

Faculty of Manufacturing Engineering

PARAMETER OPTIMIZATION ON HYBRID MICRO WIRE ELECTRICAL DISCHARGE TURNING

Muhammad Akmal bin Mohd Zakaria

Master of Science in Manufacturing Engineering

PARAMETER OPTIMIZATION ON HYBRID MICRO WIRE ELECTRICAL DISCHARGE TURNING

MUHAMMAD AKMAL BIN MOHD ZAKARIA

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Manufacturing Engineering

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2017

DECLARATION

I declare that this thesis entitled "Parameter Optimization on Hybrid Micro Wire Electrical Discharge Turning" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:
Name	: MUHAMMAD AKMAL BIN MOHD ZAKARIA
Date	i

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Manufacturing Engineering.

Signature	·
Supervisor Name	: ASSOC. PROF. DR. RAJA IZAMSHAH
	BIN RAJA ABDULLAH
Date	:

DEDICATION

This thesis is dedicated to

my beloved and great parents, who never stop giving of themselves in countless ways,

my beloved brother and sisters, who stands by me when things look bleak and hope this thesis may inspire you to excel in any field in which you venture during your life journey

ABSTRACT

Micro-machining is expected to play an important role in today's manufacturing technology. However, the traditional down-scaling process creates challenges relating to process stability and materials behaviour especially for small difficult-to-machine made materials. Therefore, a suitable material removal process to perform micro-machining on cylindrical components is spark erosion process. In this study, the new hybrid micromachining process is developed. This process is synonym with the name of wire electrical discharged turning (WEDT) which incorporates a turning process of rotating workpiece to continuous travelling electrode wire in electrical discharged conditions produced by wire electrical discharge machine. The objective of this research is to develop and evaluate the advance machinery and equipment for rotary axis mechanism that is being used to rotate the workpieces. The research focuses on optimizing the process parameter of hybrid WEDT for micro-machining straight shaft cylindrical component made of Ti6Al4V as materials. The issues pertaining to hybrid WEDT process on surface roughness (Ra) in the past have been explored comprehensively. The rotary axis mechanism that works well with WEDM machine has been successfully developed and the micro turning operations has been performed. The parameter optimization consideration on Ra begins with two stage screening. Firstly, the suitable combination parameter and its range is properly selected. Then, the selection of appropriate parameters and range is further screened by Taguchi orthogonal array L_{12} . From the 11 process parameters that consist of electrical, nonelectrical and rotary axis mechanism characteristics, only four has been selected to perform optimization by response surface methodology (RSM) which are intensity of pulse, voltage open, wire tension and rotational spindle speed. The other parameters are fixed at best level to produce low Ra value which is identified by Alicona Infinite Focus microscope (IFM). The optimal Ra that is produced by experiment through desirability approach is as much as 4.0143 µm with relative error as much as 5.9% compared to the prediction. The parameter and its level are pulse intensity of 8 Notch, wire tension of 14.8 Newton, voltage of 7 Notch and rotational spindle speed of 2390 rev/min. The machined parts surface is being deteriorated accordingly to the violent energy density generated by high pulse intensity and voltage, low wire tension and spindle speed.

