
Master of Mechanical Engineering 
(Energy Engineering) 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Faculty of Mechanical Engineering 

PREDICTIVE STUDY OF FLUID FLOW THROUGH AN 
INTAKE SYSTEM RESTRICTOR OF A SINGLE-SEATER 

RACING CAR 

Ahmed Z. I. Zaqout 
 

2018 
 
 
 
 
 
 



I 
 

 
 

 

DECLARATION 

 

 

I declare that this thesis entitled “Predictive Study of Fluid Flow Through an Intake 

System Restrictor of a Single-Seater Racing Car” is the result of my own research except 

as cited in the references. The thesis has not been accepted for any degree and is not 

concurrently submitted in candidature of any other degree. 

 

 

Signature  :  

Name  : Ahmed Z. I. Zaqout 

Date   :  

  



II 
 

 

 

APPROVAL 

 

 

I hereby declare that I have read this dissertation/report and in my opinion this 

dissertation/report is sufficient in terms of scope and quality as a partial fulfillment of 

Master of Mechanical Engineering (Energy Engineering). 

 

 

 

Signature :  

Supervisor Name   : Dr. Ahmad Kamal Bin Mat Yamin 

Date  : 

  



III 
 

 

 

DEDICATION 

 

To 

 

My Mother And Father  

Who taught me to trust in Allah, believe that hard work always pays off and for 

supporting and encourging me to believe in myself 

 

My Brothers 

For being my guardians during my educational Journey 

 

Along with all hard working and respected  

Teachers 

 

  



IV 
 

 
 
 
 
 

ABSTRACT 

 

 

The society of Automotive Engineers conducts an annual student design competition 
referred to as Formula SAE (FSAE). Teams are limited to a 610 cc engine that is 
restricted by a 20 mm air restrictor. The restrictor limits the power output by reducing 
mass flow rate flowing to the engine. Thus, the aim of this project is to design and 
predict the flow behaviour of a flow restriction device to be installed in the single seater 
race car. The design consists of a converging part (nozzle) and a diverging part 
(diffuser) with the 20mm throat mandated by the FSAE rules being in the middle. The 
nozzle design was based on the work of T. Morel on axisymmetric wind tunnel 
contractions as a way to explore different aspects of the restrictor geometry criterion. 
While the diffuser geometry was obtained from previous optimizations. The simula t ion 
was carried out with the academic version of Ansys 17.2 Workbench which was 
conducted in 2D-axisymmetric geometry with isothermal process. Nozzle design 
comparison between contraction ratios of 16 and 9 were performed. The simula t ion 
applied the local mesh with appropriate controls in order to obtain correct predictions 
of the flow behaviour near the walls. Velocity and pressure contours, velocity vectors 
and surface monitors showed that the novel design with contraction ratio 16 displays 
superior pressure recovery characteristics than that of contraction ratio 9 with pressure 
difference of 12610 Pa and 15758 Pa respectively. However, there is always more 
room for improvements considering the design is in the development stage.  
Furthermore, based on the design criterion of the restrictor, separations are avoided 
completely for both designs.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.0 Background 

 The performance and emissions characteristics of a spark-ignition (SI) engine 

are improved from the perspective of the intake system when a fuel-air mixture is 

efficiently delivered and uniformly distributed to each of the combustion chambers 

over an RPM band. This involves designing an effective intake system.  

The society of Automotive Engineers conducts an annual student design 

competition referred to as Formula SAE (FSAE). Universities from all around the 

world strive as design teams to produce a wining automotive race car. To encourage 

creativity, the design teams are limited to a 610 cc engine that is restricted by a 20 mm 

air restrictor. The restrictor limits the power output of the by reducing mass flow rate 

flowing to the engine. Thus, a restrictor should be efficiently designed to allow 

maximum possible air flow and maintain minimum pressure difference across the 

restrictor.  

The typical 600 cc four-cylinder four-stroke Formula SAE engine has an output 

of about 80 horsepower with an intake restrictor installed and is fuel injected. Air 

travels through a throttle body and intake plenum before reaching individual runners 

that feed each cylinder. Figure 1.1. An optimized intake system will net the engine 

more airflow and more power; however, designing, machining, and testing several 
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intake systems can be costly. The design approach is essentially a process of trial and 

error. 

