

Faculty of Manufacturing Engineering

PRODUCTIVITY IMPROVEMENT USING LEAN SIX SIGMA TECHNIQUES: A CASE STUDY AT SEMICONDUCTOR EQUIPMENT MANUFACTURER

Seow Liang Hau

Master of Manufacturing Engineering (Manufacturing System Engineering)

2016

C Universiti Teknikal Malaysia Melaka

PRODUCTIVITY IMPROVEMENT USING LEAN SIX SIGMA TECHNIQUES: A CASE STUDY AT SEMICONDUCTOR EQUIPMENT MANUFACTURER

SEOW LIANG HAU

A thesis submitted in fulfillment of the requirements for the degree of Master of Manufacturing Engineering (Manufacturing System Engineering)

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016

B	DRANG PENGE	ESAHAN STATUS LAPORAN PROJEK SARJANA
TAJUK: F Study at :	Productivity Imp Semiconductor	provement Using Lean Six Sigma techniques: A Case r Equipment Manufacturer
SESI PEN	GAJIAN: 2014/	15 Semester 2
Saya SE	OW LIANG HAI	U
mengaku Universiti berikut:	membenarkan L Teknikal Malays	aporan Projek Sarjana ini disimpan di Perpustakaan sia Melaka (UTeM) dengan syarat-syarat kegunaan seperti
 Perpus untuk t Perpus bahan **Sila t 	atakaan Universi ujuan pengajian atakaan dibenari pertukaran anta andakan (✓) SULIT	iti Teknikal Malaysia Melaka dibenarkan membuat salinan n sahaja dengan izin penulis. kan membuat salinan laporan Projek Sarjana ini sebagai ara institusi pengajian tinggi. (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktut
-	TERHAD	(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
		AD
	TIDAK TERH	AU
		Disahkan oleh:
Alamat Te		Disahkan oleh:
Alamat Te BB30, Tar	TIDAK TERH/	Disahkan oleh: A · Cop Rasmi: DR. ZUHRIAH BINTI EBRAHIM Senior Lecturer
Alamat Te BB30, Tar 75350, Me	TIDAK TERH/ tap: nan Melaka Bar elaka	Disahkan oleh: Disahkan oleh: A · Cop Rasmi: DR. ZUHRIAH BINTI EBRAHIM Senior Lecturer Faculty of Manufacturing Engineering Universiti Teknikal Malaysia Melaka Hang Tuah Jaya 76100 Durian Tunggal, Melaka

FAKULTI KEJURUTERAAN PEMBUATAN

Tel: +606 331 6019 | Faks: +606 331 6431/6411

Rujukan Kami (Our Ref) : Rujukan Tuan (Your Ref) :

22 Feb 2016

Pustakawan Perpustakaan UTeM Universiti Teknikal Malaysia Melaka Hang Tuah Jaya, 76100 Durian Tunggal, Melaka.

Tuan/Puan,

PENGKELASAN LAPORAN PROJEK SARJANA SEBAGAI SULIT/TERHAD LAPORAN PROJEK SARJANA KEJURUTERAAN PEMBUATAN (KEJURUTERAAN SISTEM PEMBUATAN): SEOW LIANG HAU

Sukacita dimaklumkan bahawa Laporan Projek Sarjana yang tersebut di atas bertajuk "Productivity Improvement Using Lean Six Sigma techniques: A Case Study at Semiconductor Equipment Manufacturer" mohon dikelaskan sebagai *SULIT / TERHAD untuk tempoh LIMA (5) tahun dari tarikh surat ini.

2. Hal ini adalah kerana hasil kajiannya adalah sulit.

Sekian dimaklumkan. Terima kasih.

