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Abstract— Researchers are often perplexed when their 

machine learning algorithms are required to deal with complex 

number. Various strategies are commonly employed to project 

complex number into real number, although it is frequently 

sacrificing the information contained in the complex number. 

This paper proposes a new method and four techniques to 

represent complex number as real number, without having to 

sacrifice the information contained. The proposed techniques 

are also capable of retrieving the original complex number from 

the representing real number, with little to none of information 

loss. The promising applicability of the proposed techniques has 

been demonstrated and worth to receive further exploration in 

representing the complex number. 

 

Index Terms—Complex Number; Dimensionality Reduction; 

Feature Projection; Pairing Function. 

 

I. INTRODUCTION 

 

Machine learning (ML) process is heavily depended on the 

properties of its dataset. A well-constructed dataset 

oftentimes leads to the satisfactory performance of the ML 

algorithm, and vice versa. The values of the dataset attributes 

can be either numerical values or nominal values [1], with the 

numerical values as the most prominently used attributes. 

For most of the times, the numerical value is a single real 

number. However, in some rare cases, the numerical value is 

a complex number. Researchers are often baffled when 

encountering these complex numbers. This is because ML 

algorithms and toolkits are commonly designed to handle real 

numerical value, such as WEKA [2]. 

There exist some strategies employed in handling the 

complex number. Some researchers chose to ignore the 

imaginary number part of the complex number and only deals 

with the real number part [3, 4], whereas others decide to split 

the complex number into 2 numerical values, effectively 

doubling the number of attributes used by ML algorithms [5, 

6]. Some other researchers represent the complex number as 

a numerical or nominal value, providing a simple mapping 

between one value to another [7], while others decide to leave 

the complex number as is, and treat it as a nominal or textual 

data. There are also other strategies not covered in this paper. 

Hence, it is evident that there are no universal or standard 

mechanisms on handling the complex number. Each strategy 

presents their own weaknesses. Ignoring the imaginary part is 

commendably altering the nature of the data, since there are 

losses of information associated with the imaginary number 

part of the complex number [8]. 

On the other hand, splitting the complex number into two 

values theoretically retain the information, since both 

numbers is intact; however, the relationship between these 

two values can be lost, since some ML algorithms doesn’t 

maintain the dependencies between two attributes, most 

notably is feature selection algorithms [1, 9]. Feature 

selection algorithms may deem an attribute which contains 

real number part is important, and thus discarding the 

attribute containing imaginary number part, or vice versa. 

Conversely, mapping a complex number with another 

numerical value, preferably natural number, or even with 

nominal value, present another set of challenges. The 

mapping will be increasingly larger when the complex 

number is continuous. Lastly, even though treating the 

complex number as a textual value seems to be the safest 

option, since there is no loss of information occurred, the ML 

algorithms may not be able to determine the similarity of one 

attribute to another.  

Hence, it is necessary to formulate a procedure to represent 

the complex number in the ML domain without having to 

sacrifice the information contained, and thus reducing the 

space required to retain the information and allowing better 

inference to be obtained. Therefore, this paper proposes novel 

complex number representation algorithms which can retain 

the information, and more importantly, allows for original 

value reconstruction. This concept is almost like the feature 

projection method of dimensionality reduction. The 

remainder of the paper is structured as follows. In next 

section, the proposed techniques are provided. In Section 3, 

experimental setup involving the dataset preparation and 

experimental design are presented. The outcomes showcasing 

the reconstruction capability of the proposed techniques, and 

conclusion and future works are elaborated in Sections 5 and 

6, respectively. 

 

II. PROPOSED COMPLEX NUMBER REPRESENTATION 

 

Every complex number can be expressed by specifying either 

the Cartesian coordinates (CC) or the polar coordinates (PC). 

