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Abstract—Price prediction has now become an important task 

in the operation of electrical power system. In short term 

forecast, electricity price can be predicted for an hour-ahead or 

day-ahead. An hour-ahead prediction offers the market 

members with the pre-dispatch prices for the next hour. It is 

useful for an effective bidding strategy where the quantity of 

bids can be revised or changed prior to the dispatch hour. 

However, only a few studies have been conducted in the field of 

hour-ahead forecasting. This is due to most of the power 

markets apply two-settlement market structure (day-ahead and 

real time) or standard market design rather than single-

settlement system (real time). Therefore, a multistage 

optimization for hybrid Least Square Support Vector Machine 

(LSSVM) and Genetic Algorithm (GA) model is developed in 

this study to provide an accurate price forecast with optimized 

parameters and input features. So far, no literature has been 

found on multistage feature and parameter selections using the 

methods of LSSVM-GA for hour-ahead price prediction. All the 

models are examined on the Ontario power market; which is 

reported as among the most volatile market worldwide. A huge 

number of features are selected by three stages of optimization 

to avoid from missing any important features. The developed 

LSSVM-GA shows higher forecast accuracy with lower 

complexity than the existing models. 

 

Index Terms—Genetic Algorithms; Hour-Ahead Forecasting; 

Multistage Optimization; Support Vector Machines. 

 

I. INTRODUCTION 

 

Price prediction is important to market members in 

deregulated electricity environment to provide a better 

bidding strategy. As for day ahead forecast, an hour-ahead 

prediction is useful for an effective bidding strategy where 

the quantity of bids can be revised or changed prior to the 

dispatch hour. In addition, the generation company that has 

the ability to forecast future prices can optimize the output 

from the generators. The supply and prices can be reviewed 

and adjusted based on the production cost to gain an optimum 

profit. Meanwhile, consumers use the price forecast to 

manage the consumption, especially during spike 

occurrences.  

However, forecasting electricity price is more challenging 

compared to predicting the load or demand due to the 

volatility of price series with unexpected price spikes at any 

point of series. Some of the factors influencing this volatility 

are manageable such as load behavior, weather, and fuel 

price. Nevertheless, some other variables are unpredictable 

such as bidding strategy and imbalance between supply and 

demand due to (1) demand under-forecast during the peak 

hour, (2) failure in transaction of import and export, and (3) 

energy output forecast error by non-dispatchable generators.  

 

II. LITERATURE REVIEW 

 

Only a few researches have been conducted in the field of 

hour-ahead price forecasting. This is due to most of the power 

markets apply two-settlement market structure (day-ahead 

and real time) or standard market design rather than single-

settlement system (real time). A time series model of 

Multivariate Adaptive Regression Splines (MARS) had been 

developed and examined on the Ontario power market by [1]. 

Development of neural network models was also reported by 

other researchers. In [2], Levenberg-marquardt back 

propagation algorithm was applied to the Ontario power 

market while Input–Output Hidden Markov Model 

(IOHMM) was developed by [3] in the Spanish electricity 

market. Meanwhile, a hybrid method of recurrent neural 

networks and excitable dynamics was proposed and tested on 

the Ontario, New South Wales, Spain, and California power 

markets [4]. 

A hybrid of ARMAX, adaptive wavelet neural network 

(AWNN), and GARCH was applied by [5] to treat linear and 

nonlinear behaviours of price series on Pennsylvania–New 

Jersey–Maryland (PJM) market. Meanwhile, an Expectation 

Maximization technique for maximum likelihood estimation 

of Recurrent Neural Networks (RNN-EM) was developed by 

[6]. Multi-layer Perceptron Neural Network trained by 

Extended Kalman Filter (MLP-EKF) and MLP Neural 

Network trained by Expectation Maximization algorithm 

(MLP-EM) was proposed by [7]. On the other hand, 

researchers of [8] designed an Extended Kalman Filter for 

Recurrent Neural Network (RNN-EKF). 

A Generalized Regression Neural Network (GRNN) was 

developed and tested on National Electricity Market of 

Singapore (NEMS) [9]. Meanwhile, Discrete Cosine 

Transforms Input Featured Feed-Forward Neural Network 

(DCT-FFNN) model was tested on Spanish market by [10]. 

