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ABSTRACT 
 

Fibre Metal Laminate (FML) is hybrid material that has the combined advantages of metallic materials 

and fibre reinforced matrix. It has been widely used in the aircraft industry for impact prone applications 

due to its excellent fatigue and impact resistance. This research focuses on the quasi-static indentation 

behaviour of fibre metal laminates based on NaOH treated and untreated kenaf bast fibre with fibre 

loading wt% of 50, 60 and 70 and fibre length in cm of 3, 6 and 9. Aluminium 5052-O has been used as 

the skin layers of FML in this study. Hot compression moulding method has been used to fabricate the 

composite and FML panels for this study. The prepared specimens were tested in accordance with ASTM 

D 6264 using Instron 5585 universal testing machine to assess their quasi-static indentation 

performance. The results revealed that treated FMLT-60(9) with fibre loading 60wt% and fibre length of 

9cm exhibited the highest energy absorption at 30.82 J.  

 
Keyword: Fibre metal laminate; thermoplastic; indentation; kenaf fibre; quasi-static.  
 
 
1. INTRODUCTION 

 
Over the past decade, there has been an increasing interest in developing high-performance and 
lightweight structures for impact prone applications in numerous engineering sectors especially aerospace 
and motorised industries. The low fatigue strength of the aluminium alloys and the problems related to the 
damage tolerance in fibre reinforced composites (FRPs) has called for the development of a hybrid 
material which is known as fibre metal laminate (FML). These hybrid materials can overcome the 
limitations of metals and FRPs by combining composites and conventional metallic alloys (Vogelesang & 
Vlot, 2000). FML is a hybrid structure consisting of thin sheets of metallic alloy sandwiching a FRP 
layer. The FMLs as shown in Figure 1 have collective benefits of fibres in the composite material which 
acts as a barrier against crack propagation and of metallic materials which improves the ductility and 
impact resistance properties of the structure (Cortes & Cantwell, 2006). According to prior studies, it was 
found that FMLs are nearly 20-30% lighter than monolithic aluminium (Chai & Manikandan, 2014; 
Dharmalingam et al., 2014; Sivakumar et al., 2016; Sivakumar et al., 2017). Furthermore, the FMLs offer 
additional advantages such as superior fatigue toughness and impact damage tolerance in contrast to 
conventional metals (Santiago et al., 2017). A series of localised blast loadings conducted by detonating 
PE4 plastic explosive shows FML has tremendous potential in resisting explosion (Langdon et al., 2007; 
Lemanski et al., 2007).  
 
The past decades have seen the rapid development of several types of FMLs such as the Aramid fibre 
reinforced Aluminium Laminate (ARALL), the Glass Laminate Aluminium Reinforced Epoxy (GLARE) 
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was placed in between two layers of high strength Kevlar fabric. Moreover, the outer Kevlar fabrics can 
resist the shear plug formation and prolong the load-displacement curve. To date, limited research studies 
were established on the natural fibre reinforced thermoplastic-based FML. This research presents an 
experimental study on the quasi-static indentation behaviour of kenaf bast fibre reinforced polypropylene 
metal laminates (KFML). The response of the KFML under quasi-static loading is evaluated, where the 
effect of fibre loading, length and treatment are studied.  
 
