

# **Faculty of Electrical Engineering**

# REAL - TIME HARMONIC SIGNAL DETECTION AND SOURCES LOCATION IDENTIFICATION SYSTEM FOR POWER DISTRIBUTION SYSTEM

Nabilah binti Mat Kassim

**Master of Science in Electrical Engineering** 

2017

# REAL – TIME HARMONIC SIGNALS DETECTION AND SOURCES LOCATION IDENTIFICATION SYSTEM FOR POWER DISTRIBUTION SYSTEM

# NABILAH BINTI MAT KASSIM

A thesis submitted in fulfilment of the requirements for the degree of Master of Science in Electrical Engineering

**Faculty of Electrical Engineering** 

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2017

#### **DECLARATION**

I declare that this thesis entitled "Real – Time Harmonic Signal Detection and Sources Location Identification System for Power Distribution System" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in the candidature of any other degree.

| Signature | ː                        |
|-----------|--------------------------|
| Name      | NABILAH BINTI MAT KASSIM |
| Date      | . 20 NOVEMBER 2017       |

# **APPROVAL**

| I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms |
|----------------------------------------------------------------------------------------------------|
| of scope and quality for award of Master of Science in Electrical Engineering.                     |

| Signature | :                                     |
|-----------|---------------------------------------|
| Name      | . DR. AIDA FAZLIANA BINTI ABDUL KADIR |
| Date      | . 20 NOVEMBER 2017                    |

#### **DEDICATION**

This is special dedicated to

my parents,

Mat Kassim bin Ya'acob & Fatimah Binti Ahmad Kassim,

My beloved husband,

Mohamad Sharif bin Ishak,

and my family for their continuous love and prayers,

also to all my friends for their patient, kindness and cooperation .

I wish to thanks all of you for your support during my studies in UTeM.

May God bless all of them.

#### **ABSTRACT**

One of the major issues of power quality is harmonic distortion, which refers to the distortion in the waveforms of the power system. This issue is even more prevalent nowadays, as new electrical power equipment is being constantly developed and introduced into the market, and these systems contribute towards the distortion of the electrical power supply. High levels of harmonic distortion may cause excessive heating of the components in the electrical power equipment as a result of current surge, which leads to equipment failure. This in turn, increases downtime in production facilities, and may lead to severe financial losses. Thus, it is essential to trace and identify harmonic sources in the power system so that precautionary steps can be taken to prevent the detrimental impact of harmonic distortion. Therefore, this research is focused on analysing harmonic signals and identifying the location of harmonic source by utilizing periodogram and spectrogram techniques. The harmonic signals are generated from the rectifier load to the test system using MATLAB/Simulink program. There are two forms of representation used for the harmonic signals generated in this study which are power spectrum, and time-frequency representation. The former and latter representation is obtained from the periodogram and spectrogram technique, respectively. The following signal parameters are also estimated, namely, the root mean square voltage, root mean square current, fundamental root mean square for voltage and current, total harmonic distortion, total non-harmonic distortion, and total waveform distortion for voltage and current. The harmonic signals are detected according to the procedure outlined in the IEEE Standard 519-2014, and the equations for harmonic source identification are formulated based on the characteristics of the harmonic source either at the downstream, upstream or both sides of the point of common coupling in the test system. The performance of the harmonic source identification techniques is verified using four test cases and the radial system network. A real-time monitoring system is developed upon completion of the verification process in order to detect the harmonic signals and identify the location of the harmonic source in an actual power system. A total of 25 signals with different characteristics are generated, tested and evaluated in order to determine the accuracy of the signal parameters of the monitoring system. The average mean absolute percentage error is determined to be 0.711 percentage. Based on the results, it can be concluded that the real-time harmonic signal detection and source identification system developed in this study is reliable and accurate to analyse harmonic signals, and identify the location of harmonic sources in power systems.

