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Abstract— This paper will introduced a new approach of 

vision which is enable to overcome the problems in the vision 

inspection systems. This system uses 2D gray pixels coocurrence 

matrix and gray absolute histogram of edge amplitude as the 

input features extract from the MIG butt welding joints. Images 

of the welding surfaces are captured using one CCD camera that 

is mounted on the top which is parallel with the work benches. 

The images are segmented and the 2D gray value coocurrence 

matrix consists of energy, correlation, homogeneity and contract, 

and absolute histogram of the characteristic feature in these 

images will be calculated. The same process will be applied in 

zooming image factor by 0.5 to calculated the next characteristic 

feature values. Finally both feature value is used as the input 

value in GMM and MLP classifier to classify the welds defect 

into three categories which are good weld, excess weld and 

insufficient weld. Results are taken from the 18 MIG butt 

welding joints samples were tested in overall accuracy 

recognition rate for MLP is 94.4 % while for GMM is 83.3%. In 

terms of total computation time, the overall time for MLP is 1.96 

m/s and GMM is 1.175 m/s. 

Index Term— Occurrence Matrices, Gray Absolute Histogram, 

Multi-Layer Perceptrons (MLP), Gaussian Mixture Model 

(GMM), MIG Butt Welding Joint Defect 

I.  INTRODUCTION  

The advanced technology needed in the automation of 
production processes and quality control inspection to solve 
welding quality problems has not yet been completely 
resolved. Because of these shortcomings, active research is 
needed on inspection and quality control. In industries it often 
uses X-ray test method for radiographic inspection inside the 
weld metal. Weld defects used human inspection is a hard and 
difficult task because many welds defects should be counted 
and inspected. The human experience and skill of specialized 
X-ray radiographs testing should be considered in the welds 
inspection because it affects the particular inspection task in 
time and human performance. 

Recently, methods for welds defects detection and 
classification in X-ray film or a CCD camera automatically 
have been investigated to improve processing efficiency and 
quantify the inspection results. In the related works, we do not 
combine all the available feature parameter such as intensity, 

geometry, texture and linguistic description from the 
segmented regions of the radiographs to solve the 
classification problem. A new approach will introduce vision 
systems using 2D gray pixels coocurrence matrix between the 
gray value of a pixel and its neighbors and gray absolute 
histogram of edge amplitude. The gray values is extracted 
form the MIG butt welding joint and then GMM and MLP 
classifier are used to classify the weld defects in three 
categories which are good weld, excess weld and insufficient 
weld. However the camera calibration process will not be 
discussed in this paper. This paper is organized as follows: 
Section 2 represent the related works of the systems, 
methodology is discussed in Section 3, followed by the test 
results in Section 4. Section 5 will discuss the conclusion of 
this research.  

II. RELATED WORKS 

There are many methods that can be applied to identify the 

welding joint defects done by the previous researchers. The 

method recently applied to classify the welding joint defects 

are fuzzy logic, statistical approach and neural networks. In 

the bootstrap method [1], MLP neural networks trained more 

accurately compare to fuzzy K-NN. Meanwhile a statistical 

interference technique using random selection data with 

(Bootstrap) and without repositioning was proposed by [2]. 

The results produced in this work are nearer to the true 

accuracy of the classifiers. The classes are undercut defect 

(UC), lack of fusion (LF) and porosity (PO), crack (CR) and 

slag inclusion (SI). In other works by [3], to improve the 

system in terms of classification accuracy, instated using all 

12 features to 7 features can be done by genetic algorithm 

generate by better fuzzy expert. 

Researchers in [4] has implemented improving accuracy 

using two versions of ant colony optimization (ACO) based 

algorithms for feature selection random and sequential with 

four classifiers which are nearest mean, k-nearest neighbor, 

fuzzy k-nearest neighbor and center-based nearest neighbor. A 

system which is able to obtain an accuracy of 100% by applied 

Artificial neural network (ANN) [5]. The system detects 

defect candidates (true positives) observed by the human 

expert. In [6,7] researchers introduce the method of extraction 

of shape information to characterize the weld nature by using 
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artificial neural network (ANN) with back propagation (BP) 

and ANN with differential evolutionary algorithm (DEA) 

separately. Their system obtains the highest accuracy of welds 

defects using DEA. This vision-based inspection system could 

be further expanded for classification of images with different 

types of joints in the welding process. 

