

Faculty of Electrical Engineering

MODELING OF ISLANDING DETECTION METHODS FOR

MICROGRID

Ahmad Farid Bin Sapar

Master of Science in Electrical Engineering

2016

MODELING OF ISLANDING DETECTION METHODS FOR MICROGRID

AHMAD FARID BIN SAPAR

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Electrical Engineering

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016

DECLARATION

I declare that this thesis entitled "Modeling of Islanding Detection Method For Microgrid" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature

: AHMAD FARID BIN SAPAR

Date

Name

: 10 November 2016

APPROVAL

I hereby declare that I have read this thesis and in my opinion, this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electrical Engineering.

Signature	:	
Supervisor Name	•	Assoc. Prof. Dr. Gan Chin Kim
Date	:	

DEDICATION

To my beloved mother and siblings

ABSTRACT

The increase in world demand for energy as well as environmental concern over scarce and limited fossil fuels has significantly triggered the search for environmentally friendly and renewable energy resources. In Malaysia, the system maximum demand in Peninsular has increased 4.65% from the year 2012 to 16,562 MW which has been recorded in May 13, 2013. Hence, to meet future energy requirement, some proactive measures of alternatives or renewable sources of energy must be established. In this context, the Micro-Grid (MG) concept is the potential solution to the issue of scarce natural resources. However, one of the major challenges associated with implementation of MG is to design an appropriate protection scheme which can protect MG in both grid and islanded mode. Considering this, a MG microswitch-based OUV and OUF IDMs through passive, Non-Intelligent IDM techniques was modelled and simulated. Microswitch-based performance testing has been carried out on both grid-connected and island modes, and considering the active power flow between the two systems and accompanying with different faulty conditions on each case and tested it five simulation cases based on the IEEE Standard 1547.4 test systems. These models were also tested with two fault of conditions in IEEE 15-bus radial distribution test system. The investigation from both test systems shows that, the proposed microswitchbased is effectively to perform in grid-connected and islanded modes. It also could import, export and isolate the active power flow without any serious effect in feeding the Unintentional Islanding Test Load and it function effectively under different faulty. Finally, the implemented concept of microswitch-based on MG is recommended to represent actual Malaysian distribution network model and parameters.

ABSTRAK

Peningkatan terhadap permintaan tenaga dunia telah menjadi satu kebimbangan terhadap alam sekitar dimana bahan api yang terhad telah mencetuskan usaha untuk mencari tenaga yang lebih mesra alam dan sumber tenaga boleh diperbaharui. Di Malavsia, kehendak maksimum pada sistem grid di Semenanjung menunjukkan peningkatan sebanyak 4.65% berbanding pada tahun 2012 iaitu sebanyak 16.562 MW yang telah direkodkan pada 13 Mei 2013. Oleh itu, untuk memenuhi keperluan tenaga untuk masa hadapan, beberapa langkah proaktif telah diwujudkan bagi mencari alternatif lain untuk sumber tenaga yang boleh diperbaharui. Dalam konteks ini, konsep MicroGrid (MG) adalah satu penyelesaian yang berpotensi dalam menangani isu sumber semula jadi yang terhad. Walau bagaimanapun, salah satu cabaran utama yang berkaitan dengan pelaksanaan MG adalah mereka bentuk sistem perlindungan yang mempunyai keupayaan untuk melindungi MG dalam mod sambungan pada grid dan mod pengasingan dari grid. Sehubungan itu, suis-mikro MG berasaskan teknik pasif OUV dan OUF, bukan pintar telah dimodelkan dan di simulasikan. Pengujian prestasi suis-mikro telah dijalankan pada kedua-dua keadaan mod sambungan pada grid dan mod pengasingan dari grid, dan mengambil kira tentang aliran tenaga yang aktif antara kedua-dua sistem dan disertakan keadaan kegagalan yang berbeza untuk setiap kes telah dijalankan dengan lima kes simulasi berdasarkan sistem ujian IEEE Standard 1547.4. Suis-mikro model ini juga turut diuji dengan dua keadaan kegagalan pada Sistem Ujian Pengagihan Jejari 15 bas. Dari pengujian dari kedua-dua sistem ujian ini menunjukkan bahawa, suis-mikro berkesan untuk beroperasi dalam mod sambungan pada grid dan mod pengasingan dari grid. Malah, dalam kes mengimport, eksport dan mengasingkan aliran kuassa aktif, tiada kesan yang serius dalam proses membekalkan tenaga walaupun di bawah keadaan kegagalan yang berbeza. Akhir sekali, konsep suismikro yang dilaksanakan pada MG adalah disyorkan untuk diguna pakai di rangakaian pengedaran Malaysia yang sebenar.