The same authors further improved the prediction by 

designing classification models using three layered FFNN, 

Cascade-Forward Neural Network (CFNN) trained by the 

Levenberg–Marquardt (LM) algorithm, and GRNN models 

[11]. 

Most of the existing methods have the ability to predict 

well during normal condition or without spike occurrences 

but when the spikes exist, the forecast error become large. To 

the best of the authors’ review, no literature has been found 

on the application of LSSVM and GA in the electricity price 
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forecast. In addition, the approach of multistage feature and 

parameter selections using a single optimization technique 

has not reported yet. Thus, this study developed a forecasting 

technique to improve hour-ahead electricity price forecasting 

using multistage optimization for a hybrid model of Least 

Square Support Vector Machine (LSSVM) and Genetic 

Algorithm (GA). With a single optimization method of GA, 

the input features and LSSVM parameters are simultaneously 

optimized through three-stage optimization approach. This 

method is proven to give better forecast accuracy as 

compared to other existing models which can contribute to 

decision-making and hourly market operation. 

 

III. FUNDAMENTAL OF SVM AND LSSVM 

 

SVM as presented by [12], is a supervised learning model 

that supports data analysis and pattern recognition for 

classification and estimation. Assume that an empirical data 

is set as Equation (1): 

 

 
(1) 

 

where X represents the space of the input patterns. For 

linear functions f, shown by Equation (2): 

 

 bXwbxwxf ,   where,)(  (2) 

 

Support Vector Regression functions to solve for quadratic 

programs which involve inequality constraint. However, 

SVM has a high computational problem where the 

optimization problem is defined as Equation (3): 

 

 

(3) 

 

While the ɛ-insensitive loss function is represented as 

Equation (4): 

 

 

(4) 

 

Cost of error or regularization constant C > 0 specifies the 

trade-off between margin maximization and training error 

minimization. Finally, the subsequent SVM for nonlinear 

function estimation becomes as in Equation (5): 

 

 

(5) 

 

Referring to Mercer's condition, the inner product 

   can be represented by a kernel K(x, xk,), and 

hence, it can be formulated as Equation (6): 

 

 

(6) 

 

SVM can reduce over-fitting, local minima problems [13], 

and able to deal with high dimensional input spaces 

splendidly [14]. Nevertheless, the main disadvantage of SVM 

is its high computational complexity due to constrained 

optimization programming. Hence, Least Squares Support 

Vector Machine (LSSVM) was proposed to diminish the 

computational burden of SVM, which applies with equality 

instead of inequality constraints [15]. LSSVM solves a 

system of linear equations to cater for Quadratic 

Programming (QP) issue that improves the computational 

speed [14], [16]. The linear system, namely as Karush- Kuhn-

Tucker (KKT), is more straightforward than QP system. 

LSSVM also maintains the principle of SVM, which possess 

good generalization capability. LSSVM reduces the Sum 

Square Errors (SSEs) of training data sets and concurrently 

diminishing margin error. Meanwhile, in contrast to SVM, 

LSSVM applies the least squares loss function rather than the 

ɛ-insensitive loss function and it can be represented as 

Equation (7): 

 

 

(7) 

 

The ek ϵ R is error variable and γ ≥ 0 is a regularization 

constant or penalty parameter which controls the trade-off 

between the fitting error minimization and smoothness of the 

estimated function. The Lagrangian is introduced as Equation 

(8): 
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The conditions for optimality are shown in Equation (9): 

 

 

(9) 

 

After exclusion of ω and e, the subsequent linear equation 

is obtained as Equation (10): 
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(10) 

 

where y = [y1;....; yN] , 1v = [1; ...;1 ],  α = [α1,… αN]. The 

LSSVM model for regression becomes Equation (11): 

 

 

(11) 

 

IV. FUNDAMENTAL OF GENETIC ALGORITHM 

 
GA that was first introduced by [17] is based on the 

‘survival of the healthiest’ and natural evolution mechanism 

via reproduction. It can find the optimal solution after some 

iterative computations. The objective functions are often 

referred to as fitness functions. Three main operations in GA 

are selection, crossover, and mutation.  