#### **ABSTRAK**

Salah satu isu utama kualiti kuasa adalah herotan harmonik, yang merujuk kepada penyelewengan dalam bentuk gelombang sistem kuasa. Isu ini adalah lebih berleluasa pada masa kini, peralatan kuasa elektrik yang baru sedang dikembangkan dan diperkenalkan di pasaran, dan sistem ini menyumbang kepada gangguan pada bekalan kuasa elektrik. Tahap herotan harmonik yang tinggi boleh menyebabkan panas berlebihan kepada peranti peralatan kuasa elektrik serta mengakibatkan lonjakan arus elektrik seperti membawa kepada kegagalan peralatan. Seterusnya, meningkatkan lengahan masa kepada peralatan pengeluaran, dan mungkin membawa kepada kerugian kewangan yang teruk. Oleh itu, adalah penting untuk mengesan dan mengenalpasti sumber harmonik dalam sistem kuasa supaya langkah berjaga-jaga yang boleh diambil untuk mengelakkan kesan yang memudaratkan daripada herotan harmonik. Dengan yang demikian, kajian ini tertumpu kepada menganalisis isyarat harmonik dan mengenalpasti lokasi sumber harmonik dengan menggunakan teknik periodogram dan spectrogram. Isyarat harmonik dijana daripada beban arus penerus kepada sistem ujian menggunakan program MATLAB / Simulink. Terdapat dua bentuk perwakilan yang digunakan untuk janaan isyarat harmonik di dalam kajian ini seperti spektrum kuasa dan perwakilan masa frekuensi. Perwakilan pertama dan kedua diperolehi daripada teknik periodogram dan spectrogram. Parameter isyarat berikut juga dianggarkan, iaitu punca min kuasa dua voltan, punca min kuasa dua arus, asas punca min kuasa dua daripada voltan dan arus, asas jumlah herotan harmonik, jumlah herotan bukan harmonik, dan jumlah herotan bentuk gelombang daripada voltan dan arus. Isyarat harmonik dikesan mengikut prosedur yang digariskan dalam IEEE Standard 519-2014, dan persamaan untuk mengenalpasti sumber harmonik yang dirumuskan berdasarkan kepada ciri-ciri sumber harmonik sama ada di hilir, hulu atau kedua-dua belah titik gandingan bersama dalam sistem ujian. Prestasi teknik pengenalanpastian sumber harmonik disahkan menggunakan empat kes ujian dan rangkaian sistem jejarian. Satu sistem pemantauan masanyata dibangunkan setelah selesai proses pengesahan untuk mengesan isyarat harmonik dan mengenalpasti lokasi sumber harmonik di dalam sistem kuasa yang sebenar. Sebanyak 25 isyarat dengan ciri-ciri yang berbeza yang dihasilkan, diuji dan dinilai untuk menentukan ketepatan parameter isyarat sistem pemantauan. Purata min mutlak peratusan kesilapan ini telah dikira dengan nilai peratusan 0.711. Berdasarkan hasil kajian, hal ini dapat disimpulkan bahawa sistem masa-nyata pengesanan isyarat dan mengenalpasti sumber lokasi harmonik yang dibangunkan dalam kajian ini adalah boleh diguna pakai dan menganalisis isyarat harmonik yang tepat, dan dapat mengenalpasti lokasi sumber harmonik dalam sistem kuasa.

#### **ACKNOWLEDGEMENTS**

Bismillaahirrahmaanirahim...

Praise be all to Allah SWT, the Most Gracious, the Most Merciful Shalawat and salam be to Rasulullah Muhammad saw. By the grace of Allah SWT, this research is finally completed to fulfil the requirements for Master of Electrical Engineering.

I would like to take this great opportunity and my warmest gratitude to my supervisor Dr. Aida Fazliana and Prof Madya Dr. Abdul Rahim Bin Abdullah for their guidance, concern and strong support especially during the difficulties that I faced throughout the completion of this research. They enthusiasm has been a great sources of inspiration to me. Thanks to Ministry of Education (MOE) and Universiti Teknikal Malaysia Melaka (UTeM) for providing the research grants PJP/2014/FKE (17C)/S01365 and RAGS/2014/TK103/FKE/B00050 to support the financial project.

Million thanks to my beloved husband, parents and family for their patience, prayers and support during my study. Without them, this research would not have been possible.

