
Journal of Theoretical and Applied Information Technology
15th April 2017. Vol.95. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1381

 A STUDY OF GENERATING ABSTRACT TEST FOR
REQUIREMENTS VALIDATION AMONG REQUIREMENTS

ENGINEERS

1
NOR AIZA MOKETAR,

 1
MASSILA KAMALRUDIN,

1
MOKHTAR MOHD. YUSOF,

1
SAFIAH

SIDEK,
2
MARK ROBINSON

1Innovative Software System and Services Group, Universiti Teknikal Malaysia Melaka, MALAYSIA
2Fulgent Corporation, Texas, USA

E-mail: 1nor.aiza09@gmail.com, {massila, mokhtaryusof, safiahsidek}@utem.edu.my
2marcos@fulgentcorp.com

ABSTRACT

Requirements testing or requirements-based testing (RBT) is one of the software testing techniques that is
found effective to test requirements’ completeness and accuracy. This technique involves systematic way of
test case generation from the model of the requirements specification. This technique has been applied in
the requirements analysis phase to detect and eliminate requirements defects before the next stage of
software development project. Although this technique is useful, it is tedious and time consuming to
manually generate abstract test from the requirements model. However, we argue that the tedious process
can be minimised if the requirements engineer have the good ability (skill) to generate abstract test from
requirements models for requirements validation. This paper described a study of requirements engineer
manually generate abstract tests from requirements model: Essential Use Cases (EUC) model. From the
result, we discover that software requirements engineers are not well equipped with the skill and technique
to generate abstract tests from requirements model.

Keywords: Requirements Validation, Requirements-Based Testing, Abstract Tests, Test Requirements, Test

Cases

1. INTRODUCTION

Capturing correct and consistent requirements from
client-stakeholders determines the production of a
quality software development. However, it is often
considered to be difficult, time consuming and error
prone [1][2]. Requirements validation has been
recognised as an important process to produce
quality software as it determines whether client-
stakeholders’ needs and expectations of a product
are sufficiently correct and complete [3][4][5][6].
Further, the common practice of conducting
requirements validation at late stages of product
development is costly and time consuming [7][8].
One way to overcome this problem is to perform
requirements validation early in software
development. This proactive approach, known as
the test-driven development allows early detection
and prevention of errors in requirements
specifications as it begins with writing the test
cases and then follows with implementation, hence
avoiding the need to rectify errors at later stages of
product development [9][10].

At present, various requirements validation
techniques, such as requirements review,
inspections, prototyping, model-based,
requirements testing and viewpoint-oriented
requirements validation [3][11][12] have been used
to evaluate the correctness and quality of
requirements. Each of these techniques has their
own strengths and weakness depending on the
purpose of their usage. Studies [13][14][15] have
recognized requirements testing or requirements
based testing as an effective technique to identify
requirements defect. Requirements testing or also
known as requirements-based testing (RBT) is a
software testing technique that is use for the
purpose of verification and validation (V&V) of a
developed software application by deriving test
cases from the requirements [13][14]. It is a
specification-based (black-box) testing technique or
input-output driven testing techniques as the
software is viewed as a black-box with input and
output that solely derived from the specifications,
without concern for the internal structure of the
program [16]. This technique use systematic way to

Journal of Theoretical and Applied Information Technology
15th April 2017. Vol.95. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1382

derive test cases from a model (formal or informal)
of the requirements specification. Designing tests
with users’ involvement in the earliest stage will
help the users to understand what they really want
the system to do. This will help to discover and
eliminate requirements defects before the design
and development phase, which will also help to cut
the project cost.

Although this technique is found useful and
effective to test requirements’ completeness and
accuracy, it is costly, time consuming and
challenging to manually generate the test cases
from requirements model [14][17]. As a result,
most development organizations are reluctant to
invest their time and effort in designing test cases in
requirements phase. Furthermore, it is difficult to
get client-stakeholders’ cooperation to get involve
in the process due to time-constraint and other
responsibility. However, we argue that the tedious
process can be reduced if the software practitioners
have a good skill in generating abstract tests from
requirements. We also found there is almost no
similar study that investigate the challenges faced
by requirements engineers in generating/defining
test cases from requirements model. Herein, we
present the user study to measure the software
requirements engineers’ ability (skill) to generate
abstract test from requirements model as well as to
understand the difficulties in the process.