Yang benar,

DR. ZUHRIAH BINTI EBRAHIM Senior Lecturer Faculty of Manufacturing Engineering Universiti Teknikal Malaysia Melaka Hong Tuali Jaya - Durian Tunggal, Maruka Tandatangan dan Cop Penyelia

* Potong yang tidak berkenaan

DECLARATION

I declare that this thesis entitled "Productivity improvement using lean six sigma techniques: a case study in semiconductor equipment manufacturer" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

		An
Signature	:	
Name	:	Seow Liong Hau
Date	:	1 March 2016

C Universiti Teknikal Malaysia Melaka

APPROVAL

I hereby declare that I have read this dissertation/report and in my opinion this dissertation/report is sufficient in terms of scope and quality as a partial fulfillment of Master of Manufacturing Engineering (Manufacturing System Engineering).

n.
Dr. 20HRIAH ERRAHIM.
u/06/16.

DEDICATION

I would like to dedicate my dissertation work to my family. A special feeling of gratitude to my loving parents whose words of encouragement and push for tenacity ring in my ears. My sister who have supported me throughout the process. I also dedicate this dissertation and give special thanks to Dr. Zuhriah Binti Ebrahim for her guidance throughout the entire master program.

ABSTRACT

Semiconductor equipment manufacturer operates in a high mix low volume environment where the products are produced according to customer specification. Company A in this project is a semiconductor equipment manufacturer that currently manufacture test handler MX in Malaysia. The current leadtime to assemble the MX test handler is 14 days. It is a challenge to meet customer requirements as the order received is more than the capacity. The purpose of this study is to improve the productivity by lead-time reduction. Lean Six Sigma approach is being deployed to achieve the objective. DMAIC framework of Six Sigma is used to analyze the critical non-value added and not necessary activities. In the meantime, qualitative data is collected. The assembly time per activity is collected with time study and categorized into three categories. Factors causing non-value added and not necessary activities such as NCR process, quantity check, reporting, damaged part etc are identified. Qualitative analysis is achieved through interview with assembly personnel and leaders to identify rootcauses for the factors. Proposal to improve or eliminate the nonvalue added and not necessary activities are derived based on lean approaches.

ABSTRAK

Pengeluar peralatan semikonduktor beroperasi dalam sektor pembuatan berskala rendah dengan variasi tinggi di mana produk yang dihasilkan adalah mengikut spesifikasi pelanggan. Syarikat A yang dibincangkan dalam projek ini adalah pengeluar peralatan semikonduktor yang mengeluarkan pengendali ujian MX di Malaysia. Masa pemasangan untuk pengendali ujian MX adalah 14 hari. Ia adalah satu cabaran untuk memenuhi keperluan pelanggan kerana pesanan yang diterima adalah lebih daripada kapasiti. Tujuan kajian ini adalah untuk meningkatkan produktiviti melalui pengurangan masa pemasangan. Pendekatan Lean Six Sigma digunakan untuk mencapai matlamat itu. Rangka kerja DMAIC dalam Six Sigma digunakan untuk menganalisis aktiviti yang tidak menambah nikai dan tidak diperlukan. Dalam pada itu, data kualitatif juga dikumpulkan. Masa pemasangan untuk setiap aktiviti dikumpul dengan kajian masa dan dikategorikan kepada tiga kategori. Faktor-faktor yang menyebabkan aktiviti tidak menambah nilai dan tidak diperlukan seperti proses NCR, penyemakan kuantiti, membuat laporan, kerosakan bahagian dan lain-lain lagi faktor dikenal pasti. Analisis kualitatif dicapai melalui temu bual dengan kakitangan pemasangan dan ketua bahagian pemasangan untuk mengenalpasti punca-punca bagi faktor-faktor di atas. Cadangan untuk memperbaiki atau menghapuskan aktivititidak menambah nilai dan tidak diperlukan dicadangkan berdasarkan pendekatan Lean.

ACKNOWLEDGEMENTS

First and foremost, I would like to take this opportunity to express my gratitude to all who helped me along the process of this master project. This project could not be done without all supports from the individuals. I would also like to acknowledge my supervisor, Dr Zuhriah Binti Ebrahim from Faculty of Manufacturing Engineering Universiti Teknikal Malaysia Melaka (UTeM) for her supervision, support and encouragement towards the completion of this thesis.