# **TABLE OF CONTENTS**

|     |         |               |                                                   | PAGE        |
|-----|---------|---------------|---------------------------------------------------|-------------|
| DE  | CLAR    | ATION         |                                                   |             |
| AP] | PROVA   | <b>\</b> L    |                                                   |             |
| DE  | DICAT   | ION           |                                                   |             |
| AB  | STRAC   | CT            |                                                   | i           |
| AB  | STRAF   | ζ             |                                                   | ii          |
| AC  | KNOW    | LEDG          | EMENTS                                            | iii         |
| TA  | BLE O   | F CON         | ΓENTS                                             | iv          |
| LIS | ST OF T | <b>FABLES</b> | S                                                 | vii         |
| LIS | ST OF I | FIGURE        | ES                                                | ix          |
| LIS | ST OF A | <b>ABBRE</b>  | VIATIONS                                          | xvii        |
| LIS | ST OF A | APPENI        | DICES                                             | xix         |
| LIS | ST OF I | PUBLIC        | CATIONS                                           | XX          |
| СН  | APTEI   | ₹             |                                                   |             |
| 1.  |         | RODUC         | TION                                              | 1           |
| _,  | 1.1     | Overv         |                                                   | 1           |
|     | 1.2     |               | em Statement                                      |             |
|     | 1.3     |               | tives of Research                                 | 2<br>5<br>5 |
|     | 1.4     |               | of Research                                       | 5           |
|     | 1.5     | -             | ibutions of the Research                          | 8           |
|     | 1.6     | Organ         | nization of the Thesis                            | 10          |
| 2.  | LITE    | ERATU         | RE REVIEW                                         | 11          |
|     | 2.1     | Overv         | riew                                              | 11          |
|     | 2.2     | Harmo         | onics in Power Systems                            | 11          |
|     |         | 2.2.1         | Harmonic Sources                                  | 12          |
|     |         | 2.2.2         | Effect of Harmonic Sources                        | 13          |
|     |         | 2.2.3         | Harmonic Standards                                | 14          |
|     | 2.3     |               | onic Signal Analysis                              | 19          |
|     |         |               | Periodogram                                       | 19          |
|     |         |               | Short-time Fourier Transform                      | 20          |
|     |         |               | Spectrogram                                       | 21          |
|     |         |               | Wavelet Transform                                 | 23          |
|     |         |               | Independent Component Analysis (ICA)              | 23          |
|     |         | 2.3.6         | Harmonic State Estimation (HSE) and Kalman Filter | 24          |
|     | 2.4     |               | Techniques                                        | 25          |
|     |         | 2.4.1         | Power Flow Direction Technique                    | 26          |
|     |         | 2.4.2         | Superposition Technique                           | 27          |
|     |         | 2.4.3         | 1                                                 | 27          |
|     |         | 2.4.4         | 1                                                 | 29          |
|     |         | 2.4.5         | IEEE Standard Approach                            | 30          |
|     | 2.5     | Summ          | nary                                              | 31          |