Computational fluid dynamics (CFD) flow modelling software such as ANSYS 

offers an alternative to the experimental method of design. CFD is based on computer 

simulation, where the governing equations of fluid motion (Navier-Stokes equation) 

are solved numerically. CFD allows designers to simulate a variety of intake profiles 

and flow conditions without having to machine multiple prototypes for practical flow 

testing. The cost savings found through CFD can be substantial, as the manufacturing 

cost of a single intake system restrictor, after material and machining time, can be 

overpriced. 

Over the years of the Formula SAE project, the air intake system had seen 

many improvements, pushing the engine to produce increasing amounts of power. 

However, there is always room for innovation. Unlike previous researchers, the 

venturi-type nozzle design will be replaced by a nozzle with a wall contour 

constructed of two matched cubic arcs. 

 

 

 

 

 

 

 

 

 

Figure 1.1 Intake System Restrictor 
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1.1  Problem Statement 

 An engine requires proper air-fuel ratio to work as per its design. Due to 20 

mm restrictor rule, the designed intake reduces to 20 mm for all four cylinders. This 

extreme modification reduces flow of air mass to the engine. When engine is running 

at low rpm of about 3000 rpm this required mass flow rate is compensated by increase 

in velocity of air through the nozzle. At such high speeds engine require much more 

air for combustion and thus mass flow rate should increase, but due to restrictor area 

being less air must pass with very high velocity to compensate or fill the engine with 

required amount of air. Thus, air tries to achieve maximum velocity through restrictor 

which gives rise to critical flow conditions. Thus, mass flow rate is a fixed parameter 

for 20 mm restrictor, which is used for calculations further for optimization of the 

nozzle. 

 

1.2 Statement of Purpose 

The purpose of this research is to simulate the fluid flow through an air 

restrictor consisting of a nozzle-diffuser design. The restrictor will be designed to give 

satisfactory pressure recovery and diminsh flow separations along the diffuser. In 

addition, The simulation will apply the local mesh with appropriate controls in order to 

obtain correct predictions of the flow behaviour near the walls. Velocity and pressure 

contours, velocity vectors and surface monitors will be demonstrated and discussed 

comparatively.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.0 Background 

The rules of the FSAE competition confines the engine’s power with a 

component designated as ‘’restrictor’’ which is a 20mm diameter opening. all the air 

entering the engine must pass through this restrictor. 

The air intake system plays a critical role on the performance of the engine. It 

is known that increasing the amount of air drawn into the combustion chamber 

increases the volumetric efficiency with the consideration of the range of RPMs.  

With a restrictor placed early in the air intake system, engine performance is 

being significantly compromised, as it is proportional to the volumetric efficiency of 

the engine system. 

Consequently, the air restrictor design must maximize the airflow that can be 

passed through it for the cylinders to take in as much air as possible.  

 

2.1 Restrictor Geometry 

The shape of a restrictor can be as simple as a plate with the 20mm hole 

machined into it, and placed anywhere along the air intake system. But, a lot of 

pressure will be lost downstream of the restrictor, if a simple orifice plate is placed. 

and the end influence is a reduced efficiency along the line of airflow. 
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In observing the flow of air through an orifice plate using a CFD tool, there is a 

point in the air stream where the diameter of the stream is the least, and fluid velocity 

is at its maximum, known as a vena contracta. Figure 2.1. 

 
Figure 2.1 Vena Contracta  

 

This convergence leads to a restriction of air flow that is smaller than the 

orifice plate opening itself. Therefore, there is a need to guide the air into the restrictor, 

instead of creating a sudden step that would have been in the case of the orifice plate. 

Thus, came the common design of a Convergent-Divergent Nozzle that replaces the 

orifice plate as an air intake restrictor.  

The CD Nozzle is a tube which, on one end, is exposed to the environmental 

atmosphere, tapers into the mandated restriction diameter, and then tapers out into the 

manifold chamber, and in doing so seeks to reduce the pressure loss across its length 

as much as possible. 

In numerous researches and literature, the recommended shape for the 

convergent part of the restrictor is an elliptical curve heading to the minimum diameter 

point, while a 3° to 7° taper on the divergent side of the restrictor would allow the air 

to recover the pressure lost as air flows into the contraction. 
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2.2  Simulation Research 

A paper by Pranav Anil Shinde [1] regarding the optimization of a FSAE car 

engine intake air restrictor compared two options to restrict air flow using a 20mm 

diameter constriction and these are both a simple orifice and a converging diverging 

nozzle. 

