
Towards Incorporation of Software Security Testing
Framework in Software Development

Nor Hafeizah Hassan, Siti Rahayu Selamat, Shahrin Sahib and Burairah Hussin

Faculty of Information and Communication Technology,
Universiti Teknikal Malaysia Melaka,

Durian Tunggal, Melaka,
Malaysia

{nor_hafeizah,sitirahayu,shahrinsahib,burairah}@utem.edu.my

Abstract. The aim of this paper is to provide secure software using security
testing approach. The researchers have reviewed and analyzed the software
testing frameworks and software security testing frameworks to efficiently
incorporate both of them. Later, the researchers proposed to fully utilize the
acceptance testing in software testing framework to achieve by incorporating it
in software security testing framework. This incorporation is able to improve
the security attribute needed during requirement stage of software development
process. The advantage of acceptance test is to expose the system of the real
situation, including vulnerability, risk, impacts and the intruders which provide
a various set of security attribute to the requirement stage. This finding is
recommended to establish a baseline in formulating the test pattern to achieve
effective test priority.

Keywords: test pattern; software testing frameworks; security testing
framework; security requirement; software process.

1 Introduction

In software industry, the testing process plays a crucial role, as people try to find
defects of software [1]. The defects reflect the quality status of software on whether it
should be ready to release. According to Standish’s CHAOS Summary 2009, only
32% software was released successfully and others were neglected for many reasons
[2]. Among the reasons for the negligence is the existence of defects in the software
and thus, it is unfit to be deployed.

However, in the last few years, the industry is swamped with the term security
testing which is claimed to find vulnerabilities in software [3]. The vulnerabilities are
affirmed as any flaw that may be exploited by a threat. A research by US-Computer
Emergency Readiness Team (CERT) shows total of 6000 vulnerabilities was
cataloged in the first three quarters of 2008 [2].

Therefore, to control the situation, many researchers develop their own models or
frameworks to reduce the numbers of bugs and vulnerabilities as in [4] and [5]. This
paper analyzed two perspectives of testing (software testing and software security
testing) to analyze and propose the possible incorporation between the two in
software development process or also known as software development life cycle.

1

The rest of the paper is organizes as follows: section 2 present related work of
testing and security testing. Section 3 discusses the analysis approach used to evaluate
the software testing and software security testing frameworks and the last two
sections present discussion and future work.

2 Related Work

Testing is a task in software development process. However, there are various
software development process style such as waterfall, V-shape, Rational Unified
Process (RUP), agile, and secure software development process as discussed in [6],
[7] and [8]. Therefore, the way testing is conducted within each style may vary. A
comparison analysis of software development process style is conducted to determine
the testing roles.

2.1 An Overview of Software Development Process

Software development process is a life cycle of developing software. A traditional
lifecycle consist of processes, namely as: requirement, analysis, design, coding,
testing and operation [6]. A modified lifecycle consist of business modeling process
(as in RUP), timeline and iteration (as in V-shape, spiral, RUP and agile). In this
paper, the process is also referred as stage to emphasis the element of sequence. A
fundamental stage of software development process was grouped based on similar
activities on both traditional and modified lifecycle as represented in Table 1.

Table 1. Summary of software development model.
(√ = the respective stage exist is the software development style, Not stated = the respective
stage is not described or not exist in the software development style)

Stage SOFTWARE DEVELOPMENT

Waterfall Spiral V‐shape RUP Agile Secure
software
development

Feasibility Not
 stated

√ Not
stated

√ Not
stated

Not
stated

Requirement √ √ √ √ √ √

Analysis √ √ √ √ √ √

Design √ √ √ √ √ √

Coding √ √ √ √ √ √

Testing √ √ √ √ √ √

Operation √ √ √ √ √ √

As shown in Table 1, the Waterfall, V-shape, Agile and Secure Software

Development consists of six stages starting from the requirement stage. On the
contrary, the Spiral and RUP consist of seven stages including the feasibility stage.