| 3. | RESI | EARCH METHODOLOGY                                                                         | 33  |
|----|------|-------------------------------------------------------------------------------------------|-----|
|    | 3.1  | Overview                                                                                  | 33  |
|    | 3.2  | Network System Modelling                                                                  | 35  |
|    | 3.3  | Harmonic Signal Detection Analysis                                                        | 38  |
|    |      | 3.3.1 Periodogram Technique                                                               | 38  |
|    |      | 3.3.2 Spectrogram Technique                                                               | 39  |
|    | 3.4  | Signal Parameters                                                                         | 42  |
|    |      | 3.4.1 Instantaneous RMS Voltage                                                           | 43  |
|    |      | 3.4.2 Instantaneous Fundamental RMS Voltage                                               | 43  |
|    |      | 3.4.3 Instantaneous Total Harmonic Distortion of Voltage                                  | 44  |
|    |      | 3.4.4 Instantaneous Total Interharmonic Distortion of Voltage                             | 44  |
|    |      | 3.4.5 Power Measurement                                                                   | 45  |
|    | 3.5  | Harmonic Signal Detection                                                                 | 46  |
|    | 3.6  | Harmonic Source Identification                                                            | 48  |
|    | 3.7  | Accuracy of Signal Parameters                                                             | 48  |
|    | 3.8  | System Development                                                                        | 49  |
|    |      | 3.8.1 Voltage and Current Transducers                                                     | 50  |
|    |      | 3.8.2 USB Interface DAQ Card                                                              | 51  |
|    | 2.0  | 3.8.3 Visual Basic 2010 Software                                                          | 52  |
|    | 3.9  | Verification of Signal Analysis                                                           | 53  |
|    | 3.10 | Summary                                                                                   | 55  |
| 4. | RESU | JLT AND DISCUSSION                                                                        | 57  |
|    | 4.1  | Overview                                                                                  | 57  |
|    | 4.2  | Harmonic Signal Detection Analysis                                                        | 57  |
|    |      | 4.2.1 Harmonic Signal Detection Analysis Using the Periodogram                            | 58  |
|    |      | Technique                                                                                 |     |
|    |      | 4.2.2 Harmonic Signal Detection Analysis Using the Spectrogram                            | 59  |
|    |      | Technique                                                                                 |     |
|    | 4.3  | Harmonic Source Identification Analysis                                                   | 61  |
|    |      | 4.3.1 Harmonic Source Identification Analysis Using the                                   | 62  |
|    |      | Periodogram Techique                                                                      |     |
|    |      | 4.3.2 Harmonic Source Identification Analysis Using the                                   | 65  |
|    |      | Spectrogram Techique                                                                      | 66  |
|    |      | 4.3.2.1 Analysis of Non-Existent Harmonic Source Using                                    | 66  |
|    |      | the Spectrogram Technique                                                                 | 71  |
|    |      | 4.3.2.2 Analysis of Harmonic Source Downstream of the PCC Using the Spectrogram Technique | 71  |
|    |      | 4.3.2.3 Analysis of Harmonic Source Upstream of the PCC                                   | 76  |
|    |      | Using the Spectrogram Technique                                                           | 70  |
|    |      | 4.3.2.4 Analysis of Harmonic Sources Upstream and                                         | 81  |
|    |      | Downstream of the PCC Using the Spectrogram                                               | 01  |
|    |      | Technique                                                                                 |     |
|    | 4.4  | Verification of Harmonic Signal Detection and Harmonic Source                             | 87  |
|    |      | Identification Analysis                                                                   |     |
|    |      | 4.4.1 Verification Using the Radial Power System Network                                  | 87  |
|    |      | 4.4.2 Verification Using the Four-Test-Condition System Network                           | 110 |
|    |      |                                                                                           |     |

|    | 4.5        | Development of Real-Time Harmonic Signal Detection and            | 130  |
|----|------------|-------------------------------------------------------------------|------|
|    |            | Harmonic Source Location Identification System                    |      |
|    |            | 4.5.1 System Software and Hardware                                | 131  |
|    |            | 4.5.2 Analysis of Real-Time Harmonic Signal Detection and         | 133  |
|    |            | Harmonic Source Location Identification System                    |      |
|    |            | 4.5.3 Data Logging                                                | 137  |
|    | 4.6        | Verification of the Harmonic Signal Detection and Harmonic Source | 139  |
|    |            | Location Identification System                                    |      |
|    |            | 4.6.1 Comparison of Signal Parameters from Simulations and        | 139  |
|    |            | Experiments                                                       |      |
|    |            | 4.6.2 Verification of Harmonic Signal Detection and Harmonic      | 147  |
|    |            | Source Location Identification System by Experiment               |      |
|    |            | 4.6.2.1 Case 1: Non-Existent Harmonic Source                      | 148  |
|    |            | 4.6.2.2 Case 2: Harmonic Source Downstream of the PCC             | 150  |
|    |            | 4.6.2.3 Case 3: Harmonic Source Upstream of the PCC               | 153  |
|    |            | 4.6.2.4 Case 4: Harmonic Sources Upstream and                     | 155  |
|    |            | Downstream of the PCC                                             |      |
|    | 4.7        | Summary                                                           | 158  |
| _  | CON        | TOTALISTONIS AND DECOMMENDATIONS FOR EVIDENDE                     | 1.00 |
| 5. | WOI        | ICLUSIONS AND RECOMMENDATIONS FOR FURTURE                         | 160  |
|    | 5.1        | Conclusions                                                       | 160  |
|    | 5.1        | Achievement of Research Objectives                                | 160  |
|    | 5.2        | Significant Contributions of Research                             | 162  |
|    | 5.3<br>5.4 | Recommendations for Future Work                                   | 163  |
|    | 3.4        | Recommendations for Future work                                   | 103  |
| RE | FERE       | NCES                                                              | 164  |
|    | PENDI      |                                                                   | 181  |
|    |            |                                                                   |      |

