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Abstract. The aim of this paper was to study the correlation between crude palm oil 

(CPO) price, selected vegetable oil prices (such as soybean oil, coconut oil, and olive 

oil, rapeseed oil and sunflower oil), crude oil and the monthly exchange rate. 

Comparative analysis was then performed on CPO price forecasting results using the 

machine learning techniques.  Monthly CPO prices, selected vegetable oil prices, crude 

oil prices and monthly exchange rate data from January 1987 to February 2017 were 

utilized. Preliminary analysis showed a positive and high correlation between the CPO 

price and soy bean oil price and also between CPO price and crude oil price. 

Experiments were conducted using multi-layer perception, support vector regression 

and Holt Winter exponential smoothing techniques. The results were assessed by using 

criteria of root mean square error (RMSE), means absolute error (MAE), means 

absolute percentage error (MAPE) and Direction of accuracy (DA). Among these three 

techniques, support vector regression(SVR) with Sequential minimal optimization 

(SMO) algorithm showed relatively better results compared to multi-layer perceptron 

and Holt Winters exponential smoothing method.  

1   Introduction 

The palm oil industry has grown locally and globally due to Malaysia’s position as one of the world’s 

leading palm oil producing country. As one of the top producers and exporters of crude palm oil 

(CPO) and palm oil products, Malaysia has an important role to sustainably fulfill the growing global 

need for edible oils and fats. According to Malaysian Palm Oil Board (MPOB), Malaysia is the 

world’s second largest palm oil exporter after Indonesia and oil palm industry forms the economic 

backbone of Malaysia[1]. As the world’s second biggest palm oil producer, Malaysia continues to face 

new challenges with volatile agricultural commodities prices especially CPO prices. The breadth of 

the palm oil industry and its significance cannot be understated as its impact ripples through the 

domestic as well as global economy.  

The Malaysian palm oil industry has undoubtedly made significant contribution towards the 

domestic economy as well as to the development of the world palm oil market[2]. As a fast growing 

edible oil playing a significant role in Asean economy, it is important to monitor and accurately 

forecast the price of CPO for the benefit of the Malaysian palm oil industry. Palm oil like any other 

agricultural commodities is subject to significant price fluctuation as shown in figure 1. The CPO price 

fluctuation passes on a significant risk to farmers, producers, traders, consumers and others involved 

http://creativecommons.org/licenses/by/3.0
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in the production and marketing of CPO. An accurate CPO price forecasting technique is necessary to 

assist decision-making in risky and uncertain situations. 

 

 
Figure 1 Monthly Crude Palm Oil Price Movement. 

source: http://mpoc.org.my [3] 

 

Typically, CPO price forecasting is handled mostly by economists thus most of the CPO price 

forecasting research employed statistical methods[4][5][6]. Some of the recent study which employed 

artificial intelligence techniques in forecasting CPO price have  utilized univariate time series analysis 

for forecasting [7][8] without considering impact of other commodity prices. Thus the main aim of this 

research is to study the correlation between  CPO price and other vegetable oil prices (such as soybean 

oil, coconut oil, olive oil, rapeseed oil and sunflower oil), crude oil and exchange rate. This research 

also hopes to forecast the CPO price using other commodity prices employing the machine learning 

techniques.  

1.1 Factors Influencing CPO Price  

Past research shows that various factors contribute to the prediction of CPO prices. Some of the 

important factors that have significant relationship with CPO price movements are listed below: 

 

i. Price of Soybean 

A number of researchers[2],[9],[4],[9],[10][11]suggested that there is a positive relationship 

between movement of CPO price and soybean oil price. Soybean oil has been a long term 

competitor of CPO [10]. Past studies[8][11] suggested that there is a short and long run 

relationship between CPO price and soybean oil price. Our analysis shed some light on how 

the changes in soybean oil price movement affect the movement of CPO price. 

