show higher damping values 

than a free-free EMA test. Here, the EMA analysis method will be discussed. 

Modal parameters consist of mode shape, natural frequency and damping ratio. 

The study focused on performing mass change strategy via mass normalization of 

the displacement and strain mode shape occurred in strain EMA. By applying 

EMA, the mass-normalized displacement and strain mode shapes of the 

structures can be obtained, through matching the shapes which were calculated 

by FEM. The results were verified via classic EMA measurement method. One of 

the benefit of applying mass change strategy is other than obtaining the modal 

parameter, the strain mode shape parameter also possible to be determined. 

From the analysis, one can understand that the EMA has its own significant role 

in detecting modal appeared by mean of vibration. Thus, EMA proven to be a 

useful method to gain relevant data relating with mechanical properties 

characteristics other than strain such like stress, impact, tensile, elongation etc. 
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1.0 INTRODUCTION 

Scientifically, Experimental Modal Analysis (EMA) is conducted to determine modal 

parameters that include examining outcome of natural frequency, mode shape and 

damping ratio. The knowledge of structural modal parameters is a must in order to 

define the natural frequencies, mode shapes and modal damping ratios (Wang & Cheng, 

2011). EMA is a well-known procedure to determine modal analysis (Kranj et al., 

2013). Meanwhile, Operational Modal Analysis (OMA) deals with the identification of 

modal parameters of a structure using output response of vibrated structures, without the 

knowledge of the forces causing the response and useful in determining large structures 

such as bridges, towers etc. (Modak, 2013). OMA is output-only modal method, where 

the excitation is performed with the ambient force, obtaining only relative values of the 

mode shapes (Zhang et al., 2004).  

 

Previously, OMA, by which only the structural responses are used, has been widely 

applied and described in literature. OMA is attractive in many situations because it can 

be applied to structures in operation and does not require excitation, which is practical 

for many large structures (Rainieri & Fabbrocino, 2014 & Rainieri et al., 2016). 

Theoretically, modal parameters should be identically estimated via an OMA test and a 

classical EMA test (Ozbek & Rixen, 2016). However, it has still sometimes been 

reported that an EMA test is more reliable because of the available information and 

controlled environment (Orlowitz & Brandt, 2015). 

 

Dynamic characteristics such as mode shapes and modal frequencies of the 

unstrengthened and the strengthened structure were individually determined through 

experimental modal analysis (EMA) and numerical analysis (Cakir et al., 2016). 

 

EMA is considered reliable because it is based on input-output system identification, 

which allows validation e.g. of the estimated frequency response functions (FRFs) by 

coherence functions. However, the strength of EMA is also limiting its applicability as 

it requires that all inputs (excitation forces) are measured, which is practically 

unfeasible for many structures (Orlowitz & Brandt, 2017). The main issue here is 

whether EMA method could deliver an outstanding outcome to apprehend the result in 

tackling environment issue related to sound. 
 
2.0 MODAL ANALYSIS 

 

Generally, Modal Analysis is conducted to acquire two basic modal parameters which 

are natural frequencies and mode shapes. Modal Analysis solve for natural tendencies of 

the structure in the form of motions and frequencies. Vibration occurs in all scenarios of 

design to some extent. Even when designing steel in a building, a Modal Analysis is 

helpful to understand what happen in the event of an earthquake or even equipment that 

running in a building that might cause a sense of vibration. Two classification of Modal 

Analysis are Operational Modal Analysis (OMA) and Experimental Modal Analysis 

(EMA) (Xu & Zhu, 2013). Modal Analysis is derived originally from Equation of 

Motion which stated that every motion occurs is incorporated with vibration alongside it 

(Inman, 2013) as shown in Figure 1. 
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Figure 1. Spring equation of motion (Inman, 2013) 

                                               𝑚1ẍ1 +  (𝑘1 +  𝑘2)𝑥1 −  𝑘2𝑥2 = 0       (1) 

                                                                 𝑚2ẍ2 − 𝑘2𝑥1 +  𝑘2𝑥2 = 0        (2) 

or in matrix, 

                                                   [
𝑚1 0
0 𝑚2

] {
ẍ1

ẍ2
} + [

𝑘1 + 𝑘2 −𝑘2

−𝑘2 𝑘2
] {

𝑥1

𝑥2
} = [

0
0

]            (3) 

or 

                                                                      𝑚ẍ +  𝑘𝑥 = 0         (4) 

The natural frequency is derived as follows:  

                                                                              𝜔𝑛 = √
𝑘

𝑚
         (5) 

(𝜔𝑛 = natural frequency, 𝑘 = spring stiffness, 𝑚 = mass,    
𝑥 = displacement from static equilibrium position)  

Here, natural frequency appears which shall bear with mode shapes once the vibration 

takes place. 