# LIST OF TABLES

| TABLE | DESCRIPTION                                                           | PAGE |
|-------|-----------------------------------------------------------------------|------|
| 2.1   | Typical characteristics of waveform distortions                       | 15   |
| 2.2   | Phase voltage thresholds                                              | 15   |
| 2.3   | Harmonic voltage distortion limits                                    | 16   |
| 2.4   | Compatibility limits: voltage harmonics (Un %) in low-voltage         | 18   |
|       | industrial networks (IEC-61000-2-4)                                   |      |
| 3.1   | Type of load in the power system used to identify the locations of    | 36   |
|       | harmonic sources                                                      |      |
| 3.2   | Frequency bands for the spectrogram technique                         | 41   |
| 3.3   | Features available in the real-time harmonic signal detection and     | 53   |
|       | harmonic source location identification system                        |      |
| 4.1   | Magnitudes of the impedance power spectrum for Case 1 using the       | 70   |
|       | spectrogram technique                                                 |      |
| 4.2   | Magnitudes of the impedance power spectrum for Case 2 using the       | 75   |
|       | spectrogram technique                                                 |      |
| 4.3   | Magnitudes of the impedance power spectrum for Case 3 using the       | 80   |
|       | spectrogram technique                                                 |      |
| 4.4   | Magnitudes of the impedance power spectrum for Case 4 using the       | 85   |
|       | spectrogram technique                                                 |      |
| 4.5   | Characteristics of the impedance power spectrum for harmonic source   | 86   |
|       | location identification using the spectrogram technique               |      |
| 4.6   | Simulation results for the radial power system network used to verify | 109  |
|       | harmonic signal detection and harmonic source location identification |      |
|       | analysis                                                              |      |
| 4.7   | Field test results of the four-test-condition system network used to  | 129  |
|       | verify harmonic signal detection and harmonic source location         |      |
|       | identification analysis                                               |      |

| TABLE | DESCRIPTION                                                           | PAGE |
|-------|-----------------------------------------------------------------------|------|
| 4.8   | MAPE and average deviation of MAPE values of the voltage signal       | 146  |
|       | parameters                                                            |      |
| 4.9   | Statistical parameters of the MAPE values for the MATLAB simulation   | 146  |
|       | and real-time system                                                  |      |
| 4.10  | Rules used to identify the locations of harmonic sources based on the | 147  |
|       | characteristics of the impedance power spectrum                       |      |

