

Faculty of Technology Management and Technopreneurship

DETERMINING MANAGEMENT FACTORS OF OVERALL EQUIPMENT EFFICIENCY IN SELECTED MALAYSIAN PUBLIC UNIVERSITIES

Yunos bin Ngadiman

Doctor of Philosophy

2017

DETERMINING MANAGEMENT FACTORS OF OVERALL EQUIPMENT EFFICIENCY IN SELECTED MALAYSIAN PUBLIC UNIVERSITIES

YUNOS BIN NGADIMAN

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Faculty of Technology Management and Technopreneurship

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2017

DECLARATION

I declare that this thesis entitled "Determining Management Factors of Overall Equipment Efficiency in Selected Malaysian Public Universities" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in the candidature of any other degree.

Signature

Name : YUNOS BIN NGADIMAN

3/8/2017 Date

APPROVAL

I hereby declare that I have read this thesis and, in my opinion, this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

Main Supervisor:-	\bigcap \bigcap
Signature	
Supervisor Name	: PROFESSOR DR. BURAIRAH BIN HUSSIN
Date	4 0805 2017
Co-Supervisor:-	
Signature	- English -
Supervisor Name	: PROFESSOR DR. IZAIDIN BIN ABDUL MAJID
Date	3/1017

DEDICATION

This doctoral thesis is dedicated to my late father, who taught me that the best kind of knowledge to have is that which is learned for its own sake. It is also dedicated to my late mother, who taught me that even the largest task can be accomplished if it is done one step at a time. Without their lifting me up when this thesis seemed interminable, I doubt it but bounced determination to resolve this thesis completely. I constantly pray that Allah placed them in a state of peace summoned their souls.

ABSTRACT

Overall Equipment Efficiency (OEE) is a fundamental method of measuring the equipment performance tool for bringing maintenance and engineering to address the higher level of organizational performance. Determining management factors of OEE in this study is to enhance the machining performance in the engineering laboratories at the selected Malaysian public university. Nowadays, the management of the capital equipment is regarded as moderately viewed and based on the existing rules of asset management. However, an understanding of the overall management of laboratory management still does not have the importance factor including the administrative management system of laboratory equipment such as the training program of technical staff, capital equipment management, equipment maintenance and reliability engineering management without seeing the further machining performance. The engineering expert opinions was accounted and consistently agreed that the determination of the capital equipment performance should be established to define the significance of evaluating the performance of equipment in Malaysian higher learning institutions. Acting in accordance from the expert, a study of determining the direction of the equipment performance benchmarking is needed. Therefore, beginning the stage of this research is conducted for the purpose of determined the relationship between the Capital Equipment Management Factor (CEMF) and OEE in university perspective. The research methods used throughout this research were quantitative methods with two methods applied. The first method is the calculating the OEE performance ratios of twenty-five selected lathe machine in the engineering laboratory of the Malaysian public universities. The second method conducts a survey questionnaire with face-to-face to answer the all questions provided. The respondents are comprised of experienced technical staff with more than five years working in the management of laboratory equipment. There are six factors of CEMF were identified which included General Organizational Management, Departmental Organizational Management, Technical Training Program, Capital Equipment Management, Maintenance Management, and Reliability Engineering Management. Survey data was analyzed through the statistical method of analysis using SPSS version 23.0 to determine the normality of data, the reliability of the question asked, Spearman correlation and hypothesis testing. The methodological tool of Spearman correlation was used to analyze the correlation relationship between the CEMF and Individual Perceiveness and OEE performance. Therefore, the findings of this study presented the correlation test for each factor of CEMF was correlated with Individual Perceiveness. Meanwhile, the null hypothesis tested was denied and the alternate hypothesis tested shown the positive and acceptable result. It showed the relationship between the CEMF with Individual Perceiveness and OEE was inter-correlated.