Mode shapes on the other hand is obtained through displacement (eigenvectors) that is 

subjected to scaling procedure which referred as mass-normalization with respect to the 

orthogonality properties of the mass-normalized modal matrix (Maia & Silva, 1997).  
 

3.0 REVIEW OF RELEVANT WORK 

 

3.1 Experimental Modal Analysis (EMA) 

 

Prediction of the responses of the structures against dynamic effects such as earthquakes 

is very important in terms of seismic safety (Yang et al., 2013). Therefore, dynamic 

parameters such as frequency, mode shape and damping ratio must be determined. In 

the studies about determination of dynamic parameters, experimental tests are great 

importance. In order to determine the dynamic parameters various procedures can be 

applied. Especially, the dynamic parameters such as mode shapes and modal 

frequencies can be determined by using natural or forced vibrations (Tran et al., 2016). 

While the natural vibrations are traffic or wind effects, the forced vibrations are 

vibrodyne or hammer effects (Codispoti et al., 2015; Tomazevic et al., 2015). 

EMA, is also known as frequency response function test, is one of the most important of 

the experimental tests and it is based on measurement of the vibration response of the 
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impact applied to the structure (Cakir, 2014). EMA adapts the principle of the response 

measurement of the load applied to the structural system (Cakir & Uysal, 2015). The 

modal parameters of the structural system are determined through the structural 

response by the load applied. Therefore, EMA has been frequently preferred for the 

determination of modal parameters (Crossley et al., 2013; Acar et al., 2013). In the 

EMA test, the research area was isolated and all devices that can vibrate were closed 

against undesirable external influence in order to obtain the most accurate results (Pela 

et al., 2013). 

 

EMA is a technique used to determine the natural frequencies and modes of vibration of 

a structure. Similar to operational modal analysis, the process consists of measuring the 

acceleration of a structure at numerous points (Wittich & Hutchinson, 2016). In contrast 

to operational modal analysis, EMA provides a known input to excite the vibration of 

the structure and increases the signal-to-noise ratio (Parisi & Augenti, 2013; Wittich et 

al., 2014). While this input can be applied as harmonic input from a portable shaker or 

an impulse from an impact hammer, portable shakers may inadvertently excite other 

objects in the vicinity of the intended test specimen, in addition to the target. As a result, 

EMA with an impact hammer is the ideal choice for determining the natural frequencies 

of the as-built statue-pedestal-restraint systems (Aktas & Turer, 2015; Harvey et al., 

2014; Wittich & Hutchinson, 2015). It should be noted that this technique not only 

requires multiple sensors to be in direct contact with the structure, but also requires 

contact at the point of impact of the hammer (Wittich & Hutchinson, 2015).  

 

A new approach to the mass normalization in a strain EMA, without using a motion 

sensor is reviewed. The approach is based on the latest introduced mass-changed 

structural modification method which is used for the mass normalization of an OMA 

(Kranj et al., 2013). When the displacement mode shapes of a dynamical system are not 

scaled following to the orthogonal properties of the mass-normalized modal matrix, 

they cannot be used for the calculation of mass and stiffness matrices (Bernasconi & 

Ewins, 1989). Usually, mass-normalized displacement mode shapes of a real structure 

are determined using an EMA (Heylen et al., 2007). The other modal parameters are 

also determined using the same EMA. Here, the less frequently used strain EMA also 

can be applied to determine modal parameters by using strain sensor to measure the 

response (Bernasconi & Ewins, 1989). In addition to modal parameters, the strain mode 

shapes parameter is also possible to be obtained (Bernasconi & Ewins, 1989).  
 