The remainder of this paper is organized as
follows: Section 2 outlines the background of the
study; Section 3 present the research design of our
user study; Section 4 discusses the result of the
experiment; Section 5 described the discussion and
lesson learn from the study; Section 6 describes the
threats to the validity of our study and Section 7
conclude this work.

2. BACKGROUND OF STUDY

We use the term ‘abstract tests’ to refer to our
test requirements and test cases that are generated
from the semi-formalised abstract model, called the
Essential Use Cases (EUC) and the Essential User
Interface (EUI) model. An abstract test is a high-
level test requirement and test case that represents a
requirements scenario. In contrast to concrete tests,
an abstract test does not contain any details of the
test environment, test protocol, or configuration for
the test component.

2.1 Essential Use Case (EUC) and Essential

User Interface (EUI)

 EUC is a structured narrative, expressed in the
language of the application domain and the users. It
is composed of a simplified, abstract, technology-

free and implementation-independent description of
a single task or interaction [18][19]. EUC is a
complete, meaningful, and well-designed
interaction from the point-of-view of the users. It
represents a particular role in relation to a system
and embodies the purposes or intentions underlying
the interaction. EUCs enable users to ask
fundamental questions, such as "what's really going
on" and "what do we really need to do" without
letting implementation decisions get in the way.
These questions often lead to critical realisations
that allow users to rethink, or reengineer the aspects
of the overall business process. Figure 1 shows an
example of natural language requirements (left
hand side) and an example of an EUC (right hand
side) while capturing the requirements (adapted
from [19]). The natural language requirements from
which the important phrases are extracted
(highlighted) are shown on the left hand side of
Figure 1. From the natural language requirements, a
specific key phrase (essential requirement) is
abstracted and is shown in the EUC on the right
hand side of Figure 1. As shown in Figure 1, the
EUC depicts two interrelated sets of information:
the user intentions and the system responsibility.

An EUI prototype is a type of abstract
prototype or paper prototype that is a low-fidelity
model. Also known as a “UI prototype” for a
software system, it represents the general ideas
rather than the exact details of the UI [19][20]. An
EUI prototype represents the user interface
requirements in a technology independent manner;
just as the EUC models do for the behavioural
requirements. An EUI prototype is particularly
effective during the initial stages of user interface
prototyping for a system. It models user interface
requirements that are evolved through analysis and
design to the final user interface of a system [8]. It
also allows some exploration of the usability
aspects of a system. Figure 2 shows an example of
an EUI prototype developed from EUC model. The
possible UI functionality at a high level of
abstraction is captured from the user
intention/system responsibility dialogues.

Both EUC and EUI play important roles in our
work. The EUC provides a simpler and shorter
form of dialogue between the user and the system
compared to the conventional use case. This
dialogue provides the key information of the input
and output (expected results) for our test cases. An
interaction (input and output) between the user and
the system can generate one or more test
requirements. This dialogue also provides
information for the test procedures/steps in our test
cases. The EUI prototype model provides a guide

Journal of Theoretical and Applied Information Technology
15th April 2017. Vol.95. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1383

for the important elements to be included in our
mock-up UI prototype. These two models are
crucial to ensure the correctness, completeness and
consistency of generated abstract tests and mock-up
UI prototypes for users’ requirements.

Figure 1: Example of EUC Model (Right-hand Side)

Extracted from Natural Language Requirements (Left-

hand Side)

Figure 2: Example of EUI Prototype Extracted From the

EUC Model

3. STUDY GOAL AND METHOD

This section describes the design of our user

study. Our user study seeks to test the skill (ability)
of requirements engineers to correctly generate
abstract test (test requirements and test cases) from
requirements model.

3.1 Experiment Subjects

For this user study, the subjects were 30
undergraduate students from the course of software
testing and quality assurance, in their final year of
degree in computer science at the Universiti
Teknikal Malaysia Melaka (UTeM). The student
previously attended courses on software
engineering and project management. In general,
they had similar knowledge and expertise level in
software engineering and software testing topics.
The sample of subjects participating in the
experiments was on a voluntary basis and agreed to
participate to the experiment. The participants were
provided with a written informed consent form.
They were informed that: (i) the experiment is not

mandatory, (ii) they will be observed while
performing the task, (iii) they were not evaluated on
their performance and (iv) data collected will be
used only for research purposes.