ABSTRAK

Keseluruhan Kecekapan Peralatan (KKP) adalah satu kaedah asas untuk mengukur prestasi pemesinan bagi membawa sistem penyelenggaraan dan kejuruteraan kepada tahap yang lebih tinggi terhadap prestasi organisasi. Faktor-faktor penentu pengurusan KKP dalam kajian ini adalah untuk meningkatkan prestasi pemesinan di makmal-makmal kejuruteraan, universiti awam Malaysia yang terpilih. Pada masa kini, pengurusan pemesinan berkapital dianggap sebagai sederhana dan masih berdasarkan peraturan yang sediada seperti pengurusan aset. Walau bagaimanapun, pemesinan yang menjelaskan pemahaman keseluruhan pengurusan makmal, pihak pengurusan masih belum menjadikan faktor utama termasuklah antaranya sistem pentadbiran pengurusan makmal, program latihan kakitangan teknikal, pengurusan pemesinan berkapital, penyelenggaraan pemesinan dan kebolehpercayaan pengurusan kejuruteraan tanpa melihat prestasi pemesinan dengan lebih jauh. Pakar-pakar dalam bidang kejuruteraan berpendapat secara konsistennya telah bersetuju bahawa penentuan prestasi pemesinan berkapital adalah perlu diwujudkan untuk menentukan kepentingannya bagi menilai prestasi pemesinan di institusi pengajian tinggi di Malaysia. Menurut pakar berkenaan, satu kajian bagi menentukan penanda aras prestasi pemesinan adalah diperlukan. Oleh itu penyelidikan diperingkat awal ini harus dijalankan bagi menentukan hubungan antara faktor pengurusan pemesinan berkapital dan KKP dalam perspektif di universiti. Kaedah penyelidikan yang digunakan dalam kajian ini adalah secara kuantitatif iaitu terbahagi kepada dua kaedah. Kaedah pertama ialah menentukan prestasi KKP keatas dua puluh lima buah mesin larik terpilih dalam makmal kejuruteraan mekanikal di universiti awam Malaysia setiap mesin dan mengira prestasi KKP masing-masing. Kaedah kedua ialah menentukan hubungan antara Faktor Pengurusan Peralatan Berkapital (FPPB) iaitu menyediakan soalan-soalan kepada responden yang terdiri daripada kakitangan teknikal yang berpengalaman iaitu lebih daripada lima tahun bekerja dalam pengurusan pemesinan makmal. Responden dikehendaki menjawab semua soalan secara bersemuka. Terdapat enam faktor dalam pengurusan pemesinan berkapital telah dikenal pasti iaitu Pengurusan Organisasi Besar, Pengurusan Organisasi Jabatan, Program Latihan Teknikal, Capital Penyelenggaraan dan Management Equipment, Pengurusan Kebolehpercayaan Kejuruteraan. Pengukuran data dianalisa melalui kaedah statistik dengan menggunakan perisian SPSS versi 23.0 untuk menentukan kenormalan data, kebolehpercayaan soalan yang ditanya, korelasi Spearman dan ujian hipotesis. Kaedah analisa korelasi Spearman digunakan untuk menganalisa hubungan bagi menentukan hipotesis antara FPPB dengan pandangan secara individu terhadap KKP dan prestasi KKP. Oleh itu hasil kajian ini menunjukkan ujian korelasi bagi setiap faktor dalam FPPB telah mempunyai hubungan terhadap pandangan individu dengan prestasi KKP. Sementara itu, ujian hipotesis nol adalah ditolak dan ujian hipotesis alternatif menunjukkan hasil yang positif dan boleh diterima. Ia menunjukkan terdapat hubungan antara FPPB dengan pandangan individu dalam KKP dan prestasi KKP adalah saling berhubung antara satu faktor dengan faktor yang lain.

ii

ACKNOWLEDGEMENTS

Over the past years, I have had lots of encouragement, word of wisdom and gracious contribution from many people that made this research accomplished. First, I owe my deepest gratitude to my first supervisor, Professor Dr. Salleh bin Yahya from the Faculty of Technology Management and Technopreneurship. Thanks for all your guidance and support. Many thanks for the hardcore and supervision to my next main supervisor over past 3 years, Professor Ir. Dr. Zainal Arifin bin Zakariah from the same faculty before his early retirement.

I would like to wholeheartedly thank the countless instruction and guidance given to my closing supervisor of the last terms of my studies, Professor Dr. Burairah bin Hussin from the Faculty of Information and Communication Technology and also wish thanks to my Co-Supervisor, Professor Dr. Izaidin bin Abdul Majid from the Faculty of Technology Management and Technopreneurship who's referred me a well-continued support, guidance and encouragement for making this research comes to reality.

I most certainly would like to thank the invaluable encouragement and universities on full sponsorship from the Ministry of Higher Education Malaysia via Universiti Tun Hussein Onn Malaysia (UTHM) on myself in order to pursue the highest educational level to meet the needs primarily for establishing more experts of various fields in Malaysian Public Universities.

Last but not least, infinite thanks to the technical staff and workers in the engineering laboratories at the selected public universities during the research process running that to ensure obtaining valuable data can be successfully implemented. Without help and support from you all, am definitely could not have finished the long road of this research.