2

Each of the stage has unique roles with their own set of activities. Feasibility is a
stage of understanding the business concept; determine the objectives, alternatives
and constraints; and estimate monetary resources. Requirement is a stage of elicit the
stakeholders requirements within the project scope for what the system must do.
Analysis is a stage of breaking down the requirement into workable process. Design is
a stage of transforming the analysis into its architectural view, which may include
high level design and low level design. Coding is a stage of writing the programming
code into modules, test the individual developed modules (unit test), and integrate
with other author modules as a functional system. Testing is a stage of checking the
code implementation which covers various levels such as unit test, integration test and
acceptance test with the objective to find defects, fixed it, and later verify it with the
requirement. Operation is a stage of deploying the user accepted system into real
environment, provide training, get it exploited, receive feedback and perform
maintenance. The activities in software development stages are summarized as in Fig.
1.

Fig. 1. Activities in software development stages. Testing is a stage of checking the code
implementation which covers various levels such as unit test, integration test and acceptance
test with the objective to find defects, fixed it, and later verify it with the requirement.

Thus, given a typical or a secure software development process model, the testing
is a stage between coding and operation as shown in Fig. 1, and any dissatisfaction of

3

testing stage require an assessment either at coding stage, design stage or requirement
stage. To further understand the testing stage, an overview of software testing
component is discussed in the next section.

2.2 An overview of Software Testing

Software testing (ST) is a process of executing a program to find the defects. Testing
involves searching for runtime failures and recording information about runtime faults
[9].

There are two basic components in ST. First is the test strategy which explains the
way a test is conducted; involve the reveal of the code. If the code is reveal, it is
white-box testing, else, it is black-box testing. If the code is used to design a test for
black-box testing, it is called grey-box testing. Second is the test level which address
the entire software development life cycle and each test level is a foundation of the
higher level. The three levels are unit testing, integration testing and acceptance
testing. Each level is viewed by programmers, designers, and business users
respectively [10]. Both, the test levels and test strategy are summarized as shown in
Fig. 2.

Fig. 2. The basic components in software testing: a) test strategy consist of black-box, white-
box and grey-box, b) test level consist of unit test, integration or system test and c) acceptance
test.

The test strategy assists in accomplishing the test levels objectives. A unit test use

white-box testing strategy, integration test use grey-box testing strategy, and both
integration and acceptance test use black-box testing strategy [4]. The test strategy
and test levels chosen are guided by the test objectives, i.e. to answer why testers do
the test. Test objectives are the factors that classify a test into a specific test type as
described in [10] and [11]. The test level is viewed either by (involved) programmer,
designer or business developers. In short, basic testing components are test level, test
strategy and users.

4

In order to show the importance of the testing stage, we highlight the expectation
of test: a) to find defect, b) fixed it and c) verify with requirement. Therefore, a
comparison of actual test result and expected test result must be conducted. Any
discrepancy of the two shall trigger the tester to trace the origin of error or fault.

The issue was pointed out as early as in 1970, when [6] proposed the manageable
waterfall software development by introducing skip-over the code and analysis stages
to design stage if the testing stage fail to satisfy the external constraints. In 1986, [12]
imposed the risk, prototype, review and evolutionary elements in spiral software
development. In their model, testing is a notion in more composite manner; known as
the test level. The test level describes the incremental of test consists of unit test,
integration test, and acceptance test. However, there is no clear guideline of where to
point back in case the testing result is not satisfied. It give the impression that coding
and design, which are the nearest adjacent stages to unit testing, are good candidates
for the purpose.