[8] presented an adaptive-network-based fuzzy inference 

system (ANFIS) to reduce the number of features used in the 

input vector from 12 geometrical features to 4 geometrical 

features as input. This system is not suitable when a data set is 

unbalanced (number of samples in different classes vary 

greatly) and the correlation coefficient of a classifier does not 

represent the true performance of the classifier. Meanwhile [9] 

used nonlinear classifiers of patterns implemented by artificial 

neural networks to classify 5 classes case from 4 features weld 

defects. Hence the defect classes of crack and lack of fusion 

have not been evaluated by this technique yet. 

Researchers in [10] has introduced the fitted line profiles 

of a weld image by using scale average gray value for each 

line image so that each profile has approximately the same 

size. The fuzzy recognition algorithm using a membership 

value tables by representing gray value variance and gray 

mean value difference was introduced by [11]. This system is 

able to meet the requirement of real-time detection speed 

which achieves 3.5 m/s equal to 3–4 frames/s. 

The approach to classify weld defects based on EM and 

FCMI algorithms is introduced in [12].The system shows that 

the rate of classification using EM was much better between 

EM and FCMI by adding Bayes classifier because EM 

algorithm is very sensitive to the choice of the initial values of 

parameters. Because of that, the system needs to increase the 

size of the features vector and the data base in order to identify 

great classes of weld defects that existed in the industry. 

 

Another approach is proposed by [13] using detection and 

classification into 7 different classes (including segmented 

non-defects) comparing some state of the art multi-class 

classification methods (Support Vector Machines and Neural 

Networks). Feature selection in the systems is used to limit 

processing to those features that are actually important for 

each different class avoiding information redundancy. Their 

system has lack of public dataset because it requires more 

images which it needs to be able to be used for algorithm 

evaluation. 

Research in improving the surface and quality of defect 

has also been carried out in the past. For instance, the 

classifier methods that has been done by researcher are 

NEFCLASS [14], mixed fuzzy rule formation [15], naive 

bayes [14,16-17], decision tree [16], multi layer perceptrons 

[18], support vision machine (SVM) [19-21] and a multi 

features fuzzy [22]. The achieved accuracy improvements 

clearly showed that training set consistency and revising 

expert decisions during classifier design are of high 

importance when class labels are uncertain and likely to have 

errors. 

In all the previous works in the identification and 

classification of welds defect, we have noticed that this issue 

has been investigated widely in different ways. Many 

researchers have used radiographic image rather than CCD 

camera only as the input acquisition integrated with external 

light source or control the welding environment to reduce the 

noise. Most of the researchers used geometrical parameter in 

feature extraction which includes size, location, attribute and 

shape of the weld defects [23]. Otherwise they applied data 

interpreted such as gray value and linguistic description [24]. 

Perfect knowledge of the geometry of the welds defect is an 

important step which is essential to appreciate the quality of 

the weld. In term of how to categories the weld defects, some 

researcher normally categories the weld defects into type of 

welds, defect shape, welds flaw and defect information 

 

III. METHODOLOGY 
 This basic step for our vision systems classification for 
MIG butt welding joint defect is shown in Fig. 1.The systems 
is divided into three main parts which are feature extraction, 
classifier identification and results selection. Feature 
extraction is the way to obtain the characteristic parameters 
[25-26] of the butt-welding. These features value that comes 
out with different classes of the observed object are 
determined by the classifiers. The classifier will be identify 
the correct classes depending on the input value from feature 
extraction and visualize the result according the classifier 
selection. The type of defects can be classified into three 
categories according to its joints shapes in MIG butt-welding 
joints. The sample classification category is based on the 
expert human eye visualization. Fig. 2 shows the different 
category of the MIG butt welding joint defect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Procedure for the classification of butt-welding defects 
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Fig. 2. The different category of the butt-welding joints defects 

 

A. Generate Features 

 Feature is a set of value which is obtained from the 

description of the object in a numerical form where there 

many way to select the features. The features selection is 

important because this features affect the success of any 

classification algorithm. Many researchers used geometrical 

parameter in feature extraction which includes size, location, 

attribute and shape of the weld defects [23]. The other 

parameters that can be applied to interpret the data are gray 

value and linguistic description.  

The process to choose the desirable features from the 

initial set of the features list is called features selection. In the 

current works, the feature selections uses the coocurrence 

matrix related and the gray value and absolute gray histogram. 

There are 72 features parameters defined in order to determine 

the highest probability of the correct MIG butt welding joint 

defect. Fig. 3 show the block diagram for generated features 

by using coocurrence matrix and absolute gray histogram. 
 