Finally, and most importantly, I would like to express my special thanks to my wife, Mrs. Khairiah Mohd. Tahrir and all my daughters (Nadia Izzaty, Nabiha, Nazifa and Nabila) for their constant support and blessings, enabling my success and happiness in all my pursuits with limitless patience in life, they have given me during my pursuit of this degree is extremely appreciated.

iii

TABLE OF CONTENTS

			PAGE
DEC	LARA	TION	3840
APP	ROVA	L	
DEI	DICATI	ON	
ABS	TRAC	Γ	i
ABS	TRAK		ii
ACI	NOWI	LEDGEMENT	iii
TAE	BLE OF	CONTENTS	iv
LIS	T OF T	ABLES	viii
LIS	r of fi	IGURES	xi
LIS	T OF A	PPENDICES	xiii
LIS	T OF A	BBREVIATIONS	xiv
LIS	T OF P	UBLICATIONS	xvi
CHA	APTER		
1.	INTE	RODUCTION	1
	1.1	Overview Research	1
	1.2	Research Background	2
	1.3	Problem Statement	2 3 8
	1.4	Research Questions	8
	1.5	Research Objectives	9
	1.6	Significance of Research	9
	1.7	Research Scope	10
	1.8	Research Framework	11
	1.9	Organization of Thesis	13
	1.10	Summary	16
CH	APTER		
2.	LITE	CRATURE REVIEW	17
	2.1	Introduction	17
	2.2	Capital Equipment	18
	2.3	Definition of CE	18
	2.4	Review of CE Management	20
	2.5	Capital Equipment Management Factor (CEMF)	24
	2.6	Foundation of CEMF	28
		2.6.1 General Organizational Management	28
		2.6.2 Departmental Organization Management	29
		2.6.3 Technical Training Program	31
		2.6.4 CE Management	32
		2.6.5 Maintenance Management	33
		2.6.6 Reliability Engineering Management	34
	2.7	Overall Equipment Effectiveness (OEE)	36

		2.7.1 Definition of OEE	36
		2.7.1 OEE Background	37
		2.7.3 Overview of OEE	38
		2.7.4 OEE in Manufacturing Industry	40
	2.0	2.7.5 Purpose of OEE	41
	2.8	Production Performance Losses Due to Chronic and Sporadic Disturbances	41
	2.9	Parameter in OEE	43
		2.9.1 Availability Rate	43
		2.9.2 Performance Rate	46
		2.9.3 Quality Rate	47
	210	2.9.4 Example of OEE	48 49
	2.10		
	2.11	Ideal of OEE Figure	50
	2.12	Previous Study	51
	2.13	Summary	54
	APTER		3.
3.	MET	THODOLOGY	55
	3.1	Introduction	55
	3.2	Flow of Research Methodology	56
	3.3	Research Design	57
	3.4	Research Strategy	57
	3.5	Research Approach	59
		3.5.1 Research Model	61
	3.6	Respondent of The Research	62
	3.7	Selection of the Respondent	63
		3.7.1 Equipment for OEE Measurement	64
		3.7.2 Respondent Size for CEMF	66
		3.7.3 CEMF Instrument	68
	3.8	Research Instrument Validation	71
	3.9	Data Collection	74
		3.9.1 OEE Performance	74
		3.9.2 Survey of CEMF	75
	3.10	Data Analysis	76
	3.11	Summary	78
СН	APTER		
4.		ULT AND DISCUSSION	79
	4.1	Introduction	79
	4.2	Data Collection of OEE	80
	-	4.2.1 Availability Rate Calculation	80
		4.2.2 Analyzing Availability Rate	82