3.1.1 Theoretical Background 
 

a) The strain response of a dynamical system 
 

The strain response of a dynamical system was derived from the motion response. The 

motion steady-state response 𝑋(𝜔) of the hysteretically proportionally damped 

dynamical system can be written as (Maia & Silva, 1997): 
 

                             𝑿𝜔 = Φ[ ˋ𝜔𝑟  
2 (1 +  𝑖𝜂𝑟) − 𝜔˴

2]-1𝜱𝑇  F(ω) = H(ω)F(ω)      (6) 
 

Where Φ is the modal matrix (matrix of mass-normalized displacement mode shapes), 

𝜔𝑟 are the natural frequencies, 𝜂𝑟 are the damping loss factors, F(ω) is the vector of the 

excitation force, H(ω) is the receptance matrix and [ˋ˴] stands for a diagonal matrix. 

 
b) Strain EMA 
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The strain EMA can be used for determining the dynamical properties of a real 

structure, similar to the classic EMA (Bernasconi & Ewins, 1989). During the strain 

modal testing, a structure is excited with a known force at the structure point k and the 

response is determined with a strain measurement at the point j. In order to obtain the 

information about the displacement and the strain mode shapes, at least one row and one 

column of the strain FRF matrix need to be experimentally determined (Yam et al., 

1996).  

 

The identification of natural frequencies and the damping is performed in a similar way 

as in the classic EMA (Yam et al., 1996). Hence, the results of an indirect modal 

identification method (Maia & Silva, 1997) are the natural frequencies, the damping 

(Slavic et al., 2003), the strain modal constants and their phases for all the measures 

strain FRF. The strain modal constants that are identified from the jth row and kth 

column of the strain FRF matrix are denoted as 𝐀𝑗
𝜀

𝑟  = 𝜙𝑗𝑟
𝜀 𝚽𝒓 and 𝐀𝑘

𝜀
𝑟  = 𝚽𝑟

𝜀𝜙𝑘𝑟 , 

respectively. 𝐀𝑗
𝜀

𝑟  and 𝐀𝑘
𝜀

𝑟  contain the information about 𝚽𝒓 and 𝚽𝑟
𝜀 respectively. 

 

c) Mass normalization using the mass-change strategy in the OMA 

 

In this research, the mass normalization in the strain EMA is performed with the mass-

change strategy that is normally used for the mass normalization of the displacement 

mode shapes in the OMA (Parloo et al., 2002; Aenlle et al., 2010). The process of the 

mass-change strategy for the OMA is shown in Figure 2. 
 

 

Figure 2. The process of the mass-change strategy in the OMA (Vandiver et al., 1982) 

Given Φr = mass-normalized displacement mode shapes (Ewins & Gleeson, 1982) and 

Ψr = unnormalized displacement mode shapes, with scaling factors 𝛼𝑟 which are used 

for the calculation of Φr, the relation between Ψr and Φr is express as (Parloo et al., 

2002; Aenlle et al., 2005) 

                                                                Φr = 𝛼𝑟 Ψr                            (7) 

(Parloo et al., 2002) developed an approach that uses a first-order approximation for the 

sensitivity of the natural frequencies of lightly damped structures as follows, 

 𝛼𝑟 = √
2(𝜔𝑟− 𝜔𝑚,𝑟)

𝜔𝑟𝚿𝑟
𝑇𝛥𝐦𝚿𝑟

                    (8) 
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Where Δm is the mass-change matrix. The application of this expression requires small 

frequencies shifts and thus small structure modifications. Suggestion was made that 

mass changes around 5%. From Equation of Motion (Brincker & Andersen, 2003), 

                                                             𝛼𝑟 = √
(𝜔𝑟

2 − 𝜔𝑚,𝑟
2 )

𝜔𝑚,𝑟
2 𝚿𝑟

𝑇𝛥𝐦𝚿𝑟
                    (9) 

Below is the expression that considers the displacement mode shapes before and after 

the modification (Aenlle et al., 2005).  