ACKNOWLEDGEMENT

First, praise be to Allah S.W.T because of his willingness. Alhamdulillah, I had successfully finished my Master thesis entitle "Modeling of Islanding Detection Methods For Microgrid". I was very fortunate to have several wonderful experience people who had a given me assistance and direction toward completing this thesis.

First and foremost, I would like to take this opportunity to express my sincere acknowledgement to my supervisor Associate Professor Dr. Gan Chin Kim from the Faculty of Electrical Engineering Universiti Teknikal Malaysia Melaka (UTeM) for his essential supervision, support and encouragement towards the completion of this thesis.

I would also like to express my greatest gratitude to Ms. Anis Niza Bt. Ramani cosupervisor of this work for her advice and suggestions.

Special thanks to all my peers, beloved mother and siblings for their moral support in completing this degree. Lastly thank you to everyone who had been to the crucial parts of realization of this project. Thank you so much.

TABLE OF CONTENTS

AB	STRACT		i
AB	STRAK		ii
TA	FABLE OF CONTENTS		iv
LI	ST OF TABI	LES	vi
LIS	ST OF FIGU	RES	viii
LIS	ST OF ABBF	REVIATIONS	XV
LIS	ST OF SYMI	BOLS	xix
LIS	ST OF JOUF	RNAL ARTICLE	XX
LI	ST OF CON	FERENCE PAPER	xxi
CH	IAPTER		
1	INTRODU	CTION	1
	1.0	Background	1
	1.1	Motivation	3
	1.2	Problem Statements	4
	1.3	Research Objectives	5 5
	1.4	Scopes	5
	1.5	Key Innovations in this Research	6
	1.6	Structure of the thesis	7
2	LITERATU	URE REVIEW	9
	2.0	Introduction	9
	2.1	Energy scenario in Malaysia	10
	2.2	Renewable Energy based Distribution Generation	13
	2.3	Micro-Grid (MG) Concept	15
	2.4	'Island' definitions	18
	2.5	Interoperability Standards related for Islanding	18
	2.6	Islanding Detection Methods (IDM's)	23
	2.7	IDMs Restructuring	27
	2.8	Microswitch-based	32
	2.9	Micro-Grid Principles	33
	2.10	IEEE Standard Compliance Testing for Distribution Generations	34
	2.11	Chapter Summary	35
3	METHODO	DLOGY	37
	3.0	Introduction	37
	3.1	Modeling General MG	41
	3.2	Modeling Microswitch Controls	43
	3.2.1 M	ficroswitch Model – Under Over Voltage and Under Over Frequency	45
	3.3	IEEE 1547 Unintentional Test Conducted	48
	3.4	IEEE 15 Bus Radial Distribution Test Systems	49
	3.5	Chapter Summary	52

4	ANAL	LYSIS AND TEST SYSTEMS	53
	4.0	Introduction	53
	4.1	Demonstrate the MG model	53
	4.2	Demonstrate Microswitch Performance on Grid-Connected	
		& MG Model	57
	4.3	IEEE 1547 Unintentional Test Conducted	63
		4.3.1 Case #1 : Grid Export – MG Export	63
		4.3.2 Case #2 : Grid Import – MG Export	69
		4.3.3 Case #3 : Grid Isolated – MG Export	75
		4.3.4 Case #4 : Grid Export – MG Import	80
		4.3.5 Case #5 : Grid Export – MG Isolated	85
	4.4	IEEE 15 Bus Radial Distribution Test System Analysis	90
		4.4.1 CASE 1: Islanding due to Voltage Drop at Utility Grid.	90
		4.4.2 CASE 2: Three-phase fault at the Bus 2.	94
	4.5	Chapter Summary	98
5	CONC	CLUSION	99
	5.0	Introduction	99
	5.1	Conclusion	99
	5.2	Future Works	100
RI	EFEREN	NCES	102
A	PPENDI	CES	110

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Types of DGs, total capacity and the utility interface with DGs	14
2.2	Standards related to Islanding	19
2.3	Comprehensive overview of the IEEE 1547	20
2.4	Interconnection system response to abnormal voltages	21
2.5	Interconnection system response to abnormal frequencies	22
2.6	Synchronization parameters limits for synchronous interconnection	22
2.7	TNB Guideline voltage standard settings	23
2.8	TNB Guideline frequency standard settings	23
2.9	TNB guidelines for synchronizing standard settings	23
2.10	Comparison on the characteristic between IDMs	27
3.1	Utility grid and distributed generation parameter	42
3.2	The characteristic of the transformer in the model.	43
3.3	The load parameters	43
3.4	Five simulation cases possible for unintentional islanding testing	49
3.5	The IEEE 15 bus line data	50
3.6	IEEE 15 bus load data	52
4.1	The parameters used for simulation Case #1 under the grid export	
	and MG export	64
4.2	The parameters used for simulation case #2 under the grid import	
	and MG export	70