The complex number 𝑐 can be represented in CC as 

𝑐 = 𝑥 + 𝑦𝑖̂ (1) 

where 𝑖̂ is the imaginary unit. The CC 𝑥, 𝑦 can be described 

as PC 𝑟, 𝜑 with 𝑟 ≥ 0 and 𝜑 ∈ [0,2𝜋) using 
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𝑟 = √𝑥2 + 𝑦2 

𝜑 = {
atan2(𝑦, 𝑥) atan2(𝑦, 𝑥) ≥ 0

atan2(𝑦, 𝑥) + 2𝜋 atan2(𝑦, 𝑥) < 0
 

(2) 

where atan2(𝑦, 𝑥) is a special case of the arctangent function 

such that 

atan2(𝑦, 𝑥) =

{
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) 𝑥 > 0

arctan (
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) + 𝜋 𝑥 < 0, 𝑦 ≥ 0

arctan (
𝑦

𝑥
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2
𝑥 = 0, 𝑦 > 0

−
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2
𝑥 = 0, 𝑦 < 0

undefined 𝑥 = 0, 𝑦 = 0

 (3) 

and conversely using 

𝑥 = 𝑟 cos𝜑 

𝑦 = 𝑟 sin𝜑 
(4) 

Both ways of representing the complex numbers as a CC or 

as PC will resulting in twice of the features vector space and 

the correlation between 𝑥, 𝑦 or 𝑟, 𝜑 can be lost in the ML 

process [8]. Thus, both two value pairs should be distinctly 

encoded into a single unique value, hence the correlation of 

the two values can be conserved. Pairing function (PF) can be 

employed to achieve this goal. In this paper, two renowned 

PFs are used, which are Cantor [10] and Szudzik [11] PFs. 

The formula to calculate Cantor PF and its inverse function is 

defined in Equations (5) and (6) respectively as 

𝐶 =
(𝑝 + 𝑞)(𝑝 + 𝑞 + 1)

2
+ 𝑞 (5) 

𝑝 = 𝑤 − 𝑞 
𝑞 = 𝐶 − 𝑡 

𝑡 =
𝑤2

2
+ 1 

𝑤 = ⌊
√8𝐶 − 1

2
⌋ 

(6) 

while the formula to calculate Szudzik PF and its inverse 

function is defined in Equations (7) and (8) respectively as 

𝑆 = {
𝑞2 + 𝑝 𝑝 ≠ max(𝑝, 𝑞)

𝑝2 + 𝑝 + 𝑞 𝑝 = max(𝑝, 𝑞)
 (7) 

〈𝑝, 𝑞〉 = {
〈𝑆 − 𝑘2, 𝑘〉 𝑆 − 𝑘2 < 𝑘

〈𝑘, 𝑆 − 𝑘2 − 𝑘〉 𝑆 − 𝑘2 ≥ 𝑘
 

𝑘 = ⌊√𝑆⌋ 

(8) 

where 𝑝 is the first number, 𝑞 is the second number, 𝐶 is the 

Cantor paired value, and 𝑆 is the Szudzik paired value. 

However, since these PFs can only be employed to 

distinctly encode positive natural numbers [11, 12], both 𝑥, 𝑦 

or 𝑟, 𝜑 which are usually kept as 64-bit double-precision 

floating-number format, should be transformed to natural 

numbers to be paired. Ref. [13] defines IEEE 754 standard to 

transform the double-precision floating-number format as a 

binary string, which consequently alterable as a long integer 

number. The value of a double-precision floating-number is 

given as 

𝑛 = (−1)𝑠 (1 +∑𝑏52−𝑘2
−𝑘

52

𝑘=1

)2𝑒−1023 (9) 

where 𝑠 is the sign of the floating-number, 𝑘 is index of bit in 

the binary string, and 𝑏𝑖 is the bit in the specified index. These 

long integer numbers then can be used as the input of PFs. 𝑥 

and 𝑦 values are more favorable compared to 𝑟 and 𝜑, 

because there is no precision lost when calculating 𝑟 and 𝜑 

from 𝑥 and 𝑦. However, Cantor and Szudzik PFs may only be 

used if both 𝑥 and 𝑦 is positive. And thus, these 

representations are labelled as polar Cantor and polar Szudzik 

representation. 

To overcome these limitations, since the 𝑥 and 𝑦 or 𝑟 and 

𝜑 are represented in binary string, a bit-interleaved PF can 

also be employed. The idea is to interleave one bit from first 

number, followed by one bit from second number, and then 

followed by the subsequent bit from first number, and so on. 