                                                            𝛼𝑟 = √
(𝜔𝑟

2−𝜔𝑚,𝑟
2 )

𝜔𝑚,𝑟
2 𝚿𝑟

𝑇𝛥𝐦𝚿𝑚,𝑟
                             (10) 

Where 𝛼𝑟 is the scaling factors, 𝜔𝑟 is natural frequencies, 𝜔𝑚,𝑟 is modified structure 

natural frequencies,  𝚿𝑟 is unnormalized displacement mode shapes, 𝛥𝐦 is mass change 

matrix and 𝚿𝐦,𝐫 is unnormalized displacement mode shapes of the modified structure. 

 
d) Mass normalization with a mass-change strategy for the strain EMA 
 

The mass normalization in the strain EMA will be conducted by modifying the mass-

change strategy for OMA. The procedure for the mass-change strategy for the strain 

EMA (Figure 3) is similar with OMA.  

Initially, the strain EMA is performed on an original structure to determine the 

information about displacement mode shapes, the strain mode shapes, the natural 

frequencies and the damping of the structure. The unnormalized displacement and strain 

mode shapes are identified from the jth row and kth column of the strain FRF matrix, 

respectively. Then, the structure modification is performed in the same way as in in the 

mass-change strategy for the OMA. Next, the strain EMA is performed on a modified 

structure to determine the information about the displacement mode shapes and the 

natural frequencies of the modified structure.  
 

 

Figure 3. The process of the mass-change strategy in the strain EMA (Kranj et al., 2013) 

Finally, the calculation of the scaling factors for the mass normalization in the strain 

EMA shall be obtained. Replacing 𝚿𝑟 in Eq. (7) with the identified displacement mode 

shape (unnormalized) 𝐀𝑗
𝜀

𝑟  produced the relation as shown below. 
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                                                                  𝛼𝑟 = (𝜙𝑗𝑟
𝜀 )-1                  (11) 

This prove that the scaling factor for the rth mode is the jth inverse component of the 

mass-normalized strain mode shape 𝚽𝑟
𝜀. The expressions for the calculation of the 

scaling factors that use the mass-change strategy are modified to calculate the 𝜙𝑗𝑟
𝜀 . 

Thus, Eqs. (8) – (10) can be rewritten as: 
 

                                               𝜙𝑗𝑟
𝜀

𝑀𝐶  = √
𝜔𝑟( 𝐀𝑗

𝜀
𝑟 ) 𝛥𝐦𝑇 ( 𝐀𝑗

𝜀
𝑟 )

2(𝜔𝑟−𝜔𝑚,𝑟)
                                (12) 

𝜙𝑗𝑟
𝜀

𝑀𝐶  = √
𝜔𝑚,𝑟

2 ( 𝐀𝑗
𝜀

𝑟 ) 𝛥𝐦𝑇 ( 𝐀𝑗
𝜀

𝑟 )

(𝜔𝑟
2−𝜔𝑚,𝑟

2 )
                               (13) 

𝜙𝑗𝑟
𝜀

𝑀𝐶  = √
𝜔𝑚,𝑟

2 ( 𝐀𝑗
𝜀

𝑟 ) 𝛥𝐦𝑇 ( 𝑨𝑚,𝑗
𝜀

𝑟 )

(𝜔𝑟
2−𝜔𝑚,𝑟

2 )
                               (14) 

Where  𝜙𝑗𝑟
𝜀

𝑀𝐶
  is the jth component of 𝚽𝑟

𝜀 that is estimated with the mass-change 

strategy for the strain EMA. 𝜙𝑗𝑟
𝜀

𝑀𝐶
  is used for a determination of the mass-normalized 

displacement and strain mode shapes using the following equations: 

                                                                  Φr = ± 
𝐀𝑗

𝜀
𝑟

𝜙𝑗𝑟
𝜀

𝑀𝐶

                  (15) 

                                                               𝚽𝑟
𝜀 = ± 

𝐀𝑘
𝜀 𝜙𝑗𝑟

𝜀
𝑀𝐶𝑟

𝑨𝑗𝑘
𝜀

𝑟
                  (16) 

3.1.2 Objective and Scope of Work 
 

The study was to perform the mass normalization of the displacement and strain mode 
shapes in strain EMA (Kranj et al., 2013). The work is focused by using recently 
introduced mass-change strategy for OMA (Parloo et al., 2002; Brincker & Andersen, 
2003; Aenlle et al., 2005) that was modified in such a way that it was applicable to 
strain EMA. Additionally, the study used experimental test of a free-free supported 
beam and plate for validation (Kranj et al., 2013). 
 