i

ABSTRAK

Pemesinan mikro dianggarkan memain peranan penting dalam teknologi pembuatan kini. Namun, pemesinan penskalaan kecil bagi proses tradisional adalah mencabar, ia berkait dengan kestabilan proses dan sifat bahan terutama jenis bahan sukar dimesin bahkan dalam penskalaan kecil. Oleh itu, proses pemotongan yang sesuai dalam melaksanakan pemesinan mikro pada bendakerja berbentuk silinder adalah proses cucuhan hakisan. Dalam penyelidikan ini, proses pemesinan hibrid mikro terbaru telah dibangunkan. Proses ini sinonim dengan nama pemesinan larik wayar nyahcas elektrik (WEDT) dimana ia menggabungkan putaran bendakerja terhadap wayar elektrod dalam persekitaran nyahcas elektrik yang dibekalkan oleh mesin wayar nyahcas elektrik. Objektif penyelidikan ini untuk membangun dan menilai terhadap mesin dan kelengkapan termaju bagi mekanisme paksi putar yang digunakan untuk memutarkan bendakerja. Penyelidikan ini memfokuskan pengoptimum parameter bagi proses hibrid mikro WEDT dalam pemesinan mikro komponen silinder berbentuk aci lurus yang diperbuat oleh bahan Ti6Al4V. Isu yang berkaitan proses hibrid WEDT terhadap kekasaran permukaan (Ra) pada kajian lepas telah dikaji secara menyeluruh. Mekanisme paksi putaran yang berfungsi dengan baik pada mesin WEDM telah berjaya dibangunkan dan melaksanakan operasi melarik mikro. Pengoptimum parameter untuk Ra bermula dengan dua peringkat penyaringan. Pertama, kombinasi dan julat yang sesuai diantara parameter dipilih. Seterusnya, penyaringan peringkat kedua dilakukan dengan menggunakan teknik Taguchi pada parameter dan julat vang telah dipilih. Daripada 11 parameter yang dipilih, hanya empat sahaja parameter yang dibawa dan dioptimumkan oleh kaedah metodologi permukaan sambutan (RSM) iaitu keamatan denyutan, voltan buka, ketegangan wayar dan kelajuan putaran spindel. Parameter yang lain dikekalkan pada tahap minimum terhadap prestasi Ra yang mana ia diukur oleh mikroskop Alicona Infiniti Fokus Mikroskop (IFM). Keoptimalan Ra hasil daripada eksperimen yang telah dibangunkan dengan kaedah kebolehinginan bernilai 4.0143 µm dengan ralat relatif sebanyak 5.9% apabila dibandingkan dengan nilai ramalan. Kemerosotan prestasi pada permukaan bendakerja dialami apabila keamatan denyutan dan voltan buka ditetapkan tinggi disamping ketegangan wayar yang kendur dan kelajuan putaran spindel yang perlahan.

ii

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful.

Alhamdulillah, all praises to Allah the Almighty for His blessing in completing this thesis. Special appreciation goes to my supervisor, Associate Professor Dr. Raja Izamshah bin Raja Abdullah for his supervision and constant support. His invaluable help especially in giving constructive comments and suggestions throughout the experimental and thesis works have contributed to the success of this research. I wish to extend my gratitude to my project supervisor Dr. Mohd Shahir bin Kasim for his inspirational guidance, help and great supervision. I am also thankful to my co-supervisor Dr. Mohd Amran bin Md. Ali. Working with them was indeed a wonderful and learning experience, which I thoroughly enjoyed.

I would like to express my appreciation to the Dean, Faculty of Manufacturing Engineering, Associate Professor Mohd Rizal bin Salleh also to the Deputy Dean, Associate

Professor Dr. Hambali bin Arep @ Ariff for their support and help towards my postgraduate affairs.

My acknowledgement also goes to all the assistant laboratory engineer and office staffs of center of advanced manufacturing (AMC) in assisting and sharing their skills, opinions, advices and guidance in handling the equipment throughout the study particularly to Mr. Hanafiah in assisting the fabrication, experimental setup and troubleshoot, Mr. Taufiq in helping to prepare the machines, Madam Aisyah for helping in measurement and Mr. Azhar for assisting in identifying the SEM micrograph.

A big thanks to Research and Innovation Management (CRIM) of Universiti Teknikal Malaysia Melaka for providing MyBrain UTeM assistance for my study and Faculty of Manufacturing for providing experimental facilities used in this project. Special thanks to Ministry of Education Malaysia for the Research Grant Scheme [FRGS/2/2014/TK01/UTEM/03/2].

My deepest gratitude goes to my beloved parents; Mohd Zakaria bin Aziz and Fauziah binti Jaafar and also to my siblings Siti Norhani, Mohd Redzwan and Siti Nurazlinda for their endless love, prayers and encouragement. Also not forgetting my wife, Arbaeyah binti Abdul Razak for her love and care. They are always closest to my joys and sorrows and always there for me. I am also grateful for the support and guidance received from my colleagues. Thank you to all my friends in UTeM for sharing this journey with me.