 
2. METHODOLOGY 

 
2.1 Composite and FML Preparation 

 
In this research, kenaf bast fibres were used as the reinforcement while polypropylene (PP) granules were 
used as the matrix. The PP granules used in this study has a density of 0.95 g/cm3 was supplied by Basell 
Asia Pacific Ltd, Malaysia. The chemical treated fibres were prepared by soaking in 5% Sodium 
Hydroxide (NaOH) solution at room temperature for 4 hours to produce a clean and rough surface on the 
fibre. Chemical treatment enhances the interfacial bonding of polymer and kenaf fibre owing to the better 
interlocking between fibres and matrix (Mahjoub et al., 2014). The fibres were then filtered out and 
washed with tap water until the traces of sodium hydroxide were removed. The treated fibres were then 
dried at room temperature overnight followed by drying in an oven at 40 °C for 24 h. The fibres were then 
cut into short pieces with three different lengths; 3, 6 and 9 cm. The PP sheets were prepared by 
compressing PP granules in a 200 mm × 200 mm × 1 mm (width × length × thick) picture frame mould 
using the hot press machine at 175 °C. Random kenaf fibre mats were formed by compressing the fibres 
at 180 °C for 2 min according to the respective fibre length and compositions. The fibre mats and PP 
sheets are then stacked alternately in a picture frame mould with a size of 200 mm × 200 mm × 3 mm. It 
was then compressed for 8 min at a temperature of 180 °C and pressure of 5 MPa in the hot press machine 
to form composite panels with a consistent thickness of 3 mm as shown in Figure 2. The 0.5 mm thick 
aluminium 5052-O sheets were cut to a dimension of 200 mm x 200 mm.  To increase adhesion level 
between the aluminium and the composite, the surface of aluminium sheets was mechanically coarsen 
using sandpaper grit size 80. KFMLs with 2/1 configuration was formed by stacking two aluminium 
layers to the composite in which a 0.05 mm thick modified PP adhesive sheet was placed between the 
layers of aluminium and the composite panels as shown in Figure 3. The prepared FML assembly was 
subjected to hot compression moulding process at the temperature of 170 °C and pressure of 0.4 MPa for 
10 min. The KFML panel was removed upon reaching room temperature. The composition of KFMLs 
prepared for this research is presented in Table 1. The KFML panels were cut using a shearing machine 
according to dimension shown in Figure 4. 
 

2.2 Quasi-Static Indentation Test 
 

The quasi-static indentation test was repeated three times to study the damage mechanism and energy 
absorption of KFMLs. The indentation tests were conducted with reference to the ASTM D 6264 using 
Instron 5585 universal testing machine with a 150kN load cell. A series of quasi-static tests were 
performed using 12.7mm diameter hemispherical tip indenter in an edge supported configuration. The 
KFML samples were bolted between the top plate and bottom support plate by four screws with sufficient 
force to prevent slippage of the specimen during the test as shown in Figure 5. The load versus 
displacement curves were recorded, at a crosshead displacement rate of 1.25 mm/min. The energy 
dissipation was calculated by integrating the area under the curve. The specimens were then visually 
examined to analyse the failure mechanisms. 
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Table 1: Specifications of the KFMLs fabricated. 

Specimen code Fibre weight (%) Fibre length (cm) Fibre treatment 
UT-50(3) 50 

3 

Untreated 

UT-60(3) 60 
UT-70(3) 70 
UT-50(6) 50 

6 UT-60(6) 60 
UT-70(6) 70 
UT-50(9) 50 

9 UT-60(9) 60 
UT-70(9) 70 
T-50(3) 50 

3 

Treated 

T-60(3) 60 
T-70(3) 70 
T-50(6) 50 

6 T-60(6) 60 
T-70(6) 70 
T-50(9) 50 

9 T-60(9) 60 
T-70(9) 70 
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fibres at 50 wt% loading where the maximum energy recorded for FMLs T-50(6) is 37.7% higher than 
FML UT-50(6). The result is consistent with the study conducted by Bakar et al. (2010) that noted the 
improvement in mechanical properties of composite reinforced with treated kenaf fibre. The increase in 
energy absorption properties of FMLs can be explained in terms of fibre-matrix interfacial bonding. 
Alkaline treatment performed on kenaf fibres removes lignin hemicelluloses and impurities from the fibre 
surfaces. This increases the surface area of kenaf fibre and provides better interlocking between the 
polymer and fibre. Thus, FMLs with treated fibres has stronger fibre-matrix interfacial bonding compared 
to FMLs with untreated fibres. However, for FML with 9cm kenaf fibre at 70 wt% loading, the ones with 
treated kenaf fibre showed a decline of 10.79% in maximum energy absorbed in comparison to FMLs 
with untreated fibre.  
 