3.1.3 Experimental Works 
 

Experimental modal analysis is a non-destructive testing, based on vibration response of 

the structures. The technique widely used in modal analysis, is based on impact hammer 

excitation (Prasad & Seshu, 2008). It is well known that (mechanical) structures can 

resonate, i.e. small forces can result in important deformation, and possibly, damage can 

be induced in the structure. The majority of structures can be made to resonate, that is to 

vibrate with excessive oscillatory motion (Walunj et al., 2015; Allan & Thomas, 2010). 

Predominately, EMA is used to explain a dynamics problem, vibration or acoustic, 

which is not obvious from intuition, analytical models or previous similar experience. 

Experimental modal analysis methods involve the theoretical relationship between 

measured quantities and the classic vibration theory. All modern methods trace from the 

matrix differential equations yield a final mathematical form in terms of measured data. 
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This measured data can be raw input and output data in the time or frequency domains 

or some form of processed data such as impulse response or frequency response 

functions (Anuar, et al., 2012). Mathematically, the frequency response function (FRF) 

is defined as the Fourier transform of the output divided by the Fourier transform of the 

input. The measurements taken during a modal test are FRF measurements. The 

parameter estimation routines are, in general, curve fits in the Laplace domain and result 

in the transfer functions (Zhang, 2004). Theoretically, when a structure is excited by 

external excitation matrix, the output matrix (such as displacement, velocity and 

acceleration) can be tested in an experiment (Siringoringo, et al., 2008; Lee, et al., 

2008).  

To validate the proposed method, experimental tests on a beam and a plate structure 

were performed. 
 
a) Experimental tests on a beam structure 

 

By referring to Figure 4 and Figure 5, the experimental apparatus consists of steel, 1m 

long free-free supported beam with a rectangular 0.01 x 0.03m cross-section were 

prepared. The free-free boundary conditions were achieved by suspending the structure 

from thin ropes.  

 

 

 

 

 

 

 

 

Figure 4. The strain modal testing on the free-free supported beam (Kranj et al., 2013) 

 

 

 

 

Figure. 5. The tested beam (Kranj et al., 2013) 

Only the bending modes in the plane xy were considered, that results in displacements 

in the y-direction and normal strains in the x-direction (Hutton, 2003). The experiment 

was performed as follows. First, the strain EMA was performed and then the mass-

normalization procedure with the mass-change strategy for the strain EMA followed. 

The results were compared to the results of the finite element method (FEM) and then 

used for a reconstruction of the measured accelerances (Kranj et al., 2013). 
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During the strain modal testing the response was measured in the x-axis (Figure 5) with 

calibrated strain gauges (PCB 740B02), while the structure was excited with a modal 

hammer (B&K Type 8206-002) in the y-axis. First, the responses were measured at 

structure point 4 (Figure 5), while the structure was excited at the points 1-11 to 

determine the 4th row of the 11 x 11 sized strain FRF matrix. Then the responses were 

measured at the points 2, 4, 6, 8, 10 while the structure was excited at the point 4 to 

determine the 4th column of the strain FRF matrix. With five strain gauges that were 

attached to the structure, only the 2nd, 4th, 6th, 8th and 10th elements of the 4th column 

were measured (Kranj et al., 2013). 

The tested structures are lightly damped; therefore, the modal parameter 

identification was performed with the Ewins-Gleeson identification method (Ewins & 

Gleeson, 1982), which was developed for such structures, assuming the hysteretic 

damping model. 

The displacement and strain mode shapes were mass normalized using the 

proposed mass-change strategy for the strain EMA. The strain EMA for the original 

structure follows the structure modification by attaching magnets to the structure points 

1-11 (Figure 5). Each of the magnets weighted 11.6g and the total mass of the magnets 

was approximately 5.4% of the original structure weight. After the structure 

modification the strain EMA was performed for the modified structure once again. The 

natural frequencies of the modified beam were decreased by the added mass (Kranj et 

al., 2013). 
 

b) Experimental tests on a plate structure 
 

The second experimental was performed on a steel, 0.4 x 0.32 x 0.003m sized, free-free 

supported plate (Figure 6). Consider the first five modes vibrate out of plane xy and 

result in the normal and shear strains (stresses) (Leissa, 1969). The application of the 

proposed approach was shown by determining of the mass-normalized displacement 

mode shapes and the normal components of the mass-normalized strain mode shapes in 

the x-direction and the y-direction. 