3.2 Experiment Materials

The study material consisted of a tutorial and a set
of requirements sample. The tutorial explained the
EUC and EUI model that are used as the
requirements model in this experiments. We also
provide theoretical and practical lesson on how to
generate abstract test from EUC model. We provide
the participants with requirements sample for a
Patient Management System (PMS) in the form of
use case scenario. This system targeting the
hospital or clinic administrators who manage the
patient information. The admin can log in to the
system, view the list of patients and add the
patient’s medication information list. We also
provide the associated EUC model derived from the
sample requirements as shown in Table 1.

Table 1: The EUC Model Generated From PMS Use

Case Scenario
Module EUC Model

User

Intentions

System

Responsibility

Login Identify self
 Verify Identity
 Offer choice

View Patient
Details

Select option
 Display

Information
Update
Medication

Add option
 Update

Information

Login Module:
Pre-condition: User must register to the system.
1. Anonymous user needs to login with their User ID

and password to use the system.

2. System will verify and validate the User ID and
password.

3. Upon successful authentication, system will display
the menu choices.

View Patient Details:
Pre-Condition: User must be logged-in to the system.
1. User chooses the option to view the list of patient

from the menu choices.

2. System will display the list of patients stored in the
database.

3. User chooses a patient ID from the list.

4. System will display the information of the selected
patient ID.

Update Medication:
Pre-Condition: User must be logged-in to the system.
1. User adds a new medication to the patient’s con-med

list.

2. System will update the new medication to the
database.

Journal of Theoretical and Applied Information Technology
15th April 2017. Vol.95. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1384

3.3 Variable Selection

The dependent variables of our study are the
participant’s comprehension level and time taken to
generate/define the abstract test from EUC model.
The comprehension level is to measure the
participants’ ability and skills, meanwhile the time
is to measure the effort need to generate abstract
test from requirements model. The comprehension
level has been measured by checking the
correctness of the generated abstract test to the
EUC model. Our perspective of correctness in this
study is the combination of consistency and
completeness of the generated abstract test. Table 2
displays our correctness measurements in this
experimentation. As described in Table 2, we have
three (3) test requirements and five (5) test cases for
the login module in our pattern library. We say the
participant has a correct abstract test when he or
she has generate the same number of abstract test
with the similar definition of abstract test from our
pattern libraries. A participant response is partially

correct if he or she has defined fewer or more
abstract test. A participant response is considered
incorrect if none of the defined abstract test
matches with our pattern library. We give one point
to correct answer, half a point for partially correct
answer and zero point for incorrect answer. Table 3
show an example of the abstract test generated from
our pattern library.

3.4 Experiment Procedure

We have defined and followed a simple
procedure to carry out the experimentation. We
asked the participants to manually generate abstract
test from EUC model. Prior to that, they were given
a short description of the experimentation. We
provide a tutorial that explained the theory of EUC
model in detail and give an example on the process
of generating abstract test from the model. We give
them 15 minutes to understand the concept and
hands-on the example as given in the tutorial. Then,
the experiment went through the following steps:
(1) Subject had 10 minutes to read the sample

requirements of PMS system.
(2) Subject had to write their matric card number

and start time.
(3) Subject had to write the abstract test on the

provided sheets. To reduce the complexity and
time taken, the subject only need to write down
the test requirements, test case description,
input/test data and the expected output of the
abstract test.

(4) Once completed, subjects had to write down
the stop time and call the researcher.

3.5 Data Analysis Protocol

Upon completion of the task, the participants
need to call the researchers and submit the
handouts. There were two researchers involved in
the data analysis for this study. To measure the
manual effort, we calculated and averaged the time
taken of the participants to finish the task. Then, we
checked and compared each of the abstract test
written by the participants with our abstract test’s
pattern to measure the comprehension level of the
participants. For this, we checked the consistency
and completeness of the participants’ responses
with our abstract test pattern library as shown in
Table 3. We gave the relevant point for each
responses following the correctness measurements
as described in Table 2. We calculated the points
and get the percentage for each comprehension
level: good, moderate and poor. The results is
discussed in Section 4.