The optimization process is started with a random initial 

population of chromosomes, followed by fitness evaluation. 

The next step is the selection of fittest individuals or parents 

for reproduction, where chromosomes with better fitness 

values have more potential to yield children during 

subsequent generation. In order to mimic the natural survival 

of the fittest progression, the best chromosomes exchange 

genes via crossover and mutation to create children 

chromosomes during the reproduction process. With the size 

of the population is preserved, the highly-fit parent perform 

crossover with the other parent in the population where parts 

of two genotypes are swapped. The crossover rate usually 

ranges from 0.6 to 1.0 [18]. 

After crossover, mutation is performed for any parent 

chromosome to maintain the variety of the solution 

candidates by bringing small and random changes into them. 

Mutations are accomplished randomly by changing a “1” bit 

into a “0” bit or a “0” bit into a “1” bit.  In contrast to 

crossover, mutation is an unusual process, but by introducing 

new genetic material to the evolutionary progress, possibly 

thus avoiding chromosomes from being trapped in local 

minima. The mutation rate is usually 0.001 [19] or less than 

0.1 [18].  

The flowchart of GA operation is also illustrated in Figure 

1 in Section VII. There are four core elements that influence 

the performance of GAs; population size, number of 

generations, crossover rate, and mutation rate. Chances of 

obtaining global optimum can be increased by having a larger 

size of population (i.e. hundreds of chromosomes) and 

generations (thousands), but considerably increasing the 

computational time [18]. 

 

V. THE ONTARIO POWER MARKET 

 

In Ontario, electricity power market is conducted by 

Independent Electricity System Operator (IESO) which 

controls power system operation, forecasting short term 

demand and supply of electricity, and managing the real time 

spot market electricity price. The Ontario electricity market 

is a single settlement market, which applies real-time system 

while the day-ahead system is under progress. The Dispatch 

Scheduling and Pricing Software (DSPS) is used to provide 

schedules, prices for energy and operating reserves, and 

dispatch decisions. Operating reserve is generation capacity 

where the IESO can call upon on short notice to remain 

equilibrium between supply and demand during sudden load 

surge or generator outage.  

Due to the single settlement real-time power market, 

Ontario was reported as one of the most volatile market in the 

world [20] and hence gives a big challenge for electricity 

price forecaster. Proper selection of features influences the 

efficiency and accuracy of forecasting. The important 

features for electricity price forecasting are analyzed and 

being selected in the next section.   

 

VI. SELECTION OF INPUT FEATURES FOR FORECASTING 

 

Correlation analysis is performed to observe the 

correlations between price and other features as tabulated in 

Table 1. The analysis uses only the data that is publicly 

accessible at http://www.ieso.ca/. The notation (h-1) 

indicates an hour before the forecasting day. The data is 

selected for January 1- December 31, 2004. Pre-dispatch 

prices are predicted the price for one, two and three hours 

ahead. Total market demand (TMD) is the total energy 

provided by the IESO by combining all output from 

generators and all scheduled imports to the province. It is also 

equivalent to the summation of all load supplied from the 

market, exports from the province and all line losses exist on 

the IESO-grid.  

Meanwhile, Ontario demand is the total energy supplied 

from the IESO for supplying load within Ontario. The IESO 

determines Ontario demand by deducting exports from the 

TMD capacity. It is also equivalent to the summation of all 

loads within Ontario that is supplied from the market and all 

line losses occurred on the IESO-grid. The uplift charge is 

applied to all customers in the wholesale market. This fund is 

used by the IESO to pay for such items like operating reserve 

and energy losses on the IESO-grid.  

Regarding the correlation coefficient,  there is a study 

shows that high correlation can be considered for correlation 

coefficient with a range [0.5,1], while medium correlation is 

referred for correlation coefficient within the range of [0.3, 

0.49] [21]. From Table 1, previous HOEP, demand, TMD, 

and pre-dispatch prices show high correlations with the target 

HOEP. Hence, HOEP, demand, and  1-hour pre-dispatch 

price are the selected features for further analysis. However, 

TMD can be negligible as it has very high correlation with 

demand data and the TMD contribution can be represented by 

demand effect. Meanwhile, future HOEP has the highest 

correlation with past demand than other features.  