Special thanks to all my peers of the master program, my mother, father and siblings for their moral support in completing this project. Lastly, thank you to everyone who had been to the crucial parts of realization of this project.

	TABLE OF CONTENTS	
		PAGE
DE	CLARATION	
DE	DICATION	
AB	STRACT	1
AB	STRAK	ü
AC	KNOWLEDGEMENTS	ili
TA	BLE OF CONTENTS	iv
LIS	ST OF TABLES	vi
LIS	ST OF FIGURES	vii
LIS	ST OF APPENDICES	ix
СН	APTER	
1.	INTRODUCTION	1
	1.1 Background	î
	1.2 Problem statement	7
	1.3 Aims and Objectives	10
	1.4 Scope	10
	1.5 Project Contribution	11
	1.6 Thesis Outline	11
2.	LITERATURE REVIEW	12
	2.1 Productivity	12
	2.2 Leadtime	13
	2.3 Assembly process	14
	2.4 Techniques for Productivity Improvements	15
	2.5 Lean Manufacturing	17
	2.5.1 Value Stream Mapping (VSM)	18
	2.5.2 5S	20
	2.6 Six Sigma	20
	2.7 Lean Six Sigma	22
3.	METHODOLOGY	27
	3.1 Project Flow Chart	27
	3.2 Planning and Activities	28
	3.3 Data Collection and Sample Size	28
	3.3.1 Quantitative Data	29
	3.3.2 Qualitative Data	29
	3.4 Data Collection	30
	3.5 Data Analysis	35
	3.6 Improvement Plan	37