However, both binary strings must have equal number of bits, 

generally achieved by concatenating zeroes in front of shorter 

binary string. Bit-interleaved PF has more advantages 

compared to Cantor and Szudzik PFs, namely the original 

value can be retained without any precision loss, secondly, it 

is applicable for any values of both 𝑥 and 𝑦 pair and 𝑟 and 𝜑 

pair, and lastly, it is less computationally expensive. Since it 

is applicable to both CC and PC, it is then named Cartesian 

bit-interleaved and polar bit-interleaved, respectively. 

All four proposed PFs will undoubtedly produce a rather 

arbitrarily large representative number, at least in the range 

of 1037. These large numbers sometimes affect the 

performance of the ML algorithm, such as support vector 

machine and multilayer perceptron, and thus it is preferable 

to have a set of numbers in smaller range. Hence, the 

representations can be normalized in certain cases like this, 

preferably normalized by the value of 1037. Furthermore, it 

should be noted that these numbers are merely for 

representation purpose only, and it is not intended for 

arithmetic operations. 

 

III. EXPERIMENTAL SETUP 

 

In this section, a description of the experimental method is 

provided to conduct an extensive and rigorous study, which 

are the process of generating the dataset used in this study and 

the proposed technique validation method. 

All the proposed techniques are implemented using Java 8 

programming language. A total of 4,294,967,295 complex 

numbers are randomly generated in the range of [–

9,223,372,036,854,775,807; 9,223,372,036,854,775,807). 

The total number is selected because it is the total amount of 

32-bit integer number in Java programming language, while 

the range is selected because it is the minimum and maximum 

values of 64-bit long integer number in Java programming 

language. 

To justify the quality of each proposed techniques, the 

representation values will be calculated, and from the 

representation values, the original complex number is 

retrieved. The representation quality is defined as the error 

between original complex number and calculated complex 

number from representation value. The best representation 

value is determined as the one with smallest error. The 

formula of calculating the error is defined as 
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𝜀 =
√(𝑥1 − 𝑥2)

2 + (𝑦1 − 𝑦2)
2

𝑟1
 (10) 

where 𝑥1 and 𝑦1 is the real and imaginary part of original 

complex number, 𝑥2 and 𝑦2 is the real and imaginary part of 

calculated complex number, and 𝑟1 is the modulus of the 

original complex number calculated using (2). 

 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

 

The representation quality of the proposed techniques is the 

primary consideration of this paper. As discussed earlier, a 

set of random complex numbers will be generated, and its 

corresponding representation number using the proposed 

techniques will be calculated. From each of the calculated 

representation number, the original complex number will be 

determined. The sample of the error calculation using (10) for 

a random complex number and its representations are shown 

in Table 1. Meanwhile, Table 2 shows the results of 

maximum and average representation errors of each 

technique. 

 
Table 1 

Sample of error calculation for a random complex number and its 

representations 
 

Source Attribute Value 

Original 

number 

Real number part 6.7771673222051697E18 

Imaginary number part 3.6003875414142131E18i 

Modulus of PC 7.67416362618991E18 

Theta of PC 0.4883359535588942 

Real number part as 

long integer 

4888520323532708650 

Imaginary number part 

as long integer 

4884430403359071803 

Modulus of PC as long 

integer 

4889396296485818748 

Theta of PC as long 
integer 

4602468698391823727 

Cantor PF value 45047750540491773913433

549502792707777 
Szudzik PF value 23906196144089240399724

999666785929979 

Real number part as 
bit-string 

01000011110101111000001
10101010101110001011100

011101101100101010 

Imaginary number part 
as bit-string 

01000011110010001111101
11001001010110010010101

011101111000111011 

Modulus of polar 
coordinate as bit-string 

01000011110110101010000
00000011011001010001001

011101000101111100 

Theta of polar 
coordinate as bit-string 

00111111110111110100000
01110010101110001011111

111100010101101111 

Polar bit-interleaved 
value 

49679650227602418166657
328428407275253 

Cartesian bit-

interleaved value 

63885745057879574985027

357472836160973 
   

Polar 
Cantor 

value 

Modulus of PC as long 
integer 

4889396296485818748 

Theta of PC as long 

integer 

4602468698391823727 

Modulus of PC 7.67416362618991E18 

Theta of PC 0.4883359535588942 

Real number part 6.7771673222051697E18 

Imaginary number part 3.6003875414142126E18i 

Error 6.671736816409259E-17 

   