4. RESULTS

4.1 User Study: Manual Extraction of Abstract

Test

Table 4 summaries the result for
comprehension level of the participants. We
classified the comprehension level as good,
moderate and poor based on the correctness of the
abstract test. The result shows that only 10.13% of
the participants have good skill (ability) to generate
the correct abstract test from the EUC model. More
than half of the participants have moderate skill,
which is 57.38% who generate partially correct
abstract test and 32.49% of the participants have
poor skill to generate the abstract test. Based on the
results, participants were most likely to generate
incomplete abstract test, as they tend to miss few
test cases that were associated with specific test
requirements. For example, in module 1 (login),
most participants only create positive (pass) test
cases and miss identifying the negative (fail) test
cases. Thus, from this result we conclude that
software requirements engineer is not able to
generate abstract test from requirements model.
Further, we also have average the completion time
of all the participants. The mean time taken to
accomplish the task was 1 hour and 15 minutes (75
minutes). The shortest time taken was 55 minutes to
complete the task. This study also demonstrates that
it is time consuming and tedious for participants to
generate correct, complete and consistent abstract
test from the requirements model. Our study thus
supports the claims [14][17][21][22] that writing
test cases as part of the requirements-based testing
process are tedious and time consuming.

Journal of Theoretical and Applied Information Technology
15th April 2017. Vol.95. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1385

Table 2: Correctness Measurement

Module Pattern Library Participant Response

of Test

Requirements

of Test

Cases

of Test Requirements # of Test Cases

Login 3 5 3 matches = correct
2 or only 1 matches =
partially correct
0 match = incorrect

5 matches = correct
4 or 3 or 2 or 1 matches =
partially correct
0 match = incorrect

View Patient Details 2 2 2 matches = correct
1 matches = partially correct
0 match = incorrect

2 matches = correct
1 matches = partially correct
0 match = incorrect

Update Medication 2 2 2 matches = correct
1 matches = partially correct
0 match = incorrect

2 matches = correct
1 matches = partially correct
0 match = incorrect

Table 3: The Abstract Test Generated From Our Pattern Library

EUC Test Requirements Test Case

TC

Description

Pre-

condition

Test Data Steps Expected Output

Identify self Validate that user
can login with valid
username and
password

Valid
username
and
password

User should
be registered
to the system.

Username:
Admin001
Password:
Admin00!

1. Key in the
username and
password.
2. Click on
“Login” button.

User should be able
to login to the
system.

 Validate that user
can not login if
username and
password is invalid.

Valid
username
and invalid
password.

 Username:
Admin001
Password:
Admin002

1. Key in the
username and
password.
2. Click on
“Login” button.

User should not be
able to login to the
system.

Table 4: The Comprehension Level Results of the

Participants
Module Correct

(%)

Partially

Correct

(%)

Incorrect

(%)

Login 5.06 56.96 37.97
View Patient
Details

12.66 58.23 29.11

Update
Medication

12.66 56.96 30.38

Mean 10.13 57.38 32.49

5. DISCUSSION AND LESSON LEARN

From the results of the experiment we found
that only 10.13% of the participants have a good
skill to generate abstract test from requirements
model. From our observation, we found that the
participants took a long time to think and figure out
the correct, complete and consistent abstract test
from the requirements model. This is a big concern
as in a real software development environment the
requirements can be more complex compared to the
sample requirements provided in the experiment.
Further, we also found that it was difficult for us
(researchers) to read and understand the
participants’ responses (the generated abstract test).
Such difficulties includes: (1) inconsistent terms to
explain the same thing, (2) the abstract test
statements are unclear and ambiguous, (3) grammar
and typographical errors. This have motivate us to
develop an automated tool that able to generate

abstract test from semi-formalised model: EUC and
EUI models in order to assist in requirements
validation process. There is also a need to have a
proper authoring template to help the requirements
engineers to write correct tests to avoid the
difficulties as mention above. Moreover, we learn
that with a proper tool support, it may help to
reduce human effort and time in the process, which
eventually will help to cut the production cost.

6. THREATS TO VALIDITY

In this section, we discussed the threats to the
validity that can have affected our study, which
include the internal and external validity.

Internal validity measures the cause-effect
relationship identified in a study [23]. The
participants in this study were final year
undergraduate students majoring in Software
Engineering. They were properly trained to deliver
the task before the experiment as described in
Section 3. The students were informed that their
response was treated anonymously and they were
not evaluated on their performance. They were also
not aware of the main objective of experimentation.