TABLE OF CONTENTS

				PAGE
DEC	LARAT	ION		
APP	ROVAL	ı		
DED	ICATIO	ON		
ABS	TRACT			i
ABS	TRAK			ii
ACK	NOWL	EDGEM	ENTS	iii
TAB	LE OF	CONTEN	NTS	iv
LIST	OF TA	BLES		vii
LIST	OF FIG	GURES		ix
LIST	OF AP	PENDIC	ES	xiv
LIST	OF SY	MBOLS		XV
LIST	OF AB	BREVIA	ATIONS	xvi
LIST	OF PU	BLICAT	TIONS	xviii
CHA	PTER			
1.	INTRO	ODUCTION	ON	1
	1.1		h Background	1
	1.2	Problem	Statement	4
	1.3	Research	h Objective	6
	1.4	Scope of	f Work	6
	1.5	Significa	ance of Studies	7
	1.6	Organiza	ation of Report	7
2.	LITER	RATURE	REVIEW	9
	2.1	Introduc	tion	9
	2.2	Turning	by Wire Electrical Discharge Machining	9
	2.3	Rotary A	Axis Mechanism for Wire Electrical Discharge	13
		Machini	ng (WEDM)	
	2.4	Pulse Ch	naracteristic between WEDT and WEDM	18
	2.5	WEDT I	Performance Measures: Surface Roughness and Material	21
		Remova	al Rate	
		2.5.1	Surface Roughness	23
		2.5.2	Material Removal Rate (MRR)	24
		2.5.3	Influences Pulse Characteristics on WEDT Performance Measures	25
	2.6	Draviore	s Studies: Influence of WEDT Process Parameters	26
	2.6			26
		2.6.1	Pulse Off Time	28

		2.6.2	Pulse On	Time	28
		2.6.3	Power		29
		2.6.4	Voltage		30
		2.6.5	Servo Fe	ed	30
		2.6.6	Rotationa	al Spindle Speed	31
		2.6.7	Wire Ten	sion	32
		2.6.8	Spark Ga	p	32
		2.6.9	Summary	of Process Parameters in WEDT	33
	2.7	Surface	Quality of	WEDT Workpieces	33
		2.7.1	Macro-R	idges	34
	2.8	Titaniu	m Alloy		34
		2.8.1	Challeng	es in Machining of Titanium Alloy	36
	2.9	Design	of Experime	ent (DOE)	37
		2.9.1	Taguchi (Orthogonal Arrays (OAs)	39
			2.9.1.1	S/N Ratio	41
			2.9.1.2	Analysis of Variance (ANOVA)	43
		2.9.2	Response	e Surface Methodology	44
			2.9.2.1	Central Composite Design (CCD)	46
			2.9.2.2	Application of RSM in Process Optimisation and	48
				Modelling	
			2.9.2.3	Optimization using Desirability Function	49
	2.10	Concl	uding Rema	rks	51
3.	MAT	ERIALS	AND MET	HODS	53
	3.1	Introdu			53
	3.2	Design	and Constru	action of Rotary Axis Mechanism	58
		3.2.1		pindle and Housing	59
		3.2.2	- 1	me and Motor Bracket	63
			3.2.2.1	Design Base Frame and Motor Bracket	63
		3.2.3	Speed Co	-	65
			-	Design and Develop of Speed Controller	65
			3.2.3.2	Program PIC Microcontroller	68
		3.2.4	Final Ass	_	69
	3.3			OT Experimental	73
		3.3.1		Material: Ti6Al4V	73
		3.3.2		Material: Brass	75
		3.3.3		M Machine	76
			3.3.3.1	Parameter	77
			3.3.3.2	Pulse Waveforms Characteristics	79
		3.3.4	Experim	ental Setup	80
		3.3.5	•	ng Strategies	83
		3.3.6		ance Criteria Evaluation Method	84
			3.3.6.1	Arithmetic Average Surface Roughness (Ra)	84
			3.3.6.2		87
			3.3.6.3	E	87
	3.4	Selection		s Parameter (Screening)	88
				· • • • • • • • • • • • • • • • • • • •	