# LIST OF FIGURES

| FIGU | JRE DESCRIPTION                                                              | PAGI |
|------|------------------------------------------------------------------------------|------|
| 2.1  | Fourier series representation of a distorted waveform                        | 12   |
| 2.2  | Current distortion caused by a non-linear load                               | 13   |
| 2.3  | Types of harmonic signal analysis techniques                                 | 19   |
| 2.4  | Norton equivalent circuit of a utility-customer interface                    | 26   |
| 2.5  | Utility-end user interface: (a) Thevenin equivalent circuit and (b)          | 28   |
|      | determination of harmonic source contribution                                |      |
| 3.1  | Research framework used to develop the real-time harmonic signal             | 34   |
|      | detection and harmonic source location identification system                 |      |
| 3.2  | Full-wave rectifier with current source load: (a) the circuit, (b) waveform, | 35   |
|      | showing the line voltage and line current, where the line current is a       |      |
|      | square wave, and (c) spectrum of the line current                            |      |
| 3.3  | System modelling of harmonic Sources: (a) Case 1, (b) Case 2, (c) Case       | 37   |
|      | 3, and (d) Case 4                                                            |      |
| 3.4  | Location of the PCC point at the secondary side of the transformer where     | 38   |
|      | multiple end users are served                                                |      |
| 3.5  | (a) Hanning window function and (b) characteristic of Hanning windows        | 42   |
| 3.6  | Flow chart of the rules used for harmonic signal detection                   | 47   |
| 3.7  | Block diagram of the real-time harmonic signal detection and harmonic        | 50   |
|      | source location identification system                                        |      |
| 3.8  | Photograph of the (a) current transducer and (b) voltage transducer          | 50   |
| 3.9  | Schematic diagram of the (a) NI USB-6008/6009 Pin Out DAQ card and           | 51   |
|      | (b) NI USB-6008/6009 analogue input circuitry                                |      |
| 3.10 | Field tests using the LabVolt panel at the Power Electronics Laboratory      | 54   |
| 3.11 | Linear and non-linear loads in a radial power system network                 | 55   |
| 4.1  | Periodogram analysis from simulation for (a) harmonic signal and its (b)     | 59   |
|      | harmonic voltage power spectrum                                              |      |

4 15

technique

Analysis of harmonic sources at upstream and downstream of the PCC:

(a) current signal and (b) current TFR obtained using the spectrogram

83

| 4.39 | Signal parameters of the voltage signal for harmonic source (rectifier   | 117 |
|------|--------------------------------------------------------------------------|-----|
|      | load) downstream of the PCC in the system network from experiment:       |     |
|      | (a) instantaneous RMS voltage, (b) instantaneous RMS fundamental         |     |
|      | voltage, (c) instantaneous THD of voltage, and (d) instantaneous TiHD    |     |
|      | of voltage                                                               |     |
| 4.40 | Power spectrum of (a) voltage, (b) current, and (c) impedance obtained   | 118 |
|      | using the spectrogram technique for harmonic source (rectifier load)     |     |
|      | downstream of the PCC in the system network from experiment              |     |
| 4.41 | Analysis of voltage signal for harmonic source (rectifier load) upstream | 119 |
|      | of the PCC in the system network from experiment: (a) voltage signal     |     |
|      | and (b) voltage TFR obtained using the spectrogram technique             |     |
| 4.42 | Analysis of current signal for harmonic source (rectifier load) upstream | 120 |
|      | of the PCC in the system network from experiment: (a) current signal     |     |
|      | and (b) current TFR obtained using the spectrogram technique             |     |
| 4.43 | Signal parameters of the voltage signal for harmonic source (rectifier   | 121 |
|      | load) upstream of the PCC in the system network from experiment: (a)     |     |
|      | instantaneous RMS voltage, (b) instantaneous RMS fundamental             |     |
|      | voltage, (c) instantaneous THD of voltage, and (d) instantaneous TiHD    |     |
|      | of voltage                                                               |     |
| 4.44 | Power spectrum of (a) voltage, (b) current, and (c) impedance obtained   | 123 |
|      | using the spectrogram technique for harmonic source (rectifier load)     |     |
|      | upstream of the PCC in the system network from experiment                |     |
| 4.45 | Analysis of voltage signal for harmonic sources (rectifier loads)        | 124 |
|      | upstream and downstream of the PCC in the system network from            |     |
|      | experiment: (a) voltage signal and (b) voltage TFR obtained using the    |     |
|      | spectrogram technique                                                    |     |
| 4.46 | Analysis of current signal for harmonic sources (rectifier loads)        | 125 |
|      | upstream and downstream of the PCC in the system network from            |     |
|      | experiment: (a) current signal and (b) current TFR obtained using the    |     |
|      | spectrogram technique                                                    |     |