The same notion of test level is followed in V-shape model with illustration that
each test level shall correspond to the development process stages respectively [13].
RUP, the IBM popular software development, denote testing as the verification
process of all objects, integration and application requirements. Therefore, any
dissatisfaction in testing caused a revisit to the code and requirements as concluded in
[10] and [13]. In the iterative, incremental and user-centered agile software
development, automated acceptance testing is emphasized to keep the prototype
evolve in the next iteration [8]. The relatively new secure software development,
proposed a secure development process within four stages, namely as: requirement,
design, code and feedback [11]. The design stage consists of analysis and design,
where as the feedback stage is the deployment stage. Major test is done in code stage
such as risk-based security test and pent-test. Another secure software development
by Microsoft, combined both spiral and waterfall approach, outlined an extended
stage of testing named as verification stage prior to release and response stage [14].
Again, it is not clearly mentioned here, at which stage shall the developers return to in
the event of test discrepancy occurs. Based on the stage sequence and the artifacts
produced, the assumption is to check the code, design or requirement stage.

Currently, the aim of ST is to find errors or to verify test result with requirements
[15]. However, the complexity of software had emerged and invites unintended users
to penetrate the system. Hence, testing for boundary values only is insufficient to
guarantee system functionality and minimize potential vulnerabilities. As a result,
security testing is required to overcome this current issue.

2.3 Software Security Testing

The current practice of software security testing (SST) is to detect any defects that
contribute to the flaws exhibit in an application and always considered as an
afterthought concerns [11]. SST is concerns with two objectives: first, the test is
executes to find what should not happened within a system and second, is to disclose
any attack from intruders. The attack can breach the security by exploiting the
vulnerabilities (weakness) exist in the application. Therefore, the software security

5

testing scope requires a tester to be equipped not only with testing expertise but also
with software security knowledge [11].

The distinction between ST and SST come in twofold. Firstly is on the second
objective of the SST, i.e. the existence of intruder or attacker element as discovered
by [1] and [16]. Secondly is on the existing research of ST which focuses on how to
combine the testing components to produce an effective testing result, where as SST
focus on how to eliminate the afterthought concern by incorporate the security aspect
into the whole software development from the beginning stage. It is debatable that ST
utilizes all the test components effectively and how SST could utilizes ST
components to achieve its objectives [16]. To the best of our knowledge, the position
of this SST within the current view on software testing diagram or vice versa is yet to
be determined. Thus, an analysis on software security testing frameworks needs to be
conducted in order to establish a comprehensive understanding of the SST within the
software development.

3 Analysis Approach

In order to obtain the perspective, an analysis of software testing and software
security testing frameworks is conducted

3.1 Software Testing Framework

Software Testing Framework (henceforth, STF) is an approach used to perform
testing as effective as it can [5]and [10],. As the testing phase of a software life cycle
is extremely cost intensive (40% of the whole budget) many researchers look into it
with various perspectives. A framework could consist of an approach, a technique or a
model. Generally, a testing framework execute using five steps: a) identify the test
objective, b) generate testing input using application’s specification, c) produce
expected output results, d) execute and validate the test cases, and e) amend the
application following with regression test [17] and [18]. The objectives of the test
shall consider the type of application (software) under test. For example, during a test
in web application software, the number of distributed users is enormous, an aspect
that need to be concerned.

In [4], they introduced meta programming in testing framework in order to reduce
the test preparation load by overcome the three challenges in testing i.e. poorly design
test cases, manual works and discrepant tools. They implemented the framework in
unit test and system test level. The tool was developed using Java. Meanwhile, [18]
and [19], proposed a multi-agent system architecture for automated testing framework
in distributed environment to deal with different type of users. The framework in [19]
focused on four properties during integration testing level, namely: interoperability,
compatibility, function, and performance. [20] proposed a new algorithm to verify
completeness and consistency property in web services . In an extended work of unit
testing framework, Diffut, run on Java to test the difference between two same inputs
using Rostra and Symtra [21]. A slight different domain, in electronic health records

6

environment, introduce the Archetype Definition Language (ADL) in their testing
framework [22]. Next, in [23], an improve framework of regression test is
demonstrated in database application. The framework used DOT-select as it test tool
which is part of a larger Data-Oriented-Testing framework that is under development
at the University of Manchester. In another work, [24] explained the testing
framework for model transformation, that is to test the changes in graphical model.
The framework used an extended declarative language, Embedded Constraint
Language (ECL) for describing rules (applied in UML). [25] introduced a web
services test framework by mapping the Web Service Definition Language (WSDL)
to Testing and Test Control Notation Version 3 (TTCN-3) using a third party test tool,
TTworkbench. TTworkbench is the full-featured integrated test development and
execution environment (IDE) test automation.