In terms of fibre loading, it is observed in Figure 10 that the overall energy absorbing properties of FMLs 
increases as the fibre weight percentage increases for both treated and untreated kenaf fibre. For instance, 
the maximum energy absorbed by FMLs with treated 3cm kenaf fibre recorded an increment of 16.1% 
when the fibre loading was increased from 50 to 60 wt%. The energy absorption rose by 15.5% when the 
fibre loading was further increased to 70 wt%. As the fibre content in FMLs increases, more energy was 
required to weaken the fibre-matrix interfacial bonding. However, for certain combination, the value of 
maximum energy absorbed reduces when the fibre content was increased beyond 60 wt%. The maximum 
energy absorbed by FML T-70(9) was 11.5% lower than FML T-60(9).The increased fibre content results 
in agglomeration of fibres which disrupts the distribution of stress along the fibres (Tay et al., 2012). In 
general, FML T-60(9) recorded the highest energy absorption at 30.82 J, indicating that this configuration 
provides a better penetration resistance compared to other configurations tested. 
 
 
4. DAMAGE MECHANISM 

 
Post-test examination of the selected specimens was performed in the rear and indented surface to analyse 
the failure mechanisms during the quasi-static indentation tests for various fibre loading. The photographs 
of specimens are presented in Figure 11. In general, all three specimens showed similar failure 
mechanism where the initial failure started from a dent on the indented surface. It was then followed by a 
small crack on the aluminium sheet placed on the rear surface. The size of the indentation increased along 
with the crack length on the rear surface as the load increases. This causes the formation of a second crack 
that propagated in a perpendicular direction to the initial crack. 
 
Cracks at the rear surface of the specimens were also observed to be longer in comparison to cracks on 
the indented surface which indicated that the rear surface exhibited more deformation compared to the 
indented surface as the indenter moves through the composite thickness of the FMLs. It is also visible in 
Figure 11, the presence of petaling failure on the rear surface of the all three specimens examined. The 
petaling failure is caused by of crack propagating away from the centre point which was subjected to the 
pressure of penetrating indenter during indentation. However, a circular crack that replicates the shape of 
the indenter which is a result of aluminium sheets and kenaf fibre being pushed through the rear surface 
as the load increases is visible in Figure 11(c).  



 

 

Figurre 11: Photoggraphs of inde
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4. CONCLUSION 
 

The effect of fibre length, loading and treatment of kenaf bast fibre reinforced metal laminates on the 
energy absorption under quasi-static indentation loading and the damage mechanisms were investigated. 
Based on the results, the following conclusions were drawn. FMLs reinforced with treated kenaf fibre 
recorded an average of 19% increments in energy absorption and 4% increments in maximum load 
compared to FML reinforced with untreated kenaf fibre. This study has found that FMLs with a fibre 
length of 9 cm showed better energy absorbing properties compared to FMLs with a fibre length of 6cm 
and 3 cm regardless of fibre treatment and loading. FML reinforced with 50 wt% untreated 9cm kenaf 
fibre absorbed 30.59 J of energy which is 19.4  and 23.5% higher than  FML reinforced with untreated 6 
and 3cm kenaf fibre respectively at similar loading. Likewise, FML reinforced with 60% treated 9cm 
kenaf fibre recorded an increment of 7.16 and 31.6% in energy absorption compared to the ones with 
treated 6 and 3cm fibre respectively at similar fibre loading. The second major finding was that the energy 
absorption properties of FMLs increases as the fibre weight percentage increases from 50 to 70% 
regardless of fibre length and treatment. The energy absorbed by FML reinforced with 60 wt% treated 3 
cm kenaf fibre was 16.1% higher than FML reinforced with 50 wt% treated 3 cm kenaf fibre. Similarly, 
there was an increment of 15.5% in energy absorption when the treated fibre loading is further increased 
to 70 wt% at similar fibre length.   
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