iv

4.	 To identify the non-value added and unnecessary activities at the assembly processes of MX 4.1.1 Data collection 4.1.1 Options and Configurable for the selected handlers for study 4.1.2 Data analysis 4.1.3 Results and discussion To analyze the root causes of the non-value added and unnecessary activities 4.2.1 Data collection 4.2.2 Data analysis 4.2.3 Results and discussion 4.2.3 Results and discussion 4.2.3.1 Root causes of Man factors 4.2.3.2 Root causes of Machine 4.2.3.3 Root causes of Material 4.2.3.5 Root causes of Environment To propose solutions for reducing lead-time by eliminate the critical non-value added and unnecessary activities using Lean Six Sigma approach 4.3.1 Propose Lean NCR Process 4.3.2 Pre-defined/Poka Yoke box for warehouse key out 4.3.3 Eliminate final reporting
4.	 at the assembly processes of MX 4.1.1 Data collection 4.1.1.1 Options and Configurable for the selected handlers for study 4.1.2 Data analysis 4.1.3 Results and discussion To analyze the root causes of the non-value added and unnecessary activities 4.2.1 Data collection 4.2.2 Data analysis 4.2.3 Results and discussion 4.2.3.1 Root causes of Man factors 4.2.3.2 Root causes of Machine 4.2.3.3 Root causes of Material 4.2.3.5 Root causes of Material 4.2.3.5 Root causes of Environment To propose solutions for reducing lead-time by eliminate the critical non-value added and unnecessary activities using Lean Six Sigma approach 4.3.1 Propose Lean NCR Process 4.3.2 Eliminate final reporting
4.	 4.1.1 Data collection 4.1.1.1 Options and Configurable for the selected handlers for study 4.1.2 Data analysis 4.1.3 Results and discussion To analyze the root causes of the non-value added and unnecessary activities 4.2.1 Data collection 4.2.2 Data analysis 4.2.3 Results and discussion 4.2.3.1 Root causes of Man factors 4.2.3.2 Root causes of Machine 4.2.3.3 Root causes of Material 4.2.3.5 Root causes of Material 4.2.3.5 Root causes of Environment To propose solutions for reducing lead-time by eliminate the critical non-value added and unnecessary activities using Lean Six Sigma approach 4.3.1 Propose Lean NCR Process 4.3.2 Pre-defined/Poka Yoke box for warehouse key out 4.3.3 Eliminate final reporting
4.	 4.1.1.1 Options and Configurable for the selected handlers for study 4.1.2 Data analysis 4.1.3 Results and discussion To analyze the root causes of the non-value added and unnecessary activities 4.2.1 Data collection 4.2.2 Data analysis 4.2.3 Results and discussion 4.2.3.1 Root causes of Man factors 4.2.3.2 Root causes of Machine 4.2.3.3 Root causes of Material 4.2.3.5 Root causes of Environment To propose solutions for reducing lead-time by eliminate the critical non-value added and unnecessary activities using Lean Six Sigma approach 4.3.1 Propose Lean NCR Process 4.3.3 Eliminate final reporting
4.	 4.1.2 Data analysis 4.1.3 Results and discussion To analyze the root causes of the non-value added and unnecessary activities 4.2.1 Data collection 4.2.2 Data analysis 4.2.3 Results and discussion 4.2.3.1 Root causes of Man factors 4.2.3.2 Root causes of Machine 4.2.3.3 Root causes of Material 4.2.3.5 Root causes of Environment To propose solutions for reducing lead-time by eliminate the critical non-value added and unnecessary activities using Lean Six Sigma approach 4.3.1 Propose Lean NCR Process 4.3.2 Pre-defined/Poka Yoke box for warehouse key out 4.3.3 Eliminate final reporting
4.	 4.1.3 Results and discussion To analyze the root causes of the non-value added and unnecessary activities 4.2.1 Data collection 4.2.2 Data analysis 4.2.3 Results and discussion 4.2.3.1 Root causes of Man factors 4.2.3.2 Root causes of Machine 4.2.3.3 Root causes of Method 4.2.3.4 Root causes of Material 4.2.3.5 Root causes of Environment To propose solutions for reducing lead-time by eliminate the critical non-value added and unnecessary activities using Lean Six Sigma approach 4.3.1 Propose Lean NCR Process 4.3.2 Pre-defined/Poka Yoke box for warehouse key out 4.3.3 Eliminate final reporting
4.	 To analyze the root causes of the non-value added and unnecessary activities 4.2.1 Data collection 4.2.2 Data analysis 4.2.3 Results and discussion 4.2.3.1 Root causes of Man factors 4.2.3.2 Root causes of Machine 4.2.3.3 Root causes of Method 4.2.3.4 Root causes of Material 4.2.3.5 Root causes of Environment To propose solutions for reducing lead-time by eliminate the critical non-value added and unnecessary activities using Lean Six Sigma approach 4.3.1 Propose Lean NCR Process 4.3.2 Pre-defined/Poka Yoke box for warehouse key out 4.3.3 Eliminate final reporting