| 4.47 | Signal parameters of the voltage signal for harmonic sources (rectifier | 126 |
|------|-------------------------------------------------------------------------|-----|
|      | loads) upstream and downstream of the PCC in the system network from    |     |
|      | experiment: (a) instantaneous RMS voltage, (b) instantaneous            |     |
|      | fundamental RMS voltage, (c) instantaneous THD of voltage, and (d)      |     |
|      | instantaneous TiHD of voltage                                           |     |
| 4.48 | Power spectrum of (a) voltage, (b) current, and (c) impedance obtained  | 128 |
|      | using the spectrogram technique for harmonic sources upstream and       |     |
|      | downstream of the PCC in the system network from experiment             |     |
| 4.49 | Flow chart showing the operating principle of the real-time harmonic    | 131 |
|      | signal detection and harmonic source location identification system.    |     |
| 4.50 | Real-time harmonic signal detection and harmonic source identification  | 132 |
|      | system: (a) system software (GUI) and (b) system hardware               |     |
| 4.51 | Waveform of (a) voltage signal (red) and (b) current signal (blue)      | 133 |
|      | obtained using the real-time harmonic signal detection and harmonic     |     |
|      | source location identification system                                   |     |
| 4.52 | Instantaneous RMS voltage and instantaneous fundamental RMS             | 134 |
|      | voltage obtained using the real-time harmonic signal detection and      |     |
|      | harmonic source location identification system                          |     |
| 4.53 | Instantaneous total harmonic distortion and instantaneous total         | 134 |
|      | interharmonic distortion of voltage obtained using the real-time        |     |
|      | harmonic signal detection and harmonic source location identification   |     |
|      | system                                                                  |     |
| 4.54 | Power spectrum of (a) voltage, (b) current, and (c) impedance obtained  | 135 |
|      | using the real-time harmonic signal detection and harmonic source       |     |
|      | location identification system                                          |     |
| 4.55 | 'Harmonic Information' panel on the GUI of the real-time harmonic       | 136 |
|      | signal detection and harmonic source location identification system     |     |
| 4.56 | 'Power Quality Parameters' panel on the GUI of the real-time harmonic   | 137 |
|      | signal detection and harmonic source location identification system     |     |
| 4.57 | Data logging panel with (a) record button, (b) view file button and (c) | 138 |
|      | example of a data log file                                              |     |

| FIGUR | E DESCRIPTION                                                                                                                                                                                               | PAGE |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 4.58  | Voltage signals obtained from MATLAB simulation (red) and real-time system (blue) for harmonic source downstream of the PCC                                                                                 | 140  |
| 4.59  | Instantaneous RMS voltage and fundamental RMS voltage obtained from MATLAB simulation                                                                                                                       | 140  |
| 4.60  | Instantaneous RMS voltage and instantaneous fundamental RMS voltage obtained from real-time system                                                                                                          | 141  |
| 4.61  | Instantaneous THD and TiHD of voltage obtained from MATLAB simulation                                                                                                                                       | 141  |
| 4.62  | Instantaneous THD and TiHD of voltage obtained from real-time system                                                                                                                                        | 142  |
| 4.63  | Comparison of voltage signal parameters between theoretical calculation, MATLAB simulation and real-time system: (a) RMS voltage , (b) fundamental RMS voltage, (c) THD of voltage, and (d) TiHD of voltage | 143  |
| 4.64  | Comparison of power quality parameters between theoretical calculation, MATLAB Simulation and real-time system: (a) active power, (b) reactive power, (c) apparent power, and (d) power factor              | 144  |
| 4.65  | Comparison of the MAPE values of the voltage signal parameters between MATLAB simulation and real-time system                                                                                               | 145  |
| 4.66  | Voltage (red) and current (blue) waveforms for Case 1                                                                                                                                                       | 148  |
| 4.67  | Voltage signal parameters for Case 1: (a) Instantaneous RMS voltage and instantaneous fundamental RMS voltage, and (b) instantaneous THD and TiHD of voltage                                                | 149  |
| 4.68  | Power spectrum of (a) voltage, (b) current, (c) impedance, and (d) harmonic information for Case 1                                                                                                          | 150  |
| 4.69  | Voltage (red) and current (blue) waveforms for Case 2                                                                                                                                                       | 151  |
| 4.70  | Voltage signal parameters for Case 2: (a) instantaneous RMS voltage and instantaneous fundamental RMS voltage and (b) instantaneous THD and TiHD of voltage                                                 | 152  |
| 4.71  | Power spectrum of (a) voltage, (b) current, (c) impedance, and (d) harmonic information for Case 2                                                                                                          | 153  |
| 4.72  | Voltage (red) and current (blue) waveforms for Case 3                                                                                                                                                       | 153  |