4.3	The parameters used for simulation Case #3 under the grid isolation	
	and MG export	76
4.4	The parameters used for simulation case #4 under the grid export	
	and MG import	80
4.5	The parameters used for simulation Case #5 under the grid export	
	and MG isolation	86

C Universiti Teknikal Malaysia Melaka

LIST OF FIGURES

FIC	GURE	TITLE	PAGE
	2.1	GDP, primary energy supply and final energy consumption	
		trends in kilo-tonnes of oil equivalent (ktoe) (Energy Commision 2014	4) 10
	2.2	2013 installed generation capacity in Malaysia by Fuel	
		(Energy Commision 2014)	11
	2.3	Total capacity public license for power generation using RE (Energy	
		Commision 2014).	13
	2.4	Micro-Grid (MG) architecture	17
	2.5	(a) General IDMs hierarchy (b) Details IDMs based on hierarchy	25
	2.6	(a) First Stage of IDMs restructuring, (b) Inverter-based and	
		Multi-Inverter based IDMs are categorize into Passive, Active	
		and Hybrid	28
	2.7	The clearer version of IDMs after isolation for second stage.	31
	2.8	The stages of IDMs development for future works.	32
	2.9	Islanding detection circuit for proving appropriate methods functional	ity. 34
	2.10	IEEE 1547 unintentional testing circuit that is applicable in	
		the case of MG	35
	3.1	Flowchart of overall process	38
	3.2	Block diagram of the MG simulation model	41
	3.3	Single diagram of MG model without controller	42
	3.4	The operation mode time frame	42

3.5	MG modeling built in Matlab/Simulink with microswitch control.	44
3.6	Block diagram of the microswitch controls including the	
	synchronization logic and passive islanding detection	45
3.7	Block diagram of the under, over voltage passive islanding detection	
	method logic	46
3.8	Block diagram of the under, over frequency passive islanding detection	
	method logic	47
3.9	Block diagram of the synchronization logic	47
3.10	Block diagram of the IEEE 1547 circuit for unintentional	
	islanding testing	49
3.11	Single line diagram of IEEE 15 bus test system	50
3.12	IEEE 15 bus radial distribution for Case 1	51
4.1	The MG simulation model built in Matlab/Simulink	54
4.2	(a) UG Circuit breaker status (b) MG circuit breaker status	54
4.3	(a) Utility Active Power transition modes (b) MG Active Power	
	transition modes (c) Active Power to RLC load transition modes	56
4.4	(a) Utility Active Power transition modes (b) MG Active Power	
	transition modes (c) Active Power to RLC load transition modes	57
4.5	Utility grid and MG circuit breaker status	58
4.6	Zooming the second-2 operation	59
4.7	The maximum and minimum range of the OUV	60
4.8	The RMS curve for voltage and current	61
4.9	Three-phase voltage analysis during four second operation time	
	for utility grid, MG and RLC test load	62

4.10	Three-phase current analysis during four second operation	
	time for utility grid, MG and RLC test load	62
4.11	Block diagram for simulation Case #1 under the grid export and export	63
4.12	Simulation of Case #1 when the grid exports and MG exports	
	active power to RLC test load. (a) Utility grid active power,	
	(b) MG active power, (c) Unintentional Islanding Test Load active	
	power, (d) Utility grid circuit breaker status, (e) MG circuit breaker	
	status	65
4.13	Simulation Case #1 when zooming to the 3rd second operating	
	during fault was detected. (a) Utility grid active power, (b) MG active	
	power, (c) Unintentional Islanding Test Load active power	66
4.14	The RMS of voltage and current in Case #1, (a) RMS voltage at	
	utility grid, (b) RMS voltage at MG, (c) RMS current at utility grid,	
	(d) RMS current at MG	67
4.15	The maximum and minimum range of the OUV in Case #1,	
	(a) $135\% > Vg$, (b) $110\% > Vg$, (c) $85\% < Vg$. (d) $50\% < Vg$	
	Unintentional Islanding Test Load	68
4.16	Three-phase voltage analysis for Case #1 (a) Three phase voltage	
	at utility grid, (b) Three phase voltage at MG and (c) Three phase	
	voltage at Unintentional Islanding Test Load	68
4.17	Three-phase current analysis for Case #1 (a) Three phase current	
	at utility grid, (b) Three phase current at MG and (c) Three phase	
	voltage at Unintentional Islanding Test Load	69
4.18	Block diagram for simulation Case #2 under the grid import and	
	MG export	69