 

ii. Price of Crude Oil 

Researchers such as Abdullah in 2010[12], Kantaporn et al[13], Arshad et al.[10] confirmed 

the relationship between price of crude oil and CPO. Razak et al[14]employed the Engle-

Granger co-integration test to demonstrate a significant long term correlation between CPO 

price and crude oil price which was consistent with the recent work of Appalanaidu [15]. 

 

iii. Exchange Rate 

 Studies conducted by Kantporn et al [13]and Khin  [16]  showed a significant relationship   

     between exchange rate and CPO prices as demonstrated by [5] and [2]. 

  

Thus these three variables will be utilized as important variables in forecasting the CPO price in this 

study. 

1.2   Techniques Used in CPO Price Forecasting  
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Literature search shows that two techniques that were widely used in time series forecasting are 

statistical methods and computational methods. Most of the price forecasting studies by economists 

were conducted using statistical methods. Time series forecasting techniques which are popular among 

researchers are exponential smoothing model, autoregressive models such as ARIMA and MARMA 

and ARCH /GARCH family models. In an autoregressive integrated moving average model (ARIMA) 

the future value of a variable is assumed to be a linear function of several past observations and 

random errors [17]. Arshad et al utilized Box Jenkins univariate ARIMA model to forecast the short-

run monthly price of CPO [18]. Khin[15] utilized Vector Error Correction Method (VECM) to analyze 

the relationship between spot and futures prices in forecasting the CPO price. Even though statistical 

models were widely used for solving time series forecasting problems, recent trend showed machine 

learning techniques outperformed the classical statistical methods [8].  

Time series forecasting is a difficult task as price movement behaves more like a random walk and 

varies with time.  Recent forecasting trend shows machine learning techniques namely artificial neural 

network (ANN) and support vector machine (SVM) are being used in a range of different fields such 

as in business, medicine, energy and science. ANN has been successfully used in forecasting financial 

data series [19] as statistical methods were  inappropriate for strong nonlinear time series such as 

crude oil price[20]. ANN models has significant advantage over other classes of nonlinear model as 

they can predict a large class of functions with a high degree of accuracy[[21]. Additionally, no prior 

assumption of the model form is required in the model building process as the network model is 

largely determined by the data characteristics [22].  ANN is a bio inspired model that utilize several 

single processing elements called neurons. A Multi-layer Perceptron (MLP) approach is commonly 

used in regression problems. It has 3 layers: input layer, output layer and hidden layer as displayed in 

figure 2. MLP uses back propagation algorithm that calculates the error and then back propagate the 

error to previous layer. The weight of the network is adjusted by minimizing the error between the 

target and computed outputs. The weights are continuously revised until minimum error is 

obtained[23]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Figure 2. Architecture of Multi-Layer Perceptron  model. 

 

SVM is also widely used in stock market price prediction [24][25]. Support vector for regression 

(SVR) is built upon statistical learning theory, as a method for solving nonlinear regression estimation 

problems. Vapnik [26] introduced SVM algorithm for regression and classification problems based on 

the theory of statistical learning. It is known as SVR to solve the regression prediction problems. SVR 

differs from ordinary regression methods since it uses structural risk minimization instead minimizing 

empirical risk used in other learning theory methods like neural networks. Therefore it is expected that 

this method outperforms other regression methods and is able to have better generalization[27]. 

According to Vapnik [30], the SVR model is expressed as: 

Input         

Output layer Hidden layer 
Input         

layer 

output      
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f(x) =( a⋅ ϕ (x)+b,                                                                                    (1)  

     

where a is a weight vector, b is bias, and ϕ(x) is a non-linear function to transform non-linear inputs 

to a linear mode in a high-dimensional feature space known as a kernel function. SVR with Sequential 

minimal optimization (SMO) proposed by Smola and Schölkopf [28]  for using SVR regression. SMO 

has the good ability to model regression, prediction with non-linear data[28]. 