		3.4.1	Method Capabil	in Selection Range of Parameter for Machining	88
		3.4.2		i Design Scheme (Orthogonal Array L ₁₂)	92
	3.5		_	ghly Influences WEDT Process Parameters	95
	5.5	3.5.1	_	Sace-centred Central Composite Design Scheme	96
		3.5.2		ion of the Process Model	98
	3.6	Summa		for of the Freeds Woder	99
4.	RES	ULTS AN	D DISCUS	SIONS	100
	4.1	Introdu	ction		100
	4.2	Evaluat	tion of the re	otary axis mechanism	101
	4.3	Experir	nental Scree	ening Results	104
		4.3.1	Selection	on of Process Parameter: Machining Capability	104
		4.3.2	Taguch	i Orthogonal Array on Surface Roughness	106
		4.3.3	Summa	ry of Screening Analysis	115
		4.3.4	Scientif	ic Finding	117
			4.3.4.1	Stabilizer E	117
			4.3.4.2	Spindle Direction	119
	4.4	Paramet	er Optimisa	tion by Employing Face-centred Central	124
		Composi	ite Design (FCCD)	
		4.4.1	Assessin	g Process Parameters by using Statistical Analysis	124
		4.4.2	Compara	tive and Determination of Significant Terms on	130
				Roughness	
		4.4.3	Model V	alidation	139
		4.4.4	Paramete	er Optimization	141
		4.4.5	Surface 7	Topography of Hybrid Micro WEDT Surface	145
			4.4.5.1	Interaction between Intensity of Pulse and Wire	145
				Tension	
			4.4.5.2	Interaction between Voltage and Wire Tension	147
			4.4.5.3	Interaction between Rotational Spindle Speed and	148
				Wire Tension	
	4.5	Summa	ary		150
5.	CON	ICLUSIO	NS AND R	ECOMMENDATIONS	151
	5.1	Conclus			151
	5.2			for Future Work	154
D IT I	FEREN	ICFS			157
	PENDI				168
7 7 T I	יועויים				100

LIST OF TABLES

TABI	LE TITLE	PAGE
2.1	The summarization of the previous studies in WEDT in dealing with materials type and the value of each performance measure	22
2.2	WEDT process parameters in existing literatures	27
2.3	The challenges in machining Ti6Al4V by conventional machining	36
2.4	The polynomial equation model in RSM	45
3.1	Name, dimension, specification details and material of the component	61
3.2	Components and their functions in rotary axis mechanism	61
3.3	Electronic component and their descriptions (Cytron Technologies, 2011)	67
3.4	The specifications of Ti6Al4V (E Steel SDN. BHD., n.d.)	74
3.5	The ultrasonic bath parameter during specimens cleaning preparation	74
3.6	Wire electrodes properties (EDM Tools, n.d.)	75
3.7	Mitsubishi RA90 parameters and their descriptions (Mitsubishi-Electric-Corporation, n.d.)	78
3.8	The details procedure of installing the workpiece, zero-positioning electrode wire and the approach of control radial depth of cut	82
3.9	Design of experiment strategies comparison	89
3.10	Parameter conditions for Tungsten Carbide (Mitsubishi-Electric-Corporation, n.d.)	91
3.1	1 L_{12} orthogonal array for eleven factors and two levels (2 ¹¹)	94
3.12	11 assigned design variables, units, notations and levels for Taguchi $OA\ L_{12}$	95
3.13	Face-centred central composite design (FCCD) used in this research study for k=4	98

4.1	Rotary axis mechanism fabrication capabilities of shape and design	103
4.2	The well combination among the parameters	105
4.3	Summary of the example machining trials	106
4.4	Experimental results	108
4.5	Percentage contribution of S/N ratio for Ra	110
4.6	Response table for Signal to Noise Ratios	111
4.7	S/N ratio ANOVA for Ra	112
4.8	Selection of the parameters for RSM based on rank	116
4.9	Selected fixed and vary parameters with respective to best level and range for RSM	116
4.10	Surface roughness result	125
4.11	Sequential model sum of squares analysis for surface roughness model	127
4.12	Lack of fit test for surface roughness model	127
4.13	Model summary statistics for surface roughness model	127
4.14	ANOVA for response of surface roughness	128
4.15	R-squared analysis for response surface quadratic model of surface roughness	128
4.16	Result for confirmation experiments for estimated responses	140
4.17	The approach of optimization to suit the Mitsubishi RA90 machine capability	143
4.18	Optimal combination of input factors for single response optimization	143