The correlation of the next hour HOEP with past HOEP 

and demand were observed for up to past 22 days (528 hours) 

to demonstrate daily and weekly effects while preventing 

from missing any important features [9], [22]–[26]. However, 

only HOEP and demand for past 15 days will be accounted 

during feature selection to reduce the computational burden. 

Meanwhile, when the distance of HOEP with the past HOEP 

and demand becomes further, the correlation between the 

features and target HOEP becomes lower (HOEP (h-24) = 0.58, 

HOEP (h-168) = 0.48, HOEP (h-336) = 0.44, HOEP (h-504) = 0.41, 

demand (h-24) = 0.6, demand (h-168) = 0.6, demand (h-336) = 0.55, 

demand (h-504) = 0.53). Therefore, total features used are [(15 

days x 24 hours price) + (15 days x 24 hours demand) + 1-

hour pre-dispatch price = 721]. 
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Table 1 

Correlation Coefficient of Some Features with Target HOEP 

 
Input Target Correlation 

HOEP / demand (h-1) 

HOEP (h) 

HOEP 

0.80 

Demand 

0.67 

HOEP / demand (h-2) 0.65 0.59 

HOEP / demand (h-3) 0.52 0.49 

HOEP / demand (h-24) 0.58 0.60 

HOEP / demand (h-25) 0.53 0.56 

HOEP / demand (h-26) 0.45 0.48 

HOEP / demand (h-48) 0.46 0.50 

HOEP / demand (h-49) 0.42 0.47 

HOEP / demand (h-168) 0.48 0.60 

HOEP / demand (h-169) 0.45 0.56 

HOEP / demand (h-336) 0.44 0.55 

HOEP / demand (h-360) 0.36 0.49 

HOEP / demand (h-504) 0.41 0.53 

HOEP / demand (h-528) 0.34 0.46 

1-hour pre-dispatch price 0.71 

2-hour pre-dispatch price 0.70 

3-hour pre-dispatch price 0.68 

Total Market Demand (h-1) 0.65 

Imports (h-1) 0.15 

Exports (h-1) -0.31 

Uplift Charge (h-1) 0.09 

Total demand (h) Demand (h) 0.97 

 

 

VII. THE PROPOSED HYBRID MODEL 

 

A hybrid model of LSSVM-GA is developed with three- 

stage optimization of feature and parameter. During the first 

stage, all 721 features are applied and the GA selects a certain 

number of significant features to be fed into the LSSVM. At 

the same time, GA optimizes the LSSVM parameters; gamma 

(γ) and sigma (σ). During the second stage of optimization, 

GA optimizes the features and parameters that have been 

selected from the first stage of optimization. These processes 

are repeated for the next optimization stages until no 

improvement is observed in the fitness value or Mean 

Absolute Percentage Error (MAPE). MAPE is formulated as 

in Equation (12): 

 

 

(12) 

 

Pactual and Pforecast are actual and forecasted HOEP at hour t, 

respectively, while N is the number of hours in a day.  

Meanwhile, Mean Absolute Error (MAE) is also calculated 

as in Equation (13): 

 

 

(13) 

 

Figure 1 illustrates the flowchart of hybrid LSSVM-GA 

during each stage of optimization.  

  
 

Figure 1: Flowchart of hybrid LSSVM-GA 

 

As a comparison with previous researchers, six forecast 

models are developed to represent the whole year of 2004. 

Each model is trained with ten weeks’ data prior to the 

forecasting week as shown in Table 2. 
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Table 2 

Training and Testing Period of 2004 

 

 Training (10 weeks) Testing (a week) 

Spring low 

 point 

Week 1 Feb 16 -Apr 25   Apr 26-May 2 

Week 2 Feb 23 -May 2  May 3-9  

Summer 
peak demand 

Week 3 May 17  - July 25  July 26  - Aug.1  

Week 4 May 24 - Aug 1  Aug 2 - 8  

High 
demand 

winter 

Week 5 Oct 4 - Dec 12  Dec 13 - 19  

Week 6 Oct 11 - Dec 19  Dec 20 - 26  

 

VIII. RESULT AND DISCUSSION 

 

Table 3 shows the improvement in MAPE when 

performing the third stage of optimization. It can be noted that 

the average MAPE is reduced after each stage of optimization 

except on the fourth stage in which the error increases. 