Exponential smoothing is another prediction method that is widely adopted in time series 

forecasting[29]. The exponential smoothing applied on time series containing noise, trend and 

seasonality. It was developed by Winters [31]. Three parameters alpha, beta and gamma which define 

the degree of smoothing are to be applied to noise, trend and seasonal components of time series. At 

first, a value of alpha is used to dictate the amount of smoothing to apply for noise. A second order of 

smoothing, so called “double exponential smoothing” using parameter beta is needed in a data set with 

trend. Finally, a third level of  smoothing  is  introduced  to make  the  process  a  triple  exponential  

smoothing if a seasonal component is also present in the data set. This third level of smoothing 

parameter is gamma. Depending upon the nature of the time series one, two or all three of the 

parameters may be defined in the Holt Winters methodology[29]. A comprehensive performance 

evaluation of these three methods was examined in this study. 

2  Experiments 

 
In this section data collection processes and experiment setup is discussed in detail.  

2.1   Data and Method 

Data collection and pre-processing of data are important tasks in data analysis. In this study nine time 

series data were used. The monthly closing price of all variables such as CPO price, sunflower oil 

price, olive oil price, rapeseed oil price, coconut oil price, peanut oil price, soybean oil price and West 

Texas Intermediate (WTI) crude oil spot price were retrieved from http://www.indexmundi.com. 

Exchange rates of US dollar to Malaysian Ringgit was retrieved from 

http://www.tradingeconomics.com. The frequency of data used is the monthly price from January 

1987 to February 2017. 

     First, pre-processing of data was carried out on the collected data for missing values. Data deletion 

was performed to handle the missing data. Statistical analysis was carried out to discover the 

underlying patterns and trends between the variables involved. A correlation analysis was then 

conducted to investigate the nature of the relationship between CPO price movement and other 

vegetable oil prices such as soybean oil, coconut oil, olive oil, rapeseed oil and sunflower oil. The 

highly correlated vegetable oils prices are chosen as the predictors to predict the CPO price. Next, the 

relationship between CPO price and crude oil price and the relationship between CPO price and 

exchange rate is also examined. The correlation between CPO price and other commodities prices was 

analysed using Pearson correlation test. The Pearson correlation  test between CPO price and soybean 

oil price showed the highest  r value (Pearson correlation coefficient) which is 0.941741044 followed 

by rapeseed oil 0.915504766, coconut oil 0.869002225,  peanut oil  0.826758802 and sunflower oil 

0.77520504.  However, olive oil has the lowest value of r which is 0.154381116.  As shown in table 1 

coconut oil, rapeseed oil, sunflower oil and soybean oil has short run relationship with CPO using 

Pearson correlation analysis whereas olive oil has no short run relationship with CPO price. In line 

with past researches[13], [30], this study exhibits that CPO price has positive and high correlation with 

soy bean oil prices with a positive correlation coefficient value  of 0.941741044. This results showed 

that an increase in the price of soy bean oil price will also result an increase in the price of the CPO. 

However, olive oil has the lowest value of r which is 0.154381116. This indicates olive oil price has 

insignificant correlation with CPO price.  As a conclusion, we can say that coconut oil price, rapeseed 

oil price  and  sunflower oil  price also has short run relationship with CPO  whereas olive oil has no 

short run relationship with CPO price thus olive is excluded in the forecasting of CPO price . 

http://www.indexmundi.com/
http://www.tradingeconomics.com/
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Table 1. Correlation results between CPO price and other vegetable oil prices. 

CPO price Pearson Correlation Coefficient 

(r value for monthly data ) 

     Soybean oil price 0.941741044 

Sunflower oil price 0.775205041    

Rapeseed oil price 0.915504766 

Coconut oil price 0.869002225 

Olive oil price 0.154381116 

Peanut oil price 0.826758802 

 

 Crude oil price and exchange rate were also considered in this study to predict the CPO price as 

research were carried out in the past[13]to test this relationship .  In analyzing the relationship between 

CPO price and exchange rate, a negative correlation coefficient was recorded (-0.3094641) as shown 

in table 2. This results showed that an increase in the exchange rate causes a decrease in the price of 

CPO [31]. Whereas the relationship between crude oil price  and CPO price showed a positive 

correlation as r value of 0.80252 is obtained as demonstrated by [14]. 
 