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Miniaturized components in medical, metrology and defense applications (Janson et al. 1999; Sheu, 2004; Jee and Kim, 2011; Rees 2011; Zhu et al. 2016)	
1.2	Workpiece deflection in micro turning (Rahman, 2004)	4
2.1	Wire electrical discharge turning (WEDT) principle	12
2.2	Wire electrical discharge grinding (WEDG) a) Twin wire guided (Lim e al. 2003) b) Single wire guided (Chern and Wang, 2007)	t 12
2.3	The phenomena of discharge area in WEDT along the electrode wire	13
2.4	Rotary axis mechanism develop by Qu et al. (2002a)	14
2.5	Rotary axis mechanism developed by Haddad and Tehrani (2008)	14
2.6	Rotary axis mechanism developed by Mohammadi et al. (2008)	15
2.7	Cross-section view rotary axis mechanism developed by Janardhan and Samuel (2010)	d 16
2.8	Rear view of rotary axis mechanism developed by Janardhan and Samuel (2010)	d 16
2.9	Rotary axis mechanism developed by Rajkumar et al. (2012)	17
2.10	Rotary axis mechanism developed by Parthiban et al. (2013)	17
2.11	Discrimination between arc, short and normal pulses in WEDM process (Liao and Woo, 1997)	s 19
2.12	Pulse trains for WEDT (Janardhan and Samuel, 2010)	21
2.13	Pulse trains for WEDM (Janardhan and Samuel, 2010)	21
2.14	Coordinates used for surface roughness measurement defined by Ra equation (Kalpakjian and Schmid, 2006)	a 24
2.15	Process parameters and performance measures of WEDT process	26

2.10	machined surface (Haddad et al. 2010)	34
2.17	Microvascular anastomosis micro ring-pin system (Jee and Kim, 2011)	35
2.18	Region of interest versus region of operability (Anderson, 2016)	39
2.19	Central composite design for three factors (Voyer, 2003)	47
2.20	Face-centred central composite design (FCCD) for three factors (Voyer, 2003)	48
2.21	The scenarios for the response (y) (a) 'the larger the better', (b) 'the smaller the better', (c) 'the target is the best' (Myers et al. 2009)	51
3.1	Flowchart of the research methodology	55
3.2	Prototype architecture of the rotary axis mechanism	58
3.3	Pre-assembly rotary spindle and housing (a) Front side (b) Back side	59
3.4	Radial oil seal and ceramic bearing placed in the housing	60
3.5	The fabricated rotary axis mechanism base frame	64
3.6	Completed DC motor with set of motor mount heatsink and its insulator	65
3.7	The speed controller integration of SK40C, MD10C, voltage regulator and DC motor	67
3.8	The example of the coding that is used in this research study	69
3.9	UIC00B Programmer	69
3.10	CAD design of final assembly of rotary axis mechanism for hybrid micro WEDT	71
3.11	The actual final assembly of rotary axis mechanism for hybrid micro WEDT	72
3.12	The actual final assembly of rotary axis mechanism for hybrid micro WEDT	72
3.13	The final assembly of speed controller	73
3.14	Rear side of speed controller	73
3.15	The specimens is being immersed and cleaned by ultrasonic bath method	75
3.16	0.25 mm of brass electrode wire that is being used in this research work	76
3.17	Mitsubishi brand of the WEDM machine specific model RA90	77

3.18	n.d.)	80
3.19	The position of rotary axis mechanism on WEDM machine table	81
3.20	The details configuration of rotary axis mechanism to the WEDM machine including clamped workpiece and position of electrode wire	81
3.21	Straight turning program with single pass path condition	84
3.22	Alicona Infinite Focus Microscope (IFM)	85
3.23	An optical image of machined surface of micro-cylindrical part by hybrid WEDT	86
3.24	The software Infinite Focus interface to measure the arithmetic average surface roughness	86
3.25	Mettler Toledo analytical balances	87
3.26	Scanning Electron Microscope (Model EVO 50 United Kingdom)	88
3.27	The comparison between full factorial and fractional factorial in design of experiment strategies	90
3.28	The type of machine error if encountered a) Wire breakage b) Insufficient sparked energy	90
3.29	The parameter screening process flowchart	93
3.30	Face-centred Central Composite Design (Whitcomb and Anderson, 2004)	96
4.1	Rotation of spindle is measured by laser type Tachometer	102
4.2	Results of the repeatable dynamic run-out of the spindle with varying rotational spindle speeds	102
4.3	Summarization of hybrid micro WEDT operating conditions percentage contribution to the Ra by employing Taguchi Orthogonal Array L12	110
4.4	Main effects plot for S/N ratios of Ra results	113
4.5	Comparison of pulse trains a) WEDM and b) Hybrid Micro WEDT	119
4.6	Movement of fragments while encountering dissimilar force direction for upward spindle direction	121
4.7	Movement of fragments while encountering similar force direction for downward spindle direction	121
4.8	The progression of the fragments removal by ultrasonic	123