The frameworks are selected based on as view by (involve) developer, such as unit
test or integration test or regression test. In order to review the framework, the
common fundamental aspects in software development are extracted. This research
discloses that the aspects used to determine the perspective in software testing
framework are programming language, tools, domain, standard, test level and test
strategy as summarized in Table 2.

Table 2. Common aspect extracted from software testing framework.
 (Not stated = the common aspect is not found in the reviewed framework)

Author Common Aspect

Language Tools Domain Standard Test
level

Test
strategy

[4] Java JUnit, CUnit,
CPPUnit

Distributed Not
stated

Unit test White‐box

[18] Object‐
oriented

Not stated Web‐based
application

Not stated Unit test
Integration

test
System test

White‐box,
Grey‐box

[19] Java JADE Distributed Unified
interface
standard

Integration
test

White‐
box,

Grey‐box
[20] OWL‐S

Not stated Web‐based

application
SOAP Unit test,

Integration
test

White‐
box,

Black‐box
[21] Java Rostra, Symtra Not stated Not stated Unit test White‐box

[22] Archetype
Definition
Language

Not stated Distributed
Electronic

Health Record

Not stated Unit test Black‐box

[23] XML JDBC
(DOT‐select)

Database Not stated Regression
test

Black‐box

[24] Embedded
Constraint
Language

Generic
Modeling

Environment

Model
transformation

Not stated Unit test,
Integration

test

White‐box,
Grey‐box

[25] WSDL TTWorkbench Distributed,
Web‐based
application

TTCN‐3,
ETSI, ITU,
SOAP

Unit test Black‐box

 JADE=Java Agent DEvelopment Framework, OWL-S=Ontology Web Language for Service, WDSL=Web Service
Definition Language, TTCN-3=Testing and Test Control Notation Version 3, ETSI=European Telecommunications
Standards Institute, ITU=International Telecommunication Union , SOAP=Simple Object Access Protocol

Based on Table 2, the programming language aspect explains any specific

language used in the framework, either as object-oriented or specific name such as

7

Java, eXtended Markup Language (XML), ADL, ECL or WSDL. The tools aspect is
any assistant used to demonstrate the author’s chosen algorithm or techniques. The
domain aspect focuses the platform of the software development such as in general
(distributed or web-based environment) or specific (model transform, database or
others). The standard aspect composed of any policy adhere and enforced by the
author, such as access protocol in Simple Object Access Protocol (SOAP) TTCN-3or
unified interface standard for open source. For example, most of web-based or
distributed testing frameworks follow the standard used specifically in
communication. Regression test, a re-test after fixing a bug is noted significantly in
database application to maintain the database state whenever changes occurred. The
grey-box test is relevant in two scenarios, firstly is when the code was not directly
revealed such as in agent-based testing framework [18], [19] and model testing
framework [24], but rather is invoked by other metadata. Interestingly, the
methodology used such as waterfall or agile is not a major concern in these reviewed
STF.

The findings of the analysis is then summarized and mapped into the software
development stages as illustrated in Fig.3. Fig. 3 shows that test strategy is used to
support the unit test and integration test. It is noted that the test components
summarized in the testing framework (domain, language, tools and standards) limits
the test level conducted by only developer and designer (based on unit test,
integration test or regression test). These internal testers are claimed to assess the
design stage to compare the test result [10]. Consequently, this situation allowed the
review process to go as further as to design stage only.