Source Attribute Value 

Polar 

Szudzik 

value 

Modulus of PC as long 

integer 

4889396296485818748 

Theta of PC as long 

integer 

4602468698391823727 

Modulus of PC 7.67416362618991E18 

Theta of PC 0.4883359535588942 

Real number part 6.7771673222051697E18 

Imaginary number part 3.6003875414142126E18i 

Error 6.671736816409259E-17 

   

Polar bit-

interleaved 
value 

Modulus of PC as bit-

string 

01000011110110101010000

00000011011001010001001
011101000101111100 

Theta of PC as bit-

string 

00111111110111110100000

01110010101110001011111
111100010101101111 

Modulus of PC 7.67416362618991E18 

Theta of PC 0.4883359535588942 

Real number part 6.7771673222051697E18 

Imaginary number part 3.6003875414142126E18i 

Error 6.671736816409259E-17 

   

Cartesian 

bit-

interleaved 
value 

Real number part as 

bit-string 

01000011110101111000001

10101010101110001011100

011101101100101010 
Imaginary number part 

as bit-string 

01000011110010001111101

11001001010110010010101

011101111000111011 
Real number part 6.7771673222051697E18 

Imaginary number part 3.6003875414142131E18i 

Error 0.0 

 
Table 2 

Representation errors of the proposed techniques 
 

PF Maximum Error Average Error 

Polar Cantor 1.04654252576E-15 2.04149108976E-16 

Polar Szudzik 1.04654252576E-15 2.04149108976E-16 

Polar bit-
interleaved 

1.04654252576E-15 2.04149108976E-16 

Cartesian bit-

interleaved 
0.0 0.0 

 

Based on the results shown in Table 2, the Cartesian bit-

interleaved produces the best representation value by scoring 

0.0 errors in both maximum and average representation error, 

as expected. It is also worth mentioning that all polar-based 

representation produces the same maximum and average 

error results, thus it is concluded that all polar-based 

representation carries the same discriminative power. The 

reason is that the conversion of Cartesian into polar 

coordinates may result in precision lost, and thus when 

converting back from polar into Cartesian coordinates, the 

original value will be slightly different. 

To further corroborate the merit of Cartesian bit-

interleaved as opposed to other polar-based techniques, 

thorough statistical validation using analysis of variance 

(ANOVA) should be performed. However, since the variance 

of Cartesian bit-interleaved is equals to zero (𝜎 = 0.0) and 

the variances of polar-based techniques is equals to each 

other, the statistical validation is rendered impractical. 

This study has successfully proposed four complex number 

representation techniques, with the Cartesian bit-interleaved 

is considered as the best proposed technique among other 

proposed techniques. This study also managed to achieve the 

objective of reducing the space required to retain the 

information. On the other hand, the validation of the proposed 
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techniques using ML algorithms, most notably in the pattern 

recognition domain, will be conducted in the future works. 

This study believes that the findings have wide range of 

applicability, for example the representation of features 

extracted using Fast Fourier Transform, representation of 

frequency and amplitude for voice recognition, 

representation of complex-valued moments, such as Zernike, 

Chebyshev–Fourier, and orthogonal Fourier–Mellin 

moments, for 2D and 3D image analysis, etc. 

 

V. CONCLUSION AND FUTURE WORKS 

 

Novel complex number representation techniques have been 

presented in this study, which are polar Cantor, polar 

Szudzik, polar bit-interleaved, and Cartesian bit-interleaved 

complex number representations. This paper also compared 

the merits of the proposed techniques. The experiments have 

shown that Cartesian bit-interleaved is the best representation 

technique for complex number, without any loss of 

information. 

Hence, future works to incorporate Cartesian bit-

interleaved in ML algorithms and toolkits, such as providing 

the implementation in WEKA, is planned. The proposed 

techniques and its Java source code are also publicly available 

in http://ftmk.utem.edu.my/cit/research/ats-drugs/tools. 
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