Table 2. Correlation between CPO price, crude oil price and exchange rate. 
CPO price Pearson Correlation Coefficient 

(r value for monthly data ) 

Crude oil price 0.80252 

Exchange rate -0.3094641 

 

Based on the above correlation analysis results, soy bean oil price, coconut oil price, rapeseed oil 

price, sunflower oil price and peanut oil prices together with crude oil price and exchange rate are used 

as main predictors of CPO price in this study.  

Weka, the data mining tool was employed to apply different algorithms on multivariate time series 

data to forecast the monthly CPO price for short term. First, ANN based Multi-layer perceptron 

regressor (MLP) with activation function Approximate Sigmoid is applied to train the regression 

model. Number of hidden neuron is the main parameter and 2 hidden units was used. Next, Support 

vector regression (SVR) with Sequential minimal optimization (SMO) function for regression was 

used for CPO price forecasting. Lastly The Holt Winters exponential smoothing algorithm was applied 

to forecast the monthly CPO price. A CPO forecast price of five month ahead of last data was  derived 

from the above three  forecasting techniques.  

3  Results and Discussion  

Performance of the three forecasting techniques of multivariate time series was evaluated. Forecasting 

evaluation is done by comparing the evaluation metrics of MSE, RMSE ,MAE and MAPE [32]  and 

the best model is determined by lowest error value of the evaluation metrics.  

Direction accuracy (DA) is the number of times the movement of the predicted values matches the 

movement of the actual values, expressed as a percentage of the number of values predicted. The 

result for each algorithm is shown in table 3  

 

Table 3.  Comparison of the performance of forecasting techniques 
 

 Forecasting Techniques 

Evaluation Metrics 

MLP 

 

SMO Holt Winter 

MAE 157.5563 59.15 252.431 

DA 71.02 62.616 56.0748 

MAPE 19.8991 7.8073 30.8689 
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RMSE 179.0278 76.4853 396.1274 

MSE 32050.94 5849.9946 156916.92 

 

  

Table 3.0 shows the performance of the three forecasting method.  MLP and SMO achieved better 

predictive accuracy than Holt Winter technique. MLP had MAPE of 19.89% and SMO had MAPE of 

7.8% which are considerably lower than MAPE for Holt Winter technique of 30.86%.  RMSE value 

for SMO was also lower compared to MLP and Holt Winter techniques. Analysis of DA shows MLP 

having the highest accuracy compared to SMO even though MAE and MSE of MLP is higher than 

SMO. In this study we found that SMO performed considerably better than MLP and Holt Winter 

techniques.  SMO gives a promising result compared to MLP and Holt Winter. The actual and 

predicted CPO price trend can be viewed for each methods as shown in the graphs in figures 3, 4 and 

5. The visual observation of the graphs shows that multivariate time series forecasting of CPO price 

has performed better using support vector regression.  
 

 

 
Figure 3.  Multilayer Perceptron 

 

 

 
Figure 4. Support Vector Machine SMO 

 

 
 

       Figure 5. Holt Winter Exponential Smoothing. 

 



7

1234567890

International Research and Innovation Summit (IRIS2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 226 (2017) 012117 doi:10.1088/1757-899X/226/1/012117

4 Conclusions 

Support   vector   regression,   multi-layer perceptron and Holt Winter exponential smoothing were 

utilized in this study to forecast the CPO price using multivariate time series. The prediction results 

exhibits that the support vector regression had higher predicted accuracy compared to multi-layer 

perceptron and Holt Winter exponential smoothing methods. In  this  study  nine  attributes  were  

chosen  and  the  results  of  this  analysis  showed  the  strength  of  support vector regression  in 

forecasting multivariate time series of CPO price. In future, more relevant attributes could be included 

to improve forecasting of the CPO price. Feature selection method also can be added in future studies 

in order to improve accuracy of CPO price forecasting. 
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