The strain modal testing was performed with the same equipment as in the case 

of the beam. To gather the information about the displacement mode shapes the plate 

was excited with the modal hammer at the points 1-30 (Figure 6) and the response was 

measured at the point 31. The information about the strain mode shapes was obtained by 

exciting the structure at the point 26 and measuring the normal x-components of the 

strains at the points 6, 11, 16, 21, 31 and the normal y-components at the points 2-4. The 

modal identification was performed in a similar way as in the case of the beam. That is 

followed the mass normalization by the proposed approach. In order to ensure that the 

mass change will not affect the displacement mode shapes, the magnets were attached 

as follows. At the points (7-9, 12-14, 17-19, 22-24), (2-4, 6, 10, 11, 15, 16, 20, 21, 25, 

27-29) and (1, 5, 26, 30) the 11.6g, 5.1g and 3.6g magnets were attached to the structure 

respectively. The total mass of the magnets was approximately 6.6% of the original 

structure’s weight (Kranj et al., 2013). 
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Figure 6. The experimental testing on the free-free supported plate (Kranj et al., 2013) 

3.1.4 Result and Discussion   
 

a) Beam Structure 
 
Strain EMA 
 

Figure 7 shows the difference between the displacement mode shapes identified using 

strain EMA and the calculated strain mode shape by FEM (mass-normalized). Figure 7 

(a, c, e, g, i) and (b, d, f, h, j) shows the first five displacement and strain mode shapes 

respectively. The result shows that the experimentally determined mode shapes are not 

in agreement with the calculated ones. The discrepancies are the result of incorrect 

scaling. Therefore, the experimentally determined mode shapes match the calculated 

ones only in the mode shape nodes (Figure 7 (c) and (d), the structure point 6 at the 2nd 

displacement and strain mode shapes) (Kranj et al., 2013). 
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Figure 7. The first five displacement (a, c, e, g, i) and strain (b, d, f, h, j) mode shapes; 

determined with the strain EMA (unnormalized) “x”, calculated using FEM (mass 

normalized) “-“ (Kranj et al., 2013) 

Mass normalization with the mass-change strategy for the strain EMA 
 

Table 1 shows the change evident, with fr and fm,r stand for natural frequencies of the 

original and modified structures respectively, and δr is the relative change between the 

natural frequencies of the original and modified structures. The displacement mode 

shapes that are determined using the strain EMA are scaled by the jth component of the 

strain mode shape 𝜙𝑗𝑟
𝜀 . To calculate 𝜙𝑗𝑟

𝜀 one of Eqs. (12) – (14) can be used. In order to 

choose the appropriate approach a comparison of the displacement mode shapes before 

and after the structure modification was performed using the modal assurance criterion 

(MAC) (Allemang, 1982). Figure 8 show that the displacement mode shapes were not 

significantly changed by the structure modification, thus Eq. (13) was used. 

 

Table 1. Natural frequencies of the original and the modified beams (Kranj et al., 2013) 

r fr [Hz] fmr [Hz] δr [%] 

1 52.85 51.05 -3.41 

2 145.45 140.45 -3.44 

3 285.00 274.70 -3.61 

4 471.10 454.20 -3.59 

5 701.25 675.05 -3.74 
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Figure 8. The correlation between the displacement mode shapes of the original and the 

modified beams (Kranj et al., 2013) 

𝜙𝑗𝑟
𝜀

𝑀𝐶  were then calculated for all modes and used to determine the mass-normalized 

displacement and the strain mode shapes Φr and 𝚽𝑟
𝜀 with Eqs. (15) and (16). The Φr 

and 𝚽𝑟
𝜀 that were determined with the proposed approach are plotted together with the 

calculated ones using FEM. Figure 9 shows the first five displacement and strain mode 

shapes respectively. From the figure we can see that the experimental results match the 

calculated ones as it is (Kranj et al., 2013). 
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Figure 9. The first five mass-normalized displacement (a, c, e, g, i) and strain (b, d, f, h, 

j) mode shapes; determined with the proposed approach “x”, calculated using FEM “-“ 