Table 2.2a: Differences between Orifice and C-D nozzle 

Parameters Orifice Nozzle 

Coefficient of Discharge 0.06 0.975 

Pressure Loss Medium Low 

Viscosity Effect High High 

Accuracy (% of full scale) 3 1 

Cost low Medium 

Manufacturing Easy Difficult 

 

 The comparison between these two restrictions, judging by the efficiency it 

was found that the converging diverging nozzle is the optimal choice. Consequently, 

the C-D nozzle with a throat diameter of 20 mm mandated by the competition was 

used in conjunction of a 38mm inlet and outlet diameters based on the widely used 

throttle body diameter.  

 For boundary conditions at outlet of venturi we can have either pressure, 

velocity or mass flow rate. Calculating pressure and velocity at outlet of venturi 

involves complex procedures and thus gives rise to some errors. Mass flow rate at 

outlet can be easily calculated by using choked flow equation. The mass flow rate was 

calculated to be 0.0703 assuming no losses in friction and turbulence. This result is 

supported with several papers previously made. [1] 
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 Ansys Fluent and Solidworks Softwares were simultaneously used to test the 

result of the CFD analysis. Since the parameters of the C-D nozzle were established, 

dimensions of venturi which will provide minimum pressure drop across the venture 

was investigated by assuming some dimensions of diverging and converging angles 

via basic knowledge of functioning of venturi. CAD modeling was done using 

Solidworks 2014 and then analyzed in Flow Simulation for following boundary 

conditions: 

Inlet: Total Pressure = 101325 Pa 

Outlet: Mass flow rate = 0.0703 kg/s 

Iterations carried out on converging and diverging angles are as indicated in below 

Table 2.2b with pressure difference: 

Table 2.2b: Iterations on C-D angles with pressure difference results 

Iteration No 
Converging angle 

(degrees) 

Diverging Angle 

(degrees) 

Pressure 

Difference (Pa) 

1 12 6 8560.24 

2 14 6 9161.78 

3 16 6 9256.88 

4 18 6 10009.65 

 

 Based on the research objective of Pranav Anil Shinde [1], maximum pressure 

recovery is achieved at converging angle of 12 degrees and diverging angle of 6 

degrees. Diverging cone angle was set to 6 degrees as it was found that any increase or 

decrease in angle caused streamline disturbance and drop in pressure at downstream 

side. 

 The work of Anshul Singhal, Mallika Parveen [2], which is similar objective 

wise to [1], also agrees that the best general design to achieve maximum possible mass 
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flow rate, minimize the pressure loss through the flow restriction device is to use the 

Venturi design. From the data gathered through the numerous simulations, they found 

that the values for converging angle and diverging angle of the Venturi are 18 degrees 

and 6 degrees respectively, which is in turn supports the result obtained on the diffuser 

6 degrees half angle.  

Mark Claywell and Donald Horkheimer [3] paper studied the effects of 

different diffuser geometries and plenum dimensions using WAVE, and then a 

sequence of different diffuser angles were simulated using WAVE-VECTIS. The 

restrictors in the simulations utilized 7°, 5.5°, 4°, and 3° diffuser half-angles. These 

diffuser half-angles were investigated in WAVE using the Conical-Spline Intake 

figure 2.2a. Several geometry configurations were tested, including changing diffuser 

half-angle while using the same plenum. The restrictors were then inspected by 

looking at items such as volumetric efficiency along the diffuser. The paper consisted 

of several cases, however, the interest is on two cases only. 

 

 

 

 

 

 

 

 

 

Figure 2.2a: Conical-Spline Intake – Basic Simulation Model 
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In Case 1, the exact same plenum was used for all the diffuser half-angles 

simulated. Since same plenum was used, and all the diffusers must couple to the same 

plenum, this made the diffuser outlet diameter a fixed dimension.  

One geometric effect of different diffuser half-angles is as the diffuser angle is 

increased from 3° to 7°, the length of the diffuser decreases. The plenum volume and 

plenum length are held constant. Both the total length and total volume after the throat 

changes for each restrictor angle, but the change is caused through using different 

diffuser angles. The relative dimensions are noted in Table 2.2c below. 