 

Fig. 3. Block diagram for generate features 

B. Coocurrence Matrix 

The coocurrance matrix is describes the relationship 
between the gray value of a pixel and the values of its 
neighboors. This matrix contains two gray values of the 
probability that will appear next to each other. It is determined 
from the input regions how often the gray values i and j are 
located next to each other in a certain direction (0, 45, 90, 135 

degrees) and stores this number in the co-occurrence matrix at 
the locations (i,j) and (j,i) (the matrix is symmetrical) then 
scales the matrix with the number of entries. The number of 
gray values to be distinguished is indicates as LdGray. Based 
on the cooccurrence matrix there are four features that can be 
computed which are energy, correlation, local homogeneity 
and contrast The formula for the features indicated by the 
parameters LdGray and direction as shown in Eq. 1 to 4 where 
width of coocurrence matrix as witdh and entry of coocurrence 

matrix as .ijc  
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C. Gray Absolute Histogram 

In gray absolute histogram, the gray value distribution is 
calculated from the images within the regions. The region of 
the image is obtained from Sobel filtering [27-31] which is the 
edge amplitude. The result of absolute histogram contains 
absolute frequencies of the gray values with the quantization 
of neighbors gray value of 8 frequencies. The indices i of the 
frequency value are calculated from the gray values g and the 
quantization q as in Eq. 5 and 6 where MIN denotes the 
minimal gray value. 
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D. Gaussian Mixture Model (GMM) 

A Gaussian mixture model is the one of the basic theories 

when dealing with classification comprises the Bayes decision 

rules. Bayes rules can obtain the minimize probability of 

erroneously classifying a feature vector by appling the 

maximize probability for the feature vector x to belong to a 

class where is called ’a posteriori probability’. The Bayes 

decision rule can be expressed by Eq. 7 where a posteriori 

probability as  xwP i | , a priori probability feature vector x 

occurs the  class of the feature vector iw  as  iwxP | , 
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probability class iw  as  iwP  and probability feature vector x 

as  xP . 
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A GMM consist of number of center gaussian centers per 

class where is set by 1 number only. This center number is not 

only the exact number but depend on the number of parameter 

is used. Each center represent the parameter center jm , 

covariance matrix jC  and mixing coefficiant jP . These 

parameter is calculated by using Expectation Maximization 

(EM) algorithms. 

In this paper to calculate the arbitary probability density is 

acceptable by using only one centers per classes. Then the 

centers of density functions will be obtained by using a scalar 

multiple of the identity matrix IsC jj

2  called as ‘spherical’ 

as show in Eq. 8. The probability density function )(xp can 

be calculated by mixing the probabilities jP and centers of 

density functions )|( jxp for the number of sample features 

compn   is shown in Eq. 9. 
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E. Multi-Layer Perceptrons (MLP) 

A multi-layer preceptron (MLP) can be used for 

classification or regression (function approximation) of the 

defects depending on output function set. Generally the MLP 

consists of a number of nodes arranged in multiple layers 

which is connected with the nodes in the adjacent layers by 

their weights. MLP has three layers which are an input layer 

that accepts the input variables (units or neurons), a hidden 

layer and an output layer. The MLP performs the following 

steps to calculate the activations jz of the hidden units from 

the input data ix  (the so-called feature vector). The first and 

second layers for MLP model are shown in Eq. 10-12 where 

weights of input first layer as )1()1( , jji bw  and weights of input 

second layer as ., )2()2(

kkj bw  
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The output function for common classification problems 

with multiple mutually exclusive lasses as output is called 

‘softmax’ with number of input layers of 72, number of hidden 

layers is 100 and the number of output layers is 3 used in this 

paper. The output functions for ‘softmax’ is show in Eq. 13.  
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IV. RESULTS 

A. Experimental Setup 

In this works, a system comprising a Basler camera with 

sensor which delivers 67 frames per second at 2 MP 

resolution, light of source and framegrabber was developed to 

digitize and interpret the images. The image of the MIG butt 

welding joints will be captured by the Basler camera that is 

fixed parallel with the welding work benches e within 5 cm. 

The work piece image acquired by the experimental 

equipment is show in Fig. 4. A total of 18 image of MIG butt 

welding joints were used for the traning and testing with 

different orientation but within the workspace area. 18 images 

will be divided by 6 images in each category. The categories 

are good weld, excess weld and insufficent weld. All the data 

from the MIG butt weldding joint images were used in the 

GMM and MLP classifiers as a input data.  