4.9	residuals	129
4.10	Model validation plot for relationship between the observed and the predicted	130
4.11	Perturbation plot for surface roughness performance	131
4.12	The occurrence of macro-ridges in hybrid micro WEDT workpiece machined surface	133
4.13	Response surface showing the interactive effect of intensity of pulse and wire tension on surface roughness at rotational spindle speed = 1400 rev/min and voltage = 7 Notch	134
4.14	Response surface showing the interactive effect of wire tension and voltage on surface roughness at rotational spindle speed = 1400 rev/min and intensity of pulse = 9 Notch	136
4.15	Response surface showing the interactive effect of rotational spindle speed and wire tension on surface roughness at intensity of pulse = 9 Notch and voltage = 7 Notch	138
4.16	Comparison of predicted to the actual validation for surface roughness (Ra)	141
4.17	Numerical optimization report on solutions by Design-Expert software	142
4.18	Optimal surface roughness plot generated by Alicona software Infinite Focus	144
4.19	Perturbation plot of optimization for surface roughness at intensity of pulse = 8 Notch, voltage = 7 Notch, wire tension = 14.80 Newton and rotational spindle speed = 2390 rev/min with prediction result arithmetic average surface roughness = $4.26684 \mu m$	144
4.20	Ramps report on numerical optimization for optimum surface roughness by Design-Expert software	145
4.21	a) IFM micrograph b) SEM micrograph of hybrid micro WEDT machined surface (under Ra: 4.531: pulse intensity=10, voltage=6, wire tension=12.2, rotational spindle speed=400) experiment number 2	146
4.22	a) IFM micrograph b) SEM micrograph of hybrid micro WEDT machined surface (under Ra: 4.420: pulse intensity=8, voltage=6, wire tension=14.8, rotational spindle speed=400) experiment number 3	147
4.23	a) IFM micrograph b) SEM micrograph of hybrid micro WEDT machined surface (under Ra: 4.634: pulse intensity=8, voltage=8, wire tension=12.2 rotational spindle speed=400) experiment number 9	148

4.24	a) IFM micrograph b) SEM micrograph of hybrid micro WEDT machined surface (under Ra: 4.420: pulse intensity=8, voltage=6, wire tension=14.8, rotational spindle speed=400) experiment number 3	148
4.25	a) IFM micrograph b) SEM micrograph of hybrid micro WEDT machined surface (under Ra: 4.672: pulse intensity=10, voltage=8, wire tension=12.2, rotational spindle speed=400) experiment number 10	149
4.26	a) IFM micrograph b) SEM micrograph of hybrid micro WEDT machined surface (under Ra: 4.493: pulse intensity=10, voltage=8, wire tension=14.8, rotational spindle speed=2400) experiment number 16	149

LIST OF APPENDICES

APPE	NDIX TITLE	PAGE
A	Rotary Axis Mechanism Drawing and Parts	168
В	Speed Controller Coding	170
C	Geometrical Features of WEDT Micro-machining	174
D	Datasheet of Titanium Ti6Al4V	177
E	Approach for Optimization	179