Table 2.2c: Dimensions for intake restrictor case 1 

Diffuser half angle 3o 4o 5.5o 7o 

Diffuser exit diameter (mm) 72.90 72.90 72.90 72.90 

Diffuser length (mm) 504.7 378.2 274.7 215.4 

Diffuser volume (L) 0.95 0.71 0.52 0.40 

Plenum volume (L) 2.26 2.26 2.26 2.26 

Plenum length (mm) 160.5 160.5 160.5 160.5 

Total length from throat to plenum bottom (mm) 665.2 538.7 435.2 375.9 

Total volume after throat (L) 3.21 2.97 2.78 2.66 

 

The simulation results in Figure 2.2b, shows the change in Volumetric 

Efficiency as the diffuser half angle is modified, using the same plenum. There are 

significant shifts in the VE curve across the rev range of the engine. As the RPM 

increases, the VE profiles tend to come together.  
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Figure 2.2b: Volumetric Efficiency for Various Diffuser Half-Angles with Constant 
Exit Diameter 

 

The 5.5° restrictor has more volume than the 7°, despite that, the 5.5° shows a 

much lower VE from 11,000 to 14,000 RPM. The 4° restrictor also exhibits a similar 

behaviour, it has lower VE than the 7° restrictor from 12,250 to 13,000 RPM. This 

points that there is more to the determination of a VE curve than plenum volume or the 

total volume after the throat. In addition, the fact that the length is changing with 

different half angles is not negligible considering the VE profile.  

In case 2, the length of the diffuser was not allowed to change, set to 216.4 mm 

from the throat to the diffuser exit. The plenum length was also fixed to the same 

length as in Case 1, at 160.5 mm. In Case 2, the diffuser exit diameter was determined 

by the diffuser angle and the pre-set diffuser length of 216.5 mm. As the exit diameter 

changed for each case, the plenum was customized to some degree to keep the plenum 

volume constant at 2.25 to 2.26 litres for each case. While the distribution of volume 

(i.e. the cross section) along the length of the plenum will differ slightly for each 
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diffuser angle case, the plenums are very alike. The base diameter of the plenum was 

also not changed. Table 2.2d, shows the comparative dimensions for Case 2. 

Table 2.2d: Dimensions for intake restrictor case 2 

Diffuser half angle 3o 4o 5.5o 7o 

Diffuser exit diameter (mm) 42.578 50.126 61.485 72.898 

Diffuser length (mm) 215.4 215.4 215.4 215.4 

Diffuser volume (L) 0.17 0.22 0.31 0.40 

Plenum volume (L) 2.25 2.25 2.26 2.26 

Plenum length (mm) 160.5 160.5 160.5 160.5 

Total length from throat to plenum bottom (mm) 375.9 375.9 375.9 375.9 

Total volume after throat (L) 2.423 2.474 2.564 2.663 

 

The simulation results in Figure 2.2c, in contrast to Case 1, the VE curves in 

Case 2 generally have the same profile and manifestation and have minor differences 

in VE. When volume changes are made to the diffuser, there is a necessity to evaluate 

if VE changes are due merely from the diffuser change or other simultaneous plenum 

changes.  
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Figure 2.2c: VE of Conical-Spline Intake with Different Diffuser Angles and Constant 
Total Intake Height 

 

If changes in plenum volume are considered in restrictor performance, one 

must also evaluate the impact of length or geometry changes to obtain that volume 

increase. Case 1 and Case 2 prove this point. Additionally, Case 1 and Case 2 show the 

difficulty in comparing multiple intakes at only a few rpm points if some concept of 

the entire VE curve is not known. [3] 

 

2.3 Practical Research 

In the paper of  Logan M. Shelagowski and Thomas A. Mahank [4], two intake 

system restrictor prototypes: design I and II, Figure 2.3a. The first was designed and 

built based on a paper by Byam et al. [5] and a design study by Jawad et al. [6]. It 

features an 8o incline taper beginning at the (0.787 inch – 20 mm) throat and gradually 

transitioning to the outlet. The inlet shape is bell mouthed. The second restrictor was 

designed and built upon conclusion of this CFD study. It consists of a 6.3o incline 