4.	 4.2.1 Data collection 4.2.2 Data analysis 4.2.3 Results and discussion 4.2.3.1 Root causes of Man factors 4.2.3.2 Root causes of Machine 4.2.3.3 Root causes of Method 4.2.3.4 Root causes of Material 4.2.3.5 Root causes of Environment To propose solutions for reducing lead-time by eliminate the critical non-value added and unnecessary activities using Lean Six Sigma approach 4.3.1 Propose Lean NCR Process 4.3.2 Pre-defined/Poka Yoke box for warehouse key out 4.3.3 Eliminate final reporting
4.	 4.2.2 Data analysis 4.2.3 Results and discussion 4.2.3.1 Root causes of Man factors 4.2.3.2 Root causes of Machine 4.2.3.3 Root causes of Method 4.2.3.4 Root causes of Material 4.2.3.5 Root causes of Environment To propose solutions for reducing lead-time by eliminate the critical non-value added and unnecessary activities using Lean Six Sigma approach 4.3.1 Propose Lean NCR Process 4.3.2 Pre-defined/Poka Yoke box for warehouse key out 4.3.3 Eliminate final reporting
4.	 4.2.3 Results and discussion 4.2.3.1 Root causes of Man factors 4.2.3.2 Root causes of Machine 4.2.3.3 Root causes of Method 4.2.3.4 Root causes of Material 4.2.3.5 Root causes of Environment To propose solutions for reducing lead-time by eliminate the critical non-value added and unnecessary activities using Lean Six Sigma approach 4.3.1 Propose Lean NCR Process 4.3.2 Pre-defined/Poka Yoke box for warehouse key out 4.3.3 Eliminate final reporting
4.	 4.2.3.1 Root causes of Man factors 4.2.3.2 Root causes of Machine 4.2.3.3 Root causes of Method 4.2.3.4 Root causes of Material 4.2.3.5 Root causes of Environment To propose solutions for reducing lead-time by eliminate the critical non-value added and unnecessary activities using Lean Six Sigma approach 4.3.1 Propose Lean NCR Process 4.3.2 Pre-defined/Poka Yoke box for warehouse key out 4.3.3 Eliminate final reporting
4.	 4.2.3.2 Root causes of Machine 4.2.3.3 Root causes of Method 4.2.3.4 Root causes of Material 4.2.3.5 Root causes of Environment To propose solutions for reducing lead-time by eliminate the critical non-value added and unnecessary activities using Lean Six Sigma approach 4.3.1 Propose Lean NCR Process 4.3.2 Pre-defined/Poka Yoke box for warehouse key out 4.3.3 Eliminate final reporting
4.	 4.2.3.3 Root causes of Method 4.2.3.4 Root causes of Material 4.2.3.5 Root causes of Environment To propose solutions for reducing lead-time by eliminate the critical non-value added and unnecessary activities using Lean Six Sigma approach 4.3.1 Propose Lean NCR Process 4.3.2 Pre-defined/Poka Yoke box for warehouse key out 4.3.3 Eliminate final reporting
4.	 4.2.3.4 Root causes of Material 4.2.3.5 Root causes of Environment To propose solutions for reducing lead-time by eliminate the critical non-value added and unnecessary activities using Lean Six Sigma approach 4.3.1 Propose Lean NCR Process 4.3.2 Pre-defined/Poka Yoke box for warehouse key out 4.3.3 Eliminate final reporting
4.	 4.2.3.5 Root causes of Environment To propose solutions for reducing lead-time by eliminate the critical non-value added and unnecessary activities using Lean Six Sigma approach 4.3.1 Propose Lean NCR Process 4.3.2 Pre-defined/Poka Yoke box for warehouse key out 4.3.3 Eliminate final reporting
4.	 To propose solutions for reducing lead-time by eliminate the critical non-value added and unnecessary activities using Lean Six Sigma approach 4.3.1 Propose Lean NCR Process 4.3.2 Pre-defined/Poka Yoke box for warehouse key out 4.3.3 Eliminate final reporting
	4.3.1 Propose Lean NCR Process4.3.2 Pre-defined/Poka Yoke box for warehouse key out4.3.3 Eliminate final reporting
	4.3.2 Pre-defined/Poka Yoke box for warehouse key out4.3.3 Eliminate final reporting
	4.3.3 Eliminate final reporting
	4.3.4 Manufacturing process instructions
	4.3.5 Kanban for bulk material and add individual workstation bulk material
	4.3.6 Proper and automated tools - Electrical torque drivers
4.	Summary
5. C F	DNCLUSIONS AND RECOMMENDATIONS FOR
5.	Conclusions
5.	2 Recommendation for future project
REFE	ENCES
APPEN	DICES