4.19	Simulation of Case #2 when the grid exports and MG exports	
	active power to RLC test load. (a) Utility grid active power,	
	(b) MG active power, (c) RLC Test Load active power,	
	(d) Utility grid circuit breaker status, (e) MG circuit breaker	71
4.20	Simulation case #2 when zooming to the 3rd second operating	
	during fault was detected. (a) Utility grid active power, (b) MG	
	active power, (c) RLC Test Load active power, (d) Utility grid circuit	
	breaker status, (e) MG circuit breaker status	72
4.21	The RMS of voltage and current in Case #2, (a) RMS voltage at	
	utility grid, (b) RMS voltage at MG, (c) RMS current at utility grid,	
	(d) RMS current at MG	73
4.23	Three-phase voltage analysis for Case #2 (a) Three phase voltage	
	at utility grid, (b) Three phase voltage at MG and (c) Three phase	
	voltage at Unintentional Islanding Test Load	74
4.22	The maximum and minimum range of the OUV in Case #2	74
4.24	Three-phase current analysis for Case #2 (a) Three phase current	
	at utility grid, (b) Three phase current at MG and (c) Three phase	
	current at Unintentional Islanding Test Load	75
4.25	Block diagram for simulation Case #3 under the grid isolation	
	and MG Export	76
4.26	Simulation Case #3 when the grid isolated and MG exports	
	active power to RLC test load. (a) Utility grid active power,	
	(b) MG active power, (c) Unintentional Islanding Test Load active	
	power, (d) Utility grid circuit breaker status, (e) MG circuit breaker	
	status	77

4.27	The maximum and minimum range of the OUV in Case #3	78
4.28	The RMS of voltage and current in Case #3, (a) RMS voltage	
	at utility grid, (b) RMS voltage at MG, (c) RMS current at utility	
	grid, (d) RMS current at MG	78
4.29	Three-phase voltage analysis for Case #3 (a) Three phase voltage	
	at utility grid, (b) Three phase voltage at MG and (c) Three phase	
	voltage at Unintentional Islanding Test Load	79
4.30	Three-phase current analysis for Case #3 (a) Three phase current	
	at utility grid, (b) Three phase current at MG and (c) Three phase	
	current at Unintentional Islanding Test Load	79
4.31	Block diagram for simulation case #4 under the grid export and	
	MG import	80
4.32	Simulation Case #4 when the grid exports and MG imports active	
	power to RLC test load. (a) Utility grid active power, (b) MG	
	active power, (c) RLC Test Load active power, (d) Utility grid	
	circuit breaker status, (e) MG circuit breaker status	81
4.33	Simulation Case #4 when zooming to the 3rd second operating	
	when fault was detected. (a) Utility grid active power, (b) MG active	
	power, (c) Unintentional Islanding Test Load active power,	
	(d) Utility grid circuit breaker status, (e) MG circuit breaker status	82
4.34	The maximum and minimum range of the OUV in Case #4,	
	(a) $135\% > Vg$, (b) $110\% > Vg$, (c) $85\% < Vg$. (d) $50\% < Vg$	83
4.35	Three-phase voltage analysis for Case #4 (a) Three phase voltage	
	at utility grid, (b) Three phase voltage at MG and (c) Three phase	
	voltage at Unintentional Islanding Test Load	84

4.36	The RMS of voltage and current in Case #4, (a) RMS voltage	
	at utility grid, (b) RMS voltage at MG, (c) RMS current at utility	
	grid, (d) RMS current at MG	84
4.37	Three-phase current analysis for Case #4 (a) Three phase current	
	at utility grid, (b) Three phase current at MG and (c) Three phase	
	current at Unintentional Islanding Test Load	85
4.38	Block diagram for simulation Case #5 under the grid export and	
	MG isolation	85
4.39	Simulation Case #1 when the grid exports and MG exports active	
	power to RLC test load. (a) Utility grid active power,	
	(b) MG active power, (c) Unintentional Islanding Test Load	
	active power, (d) Utility grid circuit breaker status, (e) MG circuit	
	breaker status	87
4.40	Simulation Case #5 when zooming to the 3rd second operating	
	when fault was detected. (a) Utility grid active power, (b) MG active	
	power, (c) Unintentional Islanding Test Load active power,	
	(d) Utility grid circuit breaker status, (e) MG circuit breaker status	88
4.41	The maximum and minimum range of the OUV in Case #5,	
	(a) 135% > Vg , (b) 110% > Vg, (c) 85% < Vg. (d) 50% < Vg	89
4.42	Three-phase voltage analysis for Case #5 (a) Three phase voltage	
	at utility grid, (b) Three phase voltage at MG and (c) Three phase	
	voltage at Unintentional Islanding Test Load	89
4.43	IEEE 15 bus radial distribution for Case 1	90
4.44	Circuit breaker transition status for Case 1 (a) UG Circuit Breaker	
	(b) MG Circuit Breaker (c) DG Circuit Breaker	91