Business user which is claimed to prefer review the requirement stage (as have
minimum knowledge in software design or programming language) in finding out the
discrepancy of test [13], is not yet engaged. The lack of business user involvement in
the reviewed frameworks had limit utilization of test level to system test. Another test
level, the acceptance test, only could be utilized in the existence of business users.
The diamond shapes in Fig.3 denote the defect-by-developer is defect found as test
conducted by developer and defect-by-designer is defect found as test conducted by
designer.

Hence, the aspects discussed in this software testing framework are addition to
existing testing components discussed in Section 2.2. Therefore, apart from test
strategy and test level, a testing framework also depends on language and domain
aspects assist by tools and benchmark by standards.

Based on the findings, this research proposed the issues tackled in the STF
framework are simplified into five objectives : a) to achieve the objective of test
(checking for completeness, consistency, interoperability as in [20], [22] and [24], b)
to optimize the test as in database state [23], c) to reduce the test load as in [4] and
[21], and d) to adhere the required test guideline (standard) as in [19], [20] and [25].
In order to add the essential security issue, an analysis of software security testing
framework is discussed in the next section.

8

Fig. 3. The mapping of software development stages. The test components summarized in the
testing framework (domain, language, tools and standards) limits the test level conducted by only
developer and designer (based on unit test and integration test).

3.2 Software Security Testing Framework

Security testing framework (SSTF) is an approach used to test the security aspects of
a product [16]. Always, this framework is considered as an afterthought concerns, i.e.
the process only begin once the product is ready.

A comparison of security framework had been made by [26]. They compared
eleven frameworks from year range 1996 to 2004. They highlighted the needs for a
standardized methodological approach that taking into account security aspects from
the earliest stages of development till the completion. Another work was conducted
by [27] to summarize the security dimensions, such as cause, impact, and location,
encountered in security frameworks. However, there is still lack of research done of
how to integrate testing operation in software development process [28].

9

For the purpose of this paper, we examined eight SSTF frameworks to disclose the
attributes involved. The frameworks are selected based on the security aspects
integrate or enforced within. The selected SSTF are Knowledge Acquisition Automatic
Specification (KAOS), Model Driven Security (MDS), i*, Secure Tropos, Security
Quality Requirements Engineering (SQUARE) methodology, Security Requirement
Engineering Process (SREP), Security Requirement Engineering (SRE) and Threat
Modeling. KAOS started from cooperation between the University of Oregon and the
University of Louvain (Belgium) in 1990. KAOS is a goal-oriented software
requirements capturing approach in requirements engineering which has been
extended to capture security threat using it anti-goals [29]. MDS is a framework that
automatically constructing secure, complex, distributed, applications with the UML
integration [30]. The i* framework was developed for modeling and reasoning about
organizational environments and their information systems which later embed the
trust model [31]. Secure Tropos is an extended approach from Tropos. It explains a
formal framework to model and analyze security requirements that focus on
ownership, trust and delegation [32]. SQUARE, is a nine-step approach to elicit,
categorize and priority security requirement [33]. SREP which is similar to SQUARE
imposed the standards and policy enforcement (Common Criteria) within the
framework [34]. SRE is a framework to determine how adequate is a security
requirements [35]. There are particular frameworks that had been adapted into tools
such as Threat Modeling by Microsoft. The findings revealed that those frameworks
start their security consideration as early as requirement stage as depicted in Table 3.

Table 3. The stages focused in software secrurity testing framework.
 (√ = the software development stage that the model focus on, Not stated = the model is not clearly stated
focus in this stage)

Software security testing
framework

Stage

Requirement Design

KAOS (Security Extension
MDS (Model Driven Security) Not stated
i* framework Not stated
ST (Secure Tropos) Not stated
SQUARE
SREP
SRE
TM (Threat Modeling)

As shown in Table 3, we scope our analysis into both requirement and design

stages for two reasons. First, according on a number of research [11], to have an
efficient cost, testing should start as early as possible in product development.
Second, to produce a general framework and suitable in any domain, an early stage is
prominence. Table 3 illustrates that in SSFT, security is a concern as early as during
the requirement stage. However, the requirement elicitation activities need a guideline
to present the software security vulnerabilities effectively. Software security
vulnerabilities are caused by defective specification, design, and implementation.
Unfortunately, common development practices leave software with much
vulnerability. In order to have a secure cyber infrastructure, the supporting software

10

must contain few, if any, vulnerabilities. This requires that software be built to sound
security requirements. Therefore, we propose the utilization of ST activities into
SSTF to provide the attributes needed in constructing security requirements. The
details are discussed in the next section.