LIST OF TABLES

TABLE	TITLE	PAGE
1.1	List of options in MX test handler and the processes where each options is installed	5
1.2	List of configurable in MX handler and the processes	
	where each options is installed	6
1.3	Current standard time MX handler in assembly activities	9
2.1	Benefits and blocking points for implementation of LSS	24
4.1	Options for the three selected projects	39
4.2	Configurables for the three selected projects	40
4.3	Factors for Category 3 activities and total time spent on three handlers	57
4.4	Example questions used in the interview	60

LIST OF FIGURES

FIG	URE TITLE	PAGE
1.1	Photo of a MX semiconductor test handler	2
1.2	Process flowchart of MX assembly process	4
1.3	Annual semiconductor revenue growth 1991 to 2013	8
1.4	Critical path for MX handler assembly process	9
2.1	Productivity cycle	13
2.2	Bolt-nut plate assembly	14
2.3	Productivity improvement strategies	16
2.4	Constraint management	16
2.5	Future state map	19
2.6	Objectives of Lean Six Sigma	23
2.7	Critical success factors of LSS implementation in Malaysian	
	automotive industry	25
3.1	Process flow of research and stages in Six Sigma DMAIC	27
3.2	Current manufacturing layout in Company A	31
3.3	Recording form for data collection	32
3.4	Stopwatch	34
3.5	Sample of Pareto Chart	36
3.6	Example of Ishikawa diagram	36
4.1	Summary of time spent on each category for all three projects	42
4.2	Percentage of time consumed for Category 3 for Project 0045	43
4.3	Percentage of time consumed for Category 3 for Project 0046	44
4.4	Percentage of time consumed for Category 3 for Project 0047	45

FIGURE

4.5	Pareto chart Category 3 activities and total time spent on three handlers	47
4.6	Ishikawa diagram for NCR process	49
4.7	Ishikawa diagram for Quantity check	50
4.8	Ishikawa diagram for Reporting	50
4.9	Ishikawa diagram for Damaged part	50
4.10	Ishikawa diagram for Bulk material depletion	58
4.11	Ishikawa diagram for Physical check	58
4.12	Ishikawa diagram for Non-conformance part	52
4.13	Ishikawa diagram for Broken part	52
4.14	Ishikawa diagram for Failed reliability	53
4.15	Web based NCR process reporting	58
4.16	Top View of Poka Yoke Box concept	60
4.18	Manufacturing process instructions	61
4.19	Two-bin system	63
4.20	Electric torque drivers	64

viii

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Time study analysis form	73
В	Time Study results form	74
с	Graphs of assembly time vs conditions	75
D	Project Gantt chart	78

ix

CHAPTER 1

INTRODUCTION

1.1 Background

In this project, manufacturing process of a test handler in a semiconductor equipment manufacturer is being studied. A test handler is a pick and place machine that test and sort semiconductor devices. A specific tester is hooked to the test handler according to different test requirement. Subject test handler in this project is named as MX handler. A MX test handler is capable of testing semiconductor devices at 16,000 UPH (Unit Per Hour).

Company A in this project is a semiconductor equipment manufacturer which is the global leader for test handling, thermal subsystems, package inspection, contactors and Micro Electro Mechanical Systems (MEMS) test solutions for semiconductor industry. It has development centers in the United States and Europe, and handler manufacturing in Malaysia and the Philippines. Two major tooling operations in the Philippines and China provide customers in Asia with short cycle-time design and manufacturing of handler kits. Initially, the plant is planned with capacity of one shift (office hours). Currently it operates two shifts per day, seven days per week in order to cater business ramping time. The issue will be detailed and explained in the problem statement. Company A has a total of 231 employees. Figure 1.1 shows the MX handler.

Figure 1.1: Photo of a MX semiconductor test handler

Semiconductor market is a high flexible and aggressive market. All semiconductor manufacturers are working with three simple directions, smaller, faster and cheaper. Analyst from United States, Gartner published an article in 2014 states that the 2015 market is still growing and expected to increase 5.4% from 2014 (Van der Meulen and Rivera, 2014). In order to be able to be profitable and cater the market trends, semiconductor equipment manufacturer is using business model of High Mix Low Volume (HMLV) to operate. HMLV business model is used to bring product to market quickly and adapt to the quick change of market trends especially smart phones and Tablets.