| FIGUR | E DESCRIPTION                                                                                                                                               | PAGE |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 4.73  | Voltage signal parameters for Case 3: (a) Instantaneous RMS voltage and instantaneous fundamental RMS voltage and (b) Instantaneous THD and TiHD of voltage | 154  |
| 4.74  | Power spectrum of (a) voltage, (b) current, (c) impedance, and (d) harmonic information for Case 3                                                          | 155  |
| 4.75  | Voltage (red) and current (blue) waveforms for Case 4                                                                                                       | 156  |
| 4.76  | Voltage signal parameters for Case 4: (a) instantaneous RMS voltage and instantaneous fundamental RMS voltage and (b) instantaneous THD and TiHD of voltage | 156  |
| 4.77  | Power spectrum of (a) voltage, (b) current, (c) impedance, and (d) harmonic information for Case 4                                                          | 157  |

#### LIST OF ABBREVIATIONS

PCC - Point of Common Coupling

THD - Total Harmonic Distortion

FFT - Fast Fourier transform

STFT - Short Time Fourier Transform

WT - Wavelet Transform

ICA - Impedance Component Analysis

HSE - Harmonic State Estimation

RMS - Root Mean Square

THDv - Instantaneous Total Harmonic Distortion of Voltage

TiHDv - Instantaneous Total Interharmonic Distortion of Voltage

DB - Distribution Board

VB - Visual Basic

MATLAB - MATLAB Software

MAPE - Mean Absolute Percentage Error

Z<sub>1</sub> - Magnitudes of Fundamental Impedance Power Spectrum

Z<sub>h</sub> - Magnitude of Harmonic Impedances Power Spectrum

GUI - Graphical User Interface

IEEE - Institute of Electrical and Electronics Engineers

MS - Malaysian Standard

IEC - International Electrotechnical Commission

ADSP - Advance Digital Signal Processing

FS - Frequency Spectrogram

PS - Phase Spectrogram

CIM - Critical Impedance Technique

THDv,ave - Average of Instantaneous Total Harmonic Distortion of Voltage

TiHDv,ave - Averatge of Instantaneous Total Interharmonic Distortion of Voltage

NI DAQ - National Instruments Data Acquisition

AI - Analog Input

xvii

AO - Analog Outputs

DIO - Digital Input / Output

OSWS - One Sample Window Shift

 $Z_{150{\rm Hz}}$  - Impedance Power Spectrum at Frequency 150 Hz

TFR - Time - Frequency Representation

Hz - Frequency unit, HertzUSB - Universal Serial Bus

UTeM - Universiti Teknikal Malaysia Melaka

# LIST OF APPENDICES

| APPENDIX DESCRIPTION |                                                                   | PAGE |
|----------------------|-------------------------------------------------------------------|------|
| A                    | Analysis of Harmonics Sources At The Downstream Side Using        | 181  |
|                      | Periodogram Technique                                             |      |
| В                    | Analysis of Harmonics Source At The Upstream Side Using           | 184  |
|                      | Periodogram Technique                                             |      |
| C                    | Analysis of Harmonics Source At The Both Sides Upstream And       | 187  |
|                      | Downstream Side Using Periodogram Technique                       |      |
| D                    | Parameters of The Signals                                         | 190  |
| E                    | Parameters of Data Collection Using MATLAB                        | 192  |
| F                    | Parameters of Data Collection Using Visual Basic                  | 193  |
| G                    | MAPE of Data Collection For Simulation MATLAB                     | 194  |
| Н                    | MAPE of Data Collection For System Visual Basic                   | 195  |
| I                    | Experiment: Field Testing For Real-Time Harmonic Signal Detection | 196  |
|                      | And Identification For Harmonic Source Location                   |      |
| J                    | Schematic Diagram From Simulink MATLAB                            | 199  |