4. Discussion and Findings

This research shows that current analysis focuses three factors. First, the affected
stage - the STF concerns with on internal users and has tendency to review the test
discrepancy at coding or design stage via unit or integration test. On the other hand,
the SSTF required knowledge of security attribute to elicit its requirement as early as
at requirement stage. Second, the collection of security attribute - the knowledge of
security attribute is acquired based on SSTF objectives; to find what should not
happen in a system and to reveal any attack from intruders. These attributes sources
are best collected during the test level activities (unit test, integration test and
acceptance test). However, the reviewed STF limits the test conducted during unit and
integration or system test only. Consequently, the actual result does not reflect the
whole test levels carried out within a system. Third, the issues of complex system -
the issue of emerged complex system suggest that a system to be secure. On the other
hand, the current STF cover at least five objectives except for security (see section
3.1). Hence, there is a need for software security testing within the software
development stage. As a result, in this paper, we recommend to utilize the acceptance
test within the software development stage by integrating it with relevance unit and
integration test result. This integration shall provide a comprehensive test result to
support the testing process as early as from the requirement stage.

4.1 The Proposed Framework

Based on the findings, the three factors discussed previously are incorporate into the
software development stages to formulate a generic SSTF as illustrated in Fig. 4. Fig.
4 describes a testing process is guided by a test objectives, which denoted by
attributes such as completeness, interoperability and compatibility. During the testing,
all type of test strategy (black box and white box or both) is conducted depending on
domain and language used in code. The testing process is executing manually or
automatable assisted by tools. The actual output is compared with the expected output
derived from design specification [10]. Any comparison discrepancy is returned
during the feedback stage as review process. It is noted that the derived expected
output is bound to the design process; hence, any inappropriateness shall lead to an
inappropriate comparison at the feedback stage. Referred in Fig.2, ST activities
involve programmer, designer and business user. Any test levels that involve the
authors as the tester, the comparison is done alike – tracing the expected output from
design stage. The acceptance test which involves business user and actual
environment reviewed its test discrepancy between requirement stage and testing
stage.

11

Fig. 4: Software Security Testing Framework. Any comparison discrepancy is returned during
the feedback stage as review process. It is noted that the derived expected output is bound to the
design process; hence, any inappropriateness shall lead to an inappropriate comparison at the
feedback stage.

This research proposes the incorporation of the software security testing

framework in software development by utilizing the software testing activities. The
analysis proves that the software testing activities which focus on internal user
(developer and designer) as tester has specific limit to overcome the test result
discrepancy. Furthermore, the actual environment contributes to the existence of
possible intruders which is important in security testing. As a result, the acceptance
test which utilizes the business user and the actual environment is recommended to
assist the test result discrepancy assessment. In other words, to preserve the test result

12

consistency and completeness, the test result is best compared with the requirement
stage.

In addition, the proposed framework consists of all stages in software development
that are, feasibility, requirement, analysis, design, coding, testing and operation as
summarized in Table 2. Therefore, the proposed framework can be used as a generic
framework for security testing in any software development life cycle.