External validity refers to the degree to which
the results of an empirical investigation can be
generalised to and across individuals, settings and
times [23]. Our results may be generalized to
novice requirements engineer who were not well
trained to generate abstract test from requirements

Journal of Theoretical and Applied Information Technology
15th April 2017. Vol.95. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1386

model. To draw any conclusions for more
experience requirements engineer, empirical studies
with professional experts are needed. Other threat
to external validity is related to the sample
requirements that were used in this
experimentation. Although the sample requirement
is simple, it is realistic to represent the requirements
of small management system. Furthermore, we also
minimised the component of the abstract test to be
generated to reduce the complexity and the time
taken to complete the task.

7. CONCLUSION

Requirements engineers’ are responsible to
ensure the requirements meet the users’ need and
expectation. They need to perform proper
validation to ensure the requirements interpreted
correctly by reviewing and validating the design,
code as well as the test cases based on the
requirements specification. Requirements testing is
one of the effective requirements validation
technique that involved test case derivation from
the requirements. For this, requirements engineers
need to be equip with proper technical skills to
generate/define the correct and consistent test cases
compliance to the elicited requirements.

In this paper, we present a user study that
assesses the ability (skill) of software requirements
engineer to generate/define abstract test from
requirements model. From the study, we found that
the software requirements engineers are not well
equipped with the skill to generate abstract test
from requirements model. The result was quite
alarming as in real software development
environment the requirements can be more complex
compared to the sample requirements provided in
the experiment. Yet, as the experimentation was
conducted with final year undergraduate student,
we summaries and generalised our finding that it
applied to novice requirements engineer. Therefore,
we need to replicate the experiment with senior
software practitioner from the industry to confirm
or contradict our hypothesis. For future work, we
intended to replicate the experiment with a small
group of IT professional from industry to confirm
or reject our hypothesis.

ACKNOWLEDGEMENT

This research is funded by Ministry of Higher
Education Malaysia (MOHE), Universiti Teknologi
Mara (UiTM), Fulgent Corporation, FRGS grant:
FRGS/2/2013/ICT01/FTMK/02/2/F00185.

REFRENCES:

[1] M. Kamalrudin and J. Grundy, “Generating
essential user interface prototypes to validate
requirements,” 2011 26th IEEE/ACM Int.

Conf. Automated Software Engineering ASE

2011, 2011, pp. 564–567.
[2] M. Kamalrudin, J. Grundy, and J. Hosking,

“Tool support for essential use cases to better
capture software requirements,” Proc.

IEEE/ACM Int. Conf. Automated Software

Engineering - ASE ’10, 2010, p. 255.
[3] U. A. Raja, “Empirical Studies of

Requirements Validation Techniques,” in 2nd

International Conference on Computer,

Control and Communication, IC4 2009, 2009,
pp. 1–9.

[4] N. Condori-Fernandez, S. España, K. Sikkel,
M. Daneva, and A. González, “Analyzing the
effect of the collaborative interactions on
performance of requirements validation,” in
20th International Working Conference on

Requirements Engineering: Foundation for

Software Quality, REFSQ 2014, 2014, vol.
8396 LNCS, pp. 216–231.

[5] D. Aceituna, H. Do, and S.-W. Lee,
“SQ^(2)E: An Approach to Requirements
Validation with Scenario Question,” 2010

Asia Pacific Software Engineering

Conference, 2010, pp. 33–42.
[6] D. Aceituna, H. Do, and S.-W. Lee,

“Interactive requirements validation for
reactive systems through virtual requirements
prototype,” in 2011 Model-Driven

Requirements Engineering Workshop, 2011,
pp. 1–10.

[7] S. Sukumaran, a. Sreenivas, and R.
Venkatesh, “A Rigorous Approach to
Requirements Validation,” Fourth IEEE Int.

Conf. Softw. Eng. Form. Methods, 2006 pp.
236–245.

[8] S. Maalem and N. Zarour, “Challenge of
validation in requirements engineering,” J.

Innov. Digit. Ecosyst., vol. 3, no. 1, 2016, pp.
1–7.

[9] T. Hammel, R. Gold, and T. Snyder, Test-

Driven Development: A J2EE Example. New
York, USA: Apress, 2005.

[10] H. Erdogmus, G. Melnik, and R. Jeffries,
“Test-Driven Development,” Encycl. Softw.