4.45	Simulation Case 1, when the voltage drop to 20% of the nominal voltage	92
4.46	The maximum and minimum range of the OUV in Case 1	93
4.47	Three-phase voltage analysis for Case 1	93
4.48	IEEE 15 bus radial distribution for Case 2	94
4.49	Circuit breaker transition status for Case 2	95
4.50	Simulation of Case 2, when the three-phase voltage occured at $t = 3$	96
4.51	The maximum and minimum range of the OUV in Case 2	97
4.52	Three-phase voltage analysis for Case 2	97

LIST OF ABBREVIATIONS

AFD	Active Frequency Drift
AI	Artificial Intelligent
ANN	Artificial Neural Network
APS	Automatic Phase Shift
ARPS	Adaptive Reactive Power Shift
CERTS	Consortium for Electrical Reliability Technology Solution
CFC	Chloro-Fluro-Carbons
СОР	Change of Output Power
COROCOF	Comparison of Rate of Chane of Frequency
CO ₂	Carbon Dioxide
CHD	Current Harmonics Detection
CHP	Combined Heat & Power
DER	Distributed Energy Resources
DG	Distributed Generation
DISF	Detection of Impedance at Specific Frequency
DR	Distributed Resources
DP	Disperse Power
DT	Decision Tree
EMD	Empirical Mode Decomposition
EPS	Electric Power System
f	Frequency

FB	Frequency Bias
FJ	Frequency Jump
FL	Fuzzy Logic
FiT	Feed-in-Tariff
GDP	Gross Domestic Product
GEFS	General Electric Frequency Schemes
GWh	Giga Watt Hour
Hz	Hertz
II	Impedance Insertion
IM	Impedance Measurement
IDM	Islanding Detection Method
IEEE	Institute of Electrical and Electronic Engineers
KF	Kalman Filter
kW	kilo Watt
LL	Line-to-line
LN	Line-to-Neutral
LV	Low Voltage
MG	MicroGrid
MWh	Mega Watt Hour
MV	Medium Voltage
NJSMS	Nonlinear Jumping Slip Mode Frequency Shift
NDZ	Non-Detection Zone
NOX	Nitrous Oxide
NSCI	Negative-Sequence Current Injection
PCC	Point of Common Coupling

PF&VU	Positive Feedback and Voltage Unbalance
PJD	Phase Jump Detection
PLCC	Power Line Carrier Communication
PLS	Power Line Signaling
PMU	Phasor Measurement Unit
RE	Renewable Energy
RI	Reactance Insertion
RMS	Root Mean Square
ROCOF	Rate of Change of Output Frequency
ROCOFOP	Rate of Change of Output Frequency Over Power
ROCOP	Rate of Change of Output Power
RPBAM&ANN	Reactive Power-based Active Method and Artificial Neural Network
RPEED	Reactive Power Export Error Detection
SCADA	Supervisory Control and Data Acquisition
SEDA	Sustainability Energy Development Authority
SFS&Q-f	Hybrid Sandia Frequency Shift & Q-f
SMS	Slip Mode Frequency Shift
SOM	Self-Organizing Map
SO_2	Sulphur Dioxide
SPD	Signal Produced by Disconnect
ST	S-Transform
SVS	Sandia Voltage Shift
TNB	Tenaga Nasional Berhad
TTS	Transfer Trip Scheme
UFT	Unstable Frequency Trip

UOV	Under / Over Voltage
UOF	Under / Over Frequency
V	Voltage
VC&RPS	Voltage Change and Real Power Shift
VHD	Voltage Harmonics Distortion
VMV	Voltage Magnitude Variation
VOC	Volatile-Organic compounds
VPFC	Voltage and Power Factor Change
VS	Vector Shift
VSR	Vector Surge Relay
VU	Voltage Unbalance
V_{g}	Voltage at grid
V _{LL}	Voltage Line-to-Line
V _{LN}	Voltage Line-to-Neutral
WT	Wavelet Transform

LIST OF SYMBOLS

- Δf Frequency Difference
- ΔV Voltage Difference
- $\Delta \Phi$ Phase Difference
- Δ Delta
- Y_g Wye-Ground