Further optimization process may remove some of the 

important features. The numbers of population and 

generation are case dependent and usually, the simulation 

progress is stopped when convergence is reached. Similarly, 

the features that have been optimized by the GA are case 

dependent, which is different for each training data set. 

 
Table 3 

MAPE for LSSVM-GA model 

 
 W1 W2 W3 W4 W5 W6 Average 

Stage 1 8.83 9.70 5.91 9.99 8.85 9.60 8.81 

Stage 2 7.67 8.27 5.47 8.06 7.47 8.80 7.62 

Stage 3 7.55 7.45 5.55 7.88 7.21 8.77 7.40 

Stage 4 7.60 7.61 5.77 8.09 7.69 9.07 7.64 

        

Meanwhile, the lowest MAPE is shown during W3 while 

the highest MAPE occurs during W6. Furthermore, the 

developed models of LSSVM-GA were compared with other 

existing models as tabulated in Table 4. There are few 

existing methods have been implemented for an hour-ahead 

electricity price forecast in Ontario. Based on the observation 

from Table 4, the hybrid model of LSSVM-GA outperforms 

other existing models in terms of accuracy and simplicity. For 

example, Recurrent Neural Network (RNN) with excitable 

dynamics model [4] has a more complicated structure which 

developed to deal with spiky and non-spiky price region. The 

Fitz-Hugh Nagumo (FHN) system handles the spike portion 

by the help of RNN model which control the parameters and 

time scales of FHN. Meanwhile, Feedforward Neural 

Network (FFNN) is developed to predict the residue errors of 

RNN-FHN when predicting the stable or non-spiky region. In 

addition, the output of FFNN is fed to RNN-FHN model to 

improve the forecasting. Furthermore, Evolutionary 

Strategies (ES) is incorporated to train the feedforward and 

feedback weights of the RNN whereas the FFNN is trained 

by the backpropagation algorithm. 

 

IX. CONCLUSION 

 

In the area of hour-ahead electricity price forecasting, the 

accuracy of the prediction is the main issue. Market 

participants use the forecast to review and change the bids 

prior to the dispatch hour. For accomplishing this goal, 

selection of input features and parameter is very important 

during the model development. Until recently, no study has 

investigated the approach of LSSVM, GA, as well as 

multistage optimization technique in hour-ahead price 

prediction.  

Hence, a hybrid model of LSSVVM-GA for hour-ahead 

electricity forecast was developed in this study where only 

one output is produced at one time. By using the most recent 

features, GA optimizes the input features and LSSVM 

parameters simultaneously. This approach may reduce the 

significant features over the optimization stages while 

refining the LSSVM parameter values. The developed 

models of LSSVM-GA outperform other existing models for 

the same market and test periods. These contributions may 

help market participants to bid effectively, maintaining 

efficient hourly operation, and eventually increasing 

company’s profit. 
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Table 4 

WMAPE of HOEP Forecast for the Ontario Electricity Market 

 

Ref. Year Method 
Test week 

Average MAPE 
1 2 3 4 5 6 

  LSSVM+GA 7.55 7.45 5.55 7.88 7.21 8.77 7.40 

[4] 2013 recurrent NN + excitable dynamics 10.76 9.12 11.61 10.45 

[6] 2011 

recurrent NN + Expectation Maximization 
algorithm (RNN-EM) 

15.09 15.16 10.52 10.21 15.78 15.71 13.72 

RNN + Extended Kalman Filter (RNN-EKF) 16.01 16.54 11.89 11.96 16.59 16.45 14.91 

MLP+EKF 16.83 16.74 12.64 15.25 16.77 16.96 15.87 

MLP+EM 15.48 15.39 11.87 12.07 16.78 16.73 14.72 

[1] 2006 
MARS  (case 1) 13.3 12.9 9.4 14.4 12.9 15.5 13.07 

MARS  (case 2) 12.5 12.3 8.6 11.7 11.8 13.9 11.80 

  IESO 23.78 25.26 10.41 16.22 22.06 23.51 20.21 
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