Eng., 2010, pp. 1211–1229.

Journal of Theoretical and Applied Information Technology
15th April 2017. Vol.95. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1387

[11] S. B. Saqi and S. Ahmed, “Requirements
Validation Techniques practiced in industry :
Studies of six companies,” Blekinge Institute
of Technology, Sweden, 2008.

[12] F. Yousuf, Z. Zaman, and N. Ikram,
“Requirements Validation Techniques in
GSD : A Survey,” in IEEE International

Multitopic Conference, 2008, pp. 553–557.
[13] T. Sarwar, W. Habib, and F. Arif,

“Requirements based testing of software,”
2013 Second Int. Conf. Informatics Appl.,
2013, pp. 347–352.

[14] U. A. Raja, “Empirical studies of
requirements validation techniques,” in 2009

2nd International Conference on Computer,

Control and Communication, IC4 2009, 2009.
[15] P. Skoković, M. Rakić-Skoković, and

Teaching, “Requirements-Based Testing
Process in Practice,” Int. J. Ind. Eng. Manag.,
vol. 1, no. 4, 2010, pp. 155–161.

[16] G. J. Myers, The Art of Software Testing.
2004.

[17] C. Wang, F. Pastore, A. Goknil, L. Briand,
and Z. Iqbal, “Automatic generation of system
test cases from use case specifications,” in
Proceedings of the 2015 International

Symposium on Software Testing and Analysis

- ISSTA 2015, 2015, pp. 385–396.
[18] R. Biddle, J. Noble, and E. Tempero, “From

Essential Use Cases to Objects,” forUSE

2002, Second Int. Conf. Usage-Centered Des.

forUSE 2002, vol. 1, no. 978, 2002, pp. 1–23.
[19] L. L. Constantine and L. A. D. Lockwood,

“Structure and Style in Use Cases for User
Interface Design,” vol. 1, no. 978. Addison-
Wesley Longman Publishing Co., Boston,
MA, 2001.

[20] S. W. Ambler, “Essential (Low Fidelity) User
Interface Prototypes,” 2003. [Online].
Available:
http://www.agilemodeling.com/artifacts/essen
tialUI.htm.

[21] B. Haugset and G. K. Hanssen, “Automated
Acceptance Testing: A Literature Review and
an Industrial Case Study,” Agil. 2008 Conf.,
2008, pp. 27–38.

[22] S. Khandkar, S. Park, Y. Ghanam, and F.
Maurer, “FitClipse: A Tool for Executable
Acceptance Test Driven Development,” Agil.

Process. Softw. Eng. Extrem. Program. -

10Th, vol. 31, 2009, pp. 259–260.
[23] R. K. Yin, Case Study Research: Design and

Methods Fourth Edition, vol. 5. 2009.

Journal of Theoretical and Applied Information Technology
15th April 2017. Vol.95. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1388

APPENDIX

User Study of Generating Abstract Test for Requirements Validation among Requirements

Engineers

Statement

 I have read the Participant Information Sheet and have understood the nature of the survey and I
agree to take part in this survey. (please tick √)

Matrix No. : __

Start Time : __

End Time : __

Task 1: Identify Test Requirements and Test Cases from use case scenario and EUC models

1. Given the use case scenario and the corresponding EUC model.

2. Identify and list the appropriate test requirements (TR) and test cases (TC) from the EUC model.

3. Use the following table to list your TR and TC.

4. Please note your start and end time to execute this task.

5. Upon completion please return this sheets to the researchers.

Module EUC Model

User Intentions System Responsibility

Login Identify self
 Verify Identity
 Offer choice

View Patient Details Select option

 Display Information
Update Medication Add option

 Update Information

Test Requirements Test Case Description Test Data Expected Output

Login Module:
Pre-condition: User must register to the system.
1. Anonymous user needs to login with their User ID and password to use the system.

2. System will verify and validate the User ID and password.

3. Upon successful authentication, system will display the menu choices.

View Patient Details:
Pre-Condition: User must be logged-in to the system.
1. User chooses the option to view the list of patient from the menu choices.

2. System will display the list of patients stored in the database.

3. User chooses a patient ID from the list.

4. System will display the information of the selected patient ID.

Update Medication:
Pre-Condition: User must be logged-in to the system.
1. User adds a new medication to the patient’s con-med list.

2. System will update the new medication to the database.