(Kranj et al., 2013) 

b) Plate Structure 
 

The natural frequencies before and after the modification are shown in Table 2 in which 

fr stands for natural frequencies before modification and fm,r for natural frequencies after 

modification. The relative frequency shifts are denoted as δr. The displacement mode 

shapes were not affected by the modification. By using MAC comparison of 𝐀𝑗
𝜀

𝑟  and 

𝑨𝑚,𝑗
𝜀

𝑟  , it proved that the modification did not affect the displacement mode shapes. 

 

Table 2. Natural frequencies of the original and the modified plates (Kranj et al., 2013) 

r fr [Hz] fmr [Hz] δr [%] 

1 80.10 77.40 -3.40 

2 98.20 94.60 -3.70 

3 167.10 160.10 -4.20 

4 191.80 184.80 -3.60 

5 224.20 215.10 -4.10 

 

Eq. (13) is used for the calculation of 𝜙31𝑟
𝜀

𝑀𝐶 , that were used after for mass-

normalization. The testing results consist of the components of Φr at points (1-30) and 

the components 𝚽𝑟
𝜀𝑥𝑥 and 𝚽𝑟

𝜀𝑦𝑦
 at points (6, 11, 16, 21, 31) and (2-4) respectively.  
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The experimental results were compared to the FEM results. The comparison at the 

experimentally determined Φr versus the calculated ones. The relative comparison was 

performed by MAC analysis. Figure 10 (a, c, e, g, i) shows Φr for the structure points 

1-30. The detailed plots are shown in Figure 10 (b, d, f, h, j), where only the 

components of Φr at the location y = -0.08m are plotted. Then, the experimentally 

determined components of 𝚽𝑟
𝜀 were compared to the calculated ones by FEM in Figure 

11.  

Figure 11 (a, c, e, g, i) shows the 𝚽𝑟
𝜀𝑥𝑥 at the location y = -0.16m. Figure 11 (b, d, f, h, 

j) shows 𝚽𝑟
𝜀𝑦𝑦

 at the location x = -0.2m. From the result, the experimentally determined 

components of Φr and 𝚽𝑟
𝜀 are in good agreement with the calculated ones. 

Nevertheless, there are some discrepancies occurred such like errors due to measuring 

errors, local stiffness changes due to strain gauges that are attached to the relatively thin 

sheet metal and the deviations of the strain-gauge attachment regarding the position and 

the angle (Kranj et al., 2013). 
 

 

Figure 10. The first five mass-normalized displacement mode shapes ((a, c, e, g, i) – all 

the measuring points, (b, d, f, h, j) – points at y = -0.08m); calculated (-) and 

experimentally determined (x) (Kranj et al., 2013) 
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Figure 11. Components of the first five mass-normalized strain mode shapes ((a, c, e, g, 

i)- 𝚽𝑟
𝜀𝑥𝑥 , (b, d, f, h, j)- 𝚽𝑟

𝜀𝑦𝑦
 ; calculated (-) and experimentally determined (x)             

(Kranj et al., 2013) 

 

4.0 CONCLUSION 

 

The characteristics of EMA have been reviewed. It was clear that by applying EMA, the 

mass-normalized displacement and strain mode shapes of the structures can be obtained, 

by matching the shapes which were calculated by FEM. The results showed very good 

agreement and were verified via classic EMA measurement method and can be 

proposed for the reconstruction of the measured direct accelerances. One of the benefit 

of applying mass change strategy is other than obtaining the modal parameter, the strain 

mode shape parameter also possible to be determined. The result has its own validity 

with the proposed approach. 

From the analysis, it was clear that the EMA have its own significant role in 

detecting modal appeared by mean of vibration. Thus, EMA proven to be a useful 

method to gain relevant data relating with mechanical properties characteristics other 

than strain such like stress, impact, tensile, elongation etc. The idea of applying 

mechanical properties characteristics such as strain in this study has contributes in 

widening the understanding of getting relevant information on structure just by relying 

on the EMA method. 
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