The test handler is currently being manufactured with a lead-time of 14 days (around 112 hours). In the manufacturing, MX handler is assembled as below flowchart in Figure 1.2. There are five main modules; the modules are base frame, upper frame, Pick and Place (PNP) head, Test site and chamber. These five modules are outsourced to individual contract manufacturers for assembly and test. The activities for assembly starts with sub- assemblies, there are options and configurable to be sub-assembled. The list of options and configurable are listed in Table 1.1 and Table 1.2. Next, the options and configurable are assembled into main modules in the process called Pre-assembly. WS1 integration is the next activity of combining Base Frame, Test site and Chamber. Upon WS1 integration, Upper frame and Pick and Place head is installed in WS2 integration. Finally, some options and configurable are assembled to the handler in final assembly process.

Figure 1.2: Process flowchart of MX assembly process

Table 1.1: List of options in MX test handler and the processes where each options is

Options	Assembly process	
Manual Tray drawer	Base Frame Pre-assembly	
Vacuum Pump		
Leg cold option	Chamber Pre-assembly	
WS2 cold option	Final Assembly	
Ionizer option		
16K option		
X16 test site option	Test Site Pre-assembly	
Cold Z-link		
Cold Manifold		
WS4 cold option	Final Assembly	
TS contactor regulator	Upper Frame Pre-assembly	
TS shuttle regulator		
TS PPC contactor regulator		

installed

5

Configurables		Assembly process	
Family	List of configurables		
	2.5" X4 Chucks		
	3" X4 Chucks	Test Site Pre-assembly	
Chucks	40mm X4 Chucks		
	50mm X4 Chucks		
	60mm X4 Chucks		
	500lb force		
Test forme config	1000lb force	Final Assembly	
Test force coming	1250lb force	rinal Assembly	
	2000lb force		
	3.25" lift kit		
Lift kit	5" lift kit	Final Assembly	
	7" lift kit		
	22mm X-pitch		
TS V aitch	30mm X-pitch	Test Site Pre-assembly	
13 x phen	35mm X-pitch		
	40mm X-pitch		
	Low pressure blowoff 10k		
Discussifi configuration	Low pressure blowoff 16k	PNP head Pre-assembly	
Blowoff configuration	Standard pressure blowoff 10k		
	Standard pressure blowoff 16k		
	500lbs frame	Test Site Pre-assembly	
Church from an	1000lbs frame		
Unuck frames	1250lbs frame		
	2000lbs frame		
Shuttles	Hot-ambient shuttles	Final Assembly	
Shuttles	Cold shuttles	Final Assembly	

Table 1.2: List of configurable in MX handler and the processes where each options is installed

1.2 Problem statement

Current lead-time required to complete assembly of a semiconductor test handler is 14 days (112 hours). Options and Configurable sub-assembly are done in parallel and all Pre-assembly are done parallel. In current situation, the maximum output per month of the semiconductor equipment manufacturer is two handlers per month for eight hours working day. Currently, the semiconductor equipment manufacturer is receiving orders of five to six handlers per month from customers. Unable to keep up with customer demands is causing the manufacturer to lose business or profits. Competitors that are able to deliver handler in shorter lead-time will eventually get the business.

In order to cater to this increasing order, the Company A hired temporary or contract workers to sustain the assembly and testing process. This practice is not a good long-term solution for the problem. It is the nature of semiconductor industry to fluctuate every year and it is unpredictable. The revenue data is shown in Figure 1.3. As can be seen the annual semiconductor revenue is inconsistent and unpredictable throughout the year 1991 to year 2013. Therefore, it is not a good practice for a semiconductor equipment manufacturer to hire extra headcounts for ramp up and fire during ramp down, as human capital needs to be developed and trained. In this case, the top management have to develop alternative ways to improve efficiency without the needs of hiring extra permanent headcounts. Engineers should start to look into processes to improve and subsequently improve the manufacturing lead times and capacity. Table 1.3 shows the current standard time MX handler in assembly activities. Figure 1.4 shows the current critical path of MX handler assembly process

7

8

C Universiti Teknikal Malaysia Melaka