5. Conclusion and future work

In this paper, the software testing frameworks and software security testing
frameworks are reviewed and analyzed. Based on the findings, this research proposed
to fully utilize the acceptance testing in STF by incorporating it in SSTF. This
incorporation is able to improve the security attribute needed during requirement
stage of secure software development process. The acceptance test which exposed the
system to real situation, including vulnerability, risk, impacts and the intruders shall
provide a various set of security attribute to the requirement stage. Further
improvement should be done in identifying the security attributes during acceptance
test to generate a test pattern. This test pattern will further assist as a possible source
in eliciting the security requirement during the requirement stage of software
development. In addition, the proposed framework is expected to assist in tracing the
web security attacks via a specific case study to generate a relevance testing pattern.
The traceability process can be adapted in any other domain, such as in digital
forensic investigation during collection of previous incidents data.

Acknowledgments. This research was kindly supported by Universiti Teknikal
Malaysia Melaka under Short Grant Funding (PJP / 2009 / FTMK / (7E) S556) and
Ministry of Higher Education Malaysia.

References

1. Thompson, H.H.: Why Security Testing Is Hard. J. Security & Privacy, IEEE. 1(4), 83--86
(2003)

2. Venter, H.S., Eloff, J.H.P, Li, Y.L.: Standardising Vulnerability Categories. J. Computers
& Security, vol. 27(3-4), 71--83 (2008)

3. Jiwnani, K., Zelkowitz, M.: Maintaining Software With A Security Perspective. In:
International Conference on Software Maintenance, pp.194--203 (2002)

4. Cho, H.: Using Metaprogramming to Implement a Testing Framework. In: ACM
SouthEast Regional Conference. ACM, USA (2009)

5. Misra, S.: An Empirical Framework For Choosing An Effective Testing Technique For
Software Test Process Management. J. Information Technology Management, vol. 16(4),
19--26 (2005)

6. Royce, W.W.: Managing The Development of Large Software Systems. In: IEEE Western
Electronic Show and Convention, pp.1--9 (1970)

13

7. Rational Unified Process: Best Practices for Software Development Teams. Rational
Software White Paper (2001)

8. Boehm, B., Brown, W., Turner, R.: Spiral Development Of Software-Intensive Systems
Of Systems. In: 27th International Conference of Software Engineering, (2005)

9. Ko, A.J., Myers, B.A.: A Framework And Methodology For Studying The Causes Of
Software Errors In Programming Systems. J. Visual Languages & Computing, vol.16(1-2),
41--84 (2005)

10. K.Mustafa, Khan, R.A.: Software Testing: Concepts and Practices. Alpha Science (2007)
11. Potter, B., McGraw, G.: Software Security Testing. J. Security & Privacy, vol.2(5),81--85,

IEEE (2004)
12. Boehm, B.: A Spiral Model of Software Development and Enhancement. In: ACM

SIGSOFT Software Engineering Notes, vol. 11(4), pp. 14--24, ACM New York (1986)
13. Craig, R.D., Jaskiel, S.P.: Systematic Software Testing. Artech House Publishers (2002)
14. Microsoft Security Development Lifecycle (SDL) Version 5.0, M. Library, Microsoft,

http://msdn.microsoft.com/en-us/library/cc307748.aspx
15. Myers, G.J.: The Art Of Software Testing, New York: Wiley (1979)
16. Tondel, I.A., Jaatun, M.G., Jensen, J.: Learning from Software Security Testing. In: 8th

IEEE International Conference on Software Testing Verification and Validation
Workshop, pp. 286--294, IEEE Computer Society, Washington (2008)

17. Pu-Lin, Y., Jin-Cherng, L.: Toward Precise Measurements Using Software Normalization.
In: Proceedings Of The 21st International Conference On Software Engineering,
pp.736--737, ACM, Los Angeles, California, United States (1999)

18. Xu, L., Xu, B.: A Framework for Web Application Testing. In: International Conference
on Cyberworlds, pp. 300--305, IEEE Computer Society, Washington (2004)

19. Jing, G., Yuqing, L.: Agent-based Distributed Automated Testing Executing Framework.
In: International Conference on Computational Intelligence and Software Engineering, pp.
1--5, IEEE Press, Wuhan (2009)