 

 
Fig. 4. The work piece image acquired setup 

B. Development of the Gaussian mixture model (GMM) 

The GMM classifier was implemented using 72 input data 

with 3 numbers of classes and 1 number of centers per class. 

The first step to be taken in the development of this classifier 

was to select the best features vector values from the matrix 

occurrence and gray value histogram. The matrix occurence 

consist gray value of corelation, homogenuity, contrast and 

energy for both none zoomed and  zoomed by 0.5. Some tests 

were carried out in terms of the MIG butt welding joint images 

quality, type of covariance matrices and type of preprocessing 

used to transform the feature vectors where the best result 

were found when adding two additional source on the welding 

joint images, spherical type on covariance matrices and by 

using normalization type on prepossessing.  

In training GMM classes, the maximum number of 

iterations of the expectation maximization algorithm is set to 

100 and the threshold for relative change of the error is set to 

0.001. By using 6 MIG butt welding joint images in training 
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class the feature vector for each category will be defined.  The 

result of the GMM classification will be returned in Class 

Probability where it is determines by the result of classifying 

the feature vectors. Table 1 show the result of the class 

probability using GMM classifier in the butt-welding joint. In 

the class result, there were only 3 samples that does not meet 

the correct classes which are 1 sample in good weld and 2 

samples in insufficient weld class.   

 
Table I 

Result of the class probability using GMM classifier 

 

C. Development of the Multi-Layer Perceptrons (MLP) 

The multi-layer perceptrons (MLP) were implemented 

using 72 numbers of input features with 100 numbers of 

hidden layers and 3 number of output classes. The important 

step was to optimize the number of neurons used in the hidden 

layers to obtain the best accuracy possible in test sets. From 

the tests carried out, the best function on output layers will be 

using softmax and the preprocessing to transform the feature 

vector is normalization type.  

In training MLP classifier, the maximum number iterations 

of the expectation maximization algorithm are set to 200 and 

the threshold for the difference of the weights of the MLP 

between two iterations of optimization is set to 1.0. The result 

of the MLP classification will be returned in Class Probability 

where it is determined by the result of classifying the feature 

vectors with the MLP. In the class results, there is only 1 

sample that does not meet the correct class which is in good 

weld class. Table 2 shows the result of the class probability 

using MLP classifier in the butt-welding joint. 

 

 

 

 

 

Table II 

Result of the class probability using MLP classifier 

 
 

D. Performance between the MLP and GMM classifier 

The performance of the MLP and GMM classification has 

been evaluated in term of recognition rate and execution time. 

The classification performance using occurrence matrix and 

gray absolute histogram based on feature vectors in MIG butt-

welding joints is shown in Table 3. The results obtained in 

MLP classifier shows the highest accuracy is 100% for excess 

weld, insufficient weld and the lowest is 83.3% for good weld. 

The overall accuracy is 94.4%. In GMM classifier, the highest 

accuracy is 100% for excess weld, 83.8% for good weld and 

66.7% for insufficient weld. The overall accuracy is 83.3%. 

Fig. 5 shows the detail of classification performances for MLP 

and GMM. 

 
Table III 

Classification performance using occurrence matrix and gray absolute 

histogram  

 
 

 
Fig. 5. Classification performances for MLP and GMM 
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In comparison of computation times, GMM classifier was 

shortest in computation time compared to MLP classifier. The 

computation time for GMM classifier is less than 0.07 m/s for 

each sample with the total computation time of 1.175 m/s.  

However in this case, even though the GMM classifier has 

shortest computation time but in terms of accuracy the MLP 

classifier is the best. Fig. 6 show the comparison of 

computation time for both classifiers for the classification 

system in butt-welding joint.  

 

 
Fig. 6. Classification time for MLP and GMM classifiers  

 

V. CONCLUSION 

The vision classification of MIG butt-welding joints using 

2D gray pixels coocurrence matrix and gray absolute 

histogram of edge amplitude as the input have been developed 

in this paper. The two additional sources light are used to 

overcome the lack of images characteristic information. The 

classification is based on MLP classifier and GMM classifier. 

The MLP classifier provides overall accuracy recognition rate 

of 94.4%. Whereas GMM classifier has overall accuracy 

recognition rate is 83.3%.  In terms of the computation time, 

GMM classifier has overall computation time is 1.175 m/s 

faster compare to MLP classifiers 1.96 m/s. This vision 

classification could be further expended to more classes of 

MIG butt-welding joints not even only good weld, excess 

weld and insufficient weld. 
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