LIST OF SYMBOLS

σ - (Sigma) units for stress calculation

μ - (Micro) metric unit denoting a factor of 10–6 or represent small

α - (Alpha) coded-unit distance for axial points in central composite design

 δ - Deflection

df - Degrees of Freedom

k - number of factors in design

R² - Index of determination

n - number of observations in sample

P - Probability Value

V - (volt) unit for electric potential difference

D - Diameter

T - Thickness

ID - Inside Diameter

OD - Outside Diameter

Pa - (pascal) unit of pressure/stress

 Ω - (Ohm) unit of electrical resistance

LA - Machine power supply low

MP - Machine power supply medium

HP - Machine power supply high

L, 1 - Length

Ra - Arithmetic average surface roughness

LIST OF ABBREVIATIONS

3D - Three Dimension

ABEC - Annular Bearing Engineering Committee

AC - Alternating Current

AISI - American Iron and Steel Institute

ANOVA - Analysis of Variance

C.V. - Coefficient of Variation

CAD - Computer-Aided Design

CAM - Computer-Aided Manufacturing

CCD - Central Composite Design

CNC - Computer Numerical Control

CWEDT - Cylindrical Wire Electrical Discharge Turning

DC - Direct Current

EDM - Electrical Discharge Machining

FCCD - Face-centred Central Composite Design

FI - Factor Interaction

HSS - High Speed Steel

ICSP - In Circuit Serial Programming

IDE - Integrated Development Environment

IFM - Infinite Focus Microscope

Ip - Intensity of Pulse

ISO - International Standardization Organization

LCD - Liquid-Crystal Display

LED - Light-Emitting Diode

LQ - Liquid Quantity

LR - Liquid Resistivity

M - Metric

MRR - Material Removal Rate

OA - Orthogonal Array

OFF - Off Time

PIC - Programmable Interface Controllers

PRESS - Predicted Residual Error Sum of Squares

PT - Pre-Tension

PWM - Pulse-Width Modulation

RSM - Response Surface Methodology

SA - Stabilizer A

SB - Stabilizer B

SC - Stabilizer C

SE - Stabilizer E

SEM - Scanning Electron Microscopy

Si₃N₄ - Silicon Nitride

Ti6Al4V - Titanium Alloy Grade 5

USB - Universal Serial Bus

VG - Voltage Gap

Vo - Voltage Open

WEDG - Wire Electrical Discharge Grinding

WEDM - Wire Electrical Discharge Machining

WEDT - Wire Electrical Discharge Turning

WS - Wire Speed

WT - Wire Tension

LIST OF PUBLICATIONS

Journals:

- 1. Izamshah, R., Akmal, M., Kasim, M.S., Sundi, S.A. and Hadzley, M., 2016. A Statistical Comparison in Selection of Wire-EDM Process Parameters for Machining Titanium Alloy. *Journal of Advanced Manufacturing Technology (JAMT)*, 10(2), pp. 45-56.
- 2. Izamshah, R., Akmal, M. and Kasim, M.S., 2017. Improvement of the Wire Compensation Configuration Model for Improving Part Accuracy in Cylindrical Wire Electrical Discharge Turning. *International Journal of Manufacturing Technology and Management*. (In Press)(Scopus)
- 3. Izamshah, R., Akmal, M., Kasim, M.S., and Amran, M., 2017. Emerging Hybrid Wire Electro Discharge Turning for Micro Parts Fabrication in the Defence Technological Area: A Feasibility Study. *Journal of Fundamental and Applied Sciences*, 9(3S), pp.176-188. (ISI)
- 4. Izamshah, R., Akmal, M., Amran, M., and Kasim, M.S., 2017. Parametric Study on Parameter Effects in Hybrid Micro Wire Electrical Discharge Turning. *Journal of Advanced Manufacturing Technology (JAMT)*. (Accepted)(Scopus)
- 5. Izamshah, R., Akmal, M., Amran, M., and Kasim, M.S., 2017. Performance Evaluation of Rotary Mechanism Characteristics by Response Surface Methodology in Cylindrical Wire Electrical Discharge Turning. *Advances in Materials and Processing Technologies*. (Accepted)

Proceedings:

- 1. Akmal, M., Izamshah, R., Kasim, M.S., Hadzley, M., Amran, M. and Ramli, A., 2016. Configuration of Wire Positioning To Minimize Parts Error in Wire Electrical Discharge Turning (WEDT), *Proceedings of International Conference on Advanced Processes and Systems in Manufacturing (APSIM 2016)*, Kuala Lumpur, Malaysia, 28-30 August 2016. National University of Malaysia Publisher. (ISI)
- 2. Akmal, M., Izamshah, R., Kasim, M.S., Hadzley, M., Amran, M. and Ramli, A., 2016. Development of a Rotary Axis Mechanism for Wire EDM Turning xviii

- (WEDT). Proceedings of Mechanical Engineering Research Day 2016 (MERD' 16), Melaka, Malaysia, 31 March 2016. Universiti Teknikal Malaysia Melaka Publisher. (ISI)
- 3. Izamshah, R., Akmal, M., Kasim, M.S., Amran, M., Ramli, A. and Liew, P.J., 2016. Emerging Hybrid Wire EDM Turning (HWEDT) In Defence Technological Area for Micro Parts Fabrication: A Feasibility Study, *Proceedings of the Asia Pacific Conference on Defence & Security Technology (DSTC 2016)*. Putrajaya, Malaysia, 15-17 August 2016. National Defence University of Malaysia Publisher.
- 4. Akmal, M., Izamshah, R., Kasim, M.S., Hadzley, M., Amran, M. and Ramli, A., 2016. Performance Evaluation of Rotary Mechanism Characteristics by Response Surface Methodology in Cylindrical Wire Electrical Discharge Turning. *Proceedings of Advances in Materials and Processing Technologies (AMPT 2016)*. Kuala Lumpur, Malaysia, 8-11 November 2016. University of Malaya Publisher.