20. Tsai, W.T., Wei, X., Chen, Y., Paul, R.: A Robust Testing Framework for Verifying Web
Services by Completeness and Consistency Analysis. In: Proceedings of the IEEE
International Workshop, pp. 159--166, IEEE Computer Society, Washington (2005)

21. Xie, T., Taneja, K., Kale, S., Marinov, D.: Towards a Framework for Differential Unit
Testing of Object-Oriented Programs. In: 2nd International Workshop on Automation of
Software Test. IEEE Computer Society, Minneapolis, USA (2007)

22. Chen, R., Garde, S., Beale, T., Nystrom, M., Karlsson, D., Klein, G.O, Ahlfedlt, H.: An
Archetype-based Testing Framework. In: J. Studies in Health Technology and Informatic,
vol. 136, 401-- 406 (2008)

23. Tang, J. , Lo E.: A Lightweight Framework For Testing Database Applications. In:
Symposium on Applied Computing, ACM, New Zealand (2010)

24. Lin, Y., Zhang J., Gray J.: A Testing Framework for Model Transformations. In: Model-
Driven Software Development - Research and Practice in Software Engineering, pp. 219--
236, Springer, Heidelberg (2005)

25. Werner, E., Grabowski, J., Troschutz, S., Zeiss, B.: A TTCN-3-based Web Service Test
Framework. In: Software Engineering Workshops, pp. 375--382 (2008)

26. Villarroel, R., Fernández-Medina, E., Piattini, M.: Secure Information Systems
Development - A Survey And Comparison. J. Computers & Security, vol. 24(4), 308--321
(2005)

27. Igure, V.M. , Williams, R. D.: Taxonomies of Attacks and Vulnerabilities in Computer
Systems. In: J. IEEE Communication Surveys & Tutorials, vol. 10(1), 6--19 (2008)

28. Maatta, J., Harkonen, J., Jokinen, T., Mottonen, M., Belt, P., Muhos, M., Haapasalo, H.:
Managing Testing Activities In Telecommunications: A Case Study. J. Eng. Technol.
Manage., vol. 26, 73--96, Elsevier Science Publisher, Amsterdam (2009)

14

15

29. Lamsweerde, A.v., Brohez, S., Landtsheer, R.D., Janssens, D.: From System Goals to
Intruder Anti-Goals: Attack Generation and Resolution for Security Requirements
Engineering. In: Requirements for High Assurance Systems, pp. 49--56 (2003)

30. Basin, D., Doser, J., Lodderstedt, T.: Model Driven Security: From UML Models To
Access Control Infrastructures. In: ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 15(1), pp. 39--91 (2006)

31. Yu, E., Liu, L.: Modelling Trust In The i* Strategic Actors Framework. In: Proceedings of
the 3rd Workshop on Deception, Fraud and Trust in Agent Societies, LNCS, pp. 175--194,
Springer-Verlag London, UK (2001)

32. Giorgini, P., Massacci, F., Mylopoulus, J., Zannone, N. : Modeling Security Requirements
Through Ownership, Permission And Delegation. In: 13th IEEE International Conference
on Requirements Engineering Proceedings, pp. 167--176, IEEE Computer Society, USA
(2005)

33. Mead, N.R., Stehney, T.: Security Quality Requirements Engineering (SQUARE)
Methodology. In: Proceedings of the 2005 Workshop On Software Engineering For
Secure Systems- Building Trustworthy Applications, pp.1--7, ACM, New York (2005)

34. Mellado, D., Fernández-Medina, E., Piattini, M.: A Common Criteria Based Security
Requirements Engineering Process For The Development Of Secure Information Systems.
In: Computer Standards & Interfaces, vol.29(2), pp. 244--253 (2007)

35. Haley, C.B., R. Laney, and J.D. Moffett, Security Requirements Engineering: A
Framework for Representation and Analysis. IEEE Transactions On Software
Engineering, 34(1): pp. 133--155 (2008)

	2.2 An overview of Software Testing
	2.3 Software Security Testing
	3 Analysis Approach
	4.1 The Proposed Framework