	4.2.2.1	University 1: Availability Rate of Lathe Machine No. A1	82
	4.2.2.2	University 1: Availability Rate of Lathe Machine No. A2	83
	4.2.2.3	University 1: Availability Rate of Lathe Machine No. A3	84
	4.2.2.4	University 1: Availability Rate of Lathe Machine No. A4	85
	4.2.2.5	University 1: Availability Rate of Lathe Machine No. A5	86
4.2.3	Calculat	ion of Machine Downtime	87
	4.2.3.1	University 1: Downtime of Lathe Machine No. A1	88
	4.2.3.2	University 1: Downtime of Lathe Machine No. A2	90
	4.2.3.3	University 1: Downtime of Lathe Machine No. A3	91
	4.2.3.4	University 1: Downtime of Lathe Machine No. A4	93
	4.2.3.5	University 1: Downtime of Lathe Machine No. A5	94
4.2.4	Overall	CE Availability Rate	96
4.2.5	Perform	ance Rate Calculation	97
4.2.6	Perform	ance Analyzing for UI	99
	4.2.6.1	University 1: Performance of Lathe Machine No. A1	99
	4.2.6.2	University 1: Performance of Lathe Machine No. A2	101
	4.2.6.3	University 1: Performance of Lathe Machine No. A3	102
	4.2.6.4	University 1: Performance of Lathe Machine No. A4	104
	4.2.6.5	University 1: Performance of Lathe Machine No. A5	105
4.2.7	Overall	CE Performance Rate	107
4.2.8	Quality	Rate in University Perspective	109
OEE i	n Univers	sity Perspective	110
CEMI	Analysis		113
Result	s for the	Overall Objectives	114
4.5.1	Reliabil		114
4.5.2	Normali		122
4.5.3		ial Analysis	123
4.5.4		an Correlation Test	123
	4.5.4.1	Correlation between General Organizational Management (GOM) and Individual Perceiveness	125
	4.5.4.2	Management (DOM) and Individual Perceiveness	126
	4.5.4.3	(TTP) and Individual Perceiveness	127
	4.5.4.4	Correlation between Capital Equipment Management (CEM) and Individual Perceiveness	128
	4.5.4.5	Correlation between Maintenance Management (MM) and Individual Perceiveness	129

		4.5.4.6 Correlation between Reliability Equipm	nent
		Management (REM) and Individual Pe	rceiveness 130
		4.5.4.7 Correlation between Capital Equipmen	1
		Management Factors (CEMF) and Indi	vidual
		Perceiveness	131
		4.5.4.8 Correlation between Individual Perceiv	
		OEE	132
		4.5.4.9 Correlation between Capital Equipmen	
		Management Factors (CEMF) and OEF	
		4.5.4.10 Correlation between Capital Equipmen	
		Management Factors (CEMF) With Inc	
		Perceiveness and OEE	134
	4.6	Hypothesis Testing	135
	4.7	Discussion	136
		4.7.1 Hypothesis 1: Independent of CEMF and Individ	ual 120
		Perceiveness	139
		4.7.2 Hypothesis 2: Independent CEMF and OEE	140
		4.7.3 Hypothesis 3: Individual Perceiveness and OEE	141
		4.7.4 Hypothesis 4: Independent CEMF with Individu	al
		Perceiveness and OEE	142
	4.8	Summary	143
5.	CON	NCLUSION	145
	5.1	Introduction	145
	5.2	Summary of Research Process	146
	5.3	Relationship between CEMF and OEE	148
	5.4	Contribution	149
	5.5	Limitation of Study	151
	5.6	Recommendation	152
	5.7	Summary	153
REI	EREN	NCES	154
	ENDIC		195

LIST OF TABLES

TABLE	TITLE	PAGE
1.1	Summary Conclusion from Experts	7
2.1	CE Review	21
2.2	Designation of Research Instrument	25
3,1	List of selected Malaysian public universities	64
3.2	List of selected Lathe Machine	65
3.3	Random Sample Size from given population	67
3.4	Instrument Designs	69
3.5	Summary Validations from Experts	71
3.6	Scale Rating Points	75
4.1	Un-Planned Downtime Perspective	81
4.2	Availability Rate of Lathe Machine No.AI	82
4.3	Availability Rate of Lathe Machine No.A2	83
4.4	Availability Rate of Lathe Machine No.A3	84
4.5	Availability Rate of Lathe Machine No.A4	85
4.6	Availability Rate of Lathe Machine No.A5	86
4.7	Downtime of Lathe Machine No.A1	88

4.8	Downtime of Lathe Machine No.A2	90
4.9	Downtime of Lathe Machine No.A3	91
4.10	Downtime of Lathe Machine No.A4	93
4.11	Categories of Downtime for Lathe Machine No.A5	94
4.12	Availability Rate Analysis of Overall Lathe Machines	96
4.13	Performance Analysis for Lathe Machine No.A1	99
4.14	Performance Analysis for Lathe Machine No.A2	101
4,15	Performance Analysis for Lathe Machine No.A3	102
4.16	Performance Analysis Report for Lathe Machine No.A4	104
4.17	Performance Analysis Report for Lathe Machine No.A5	105
4.18	Performance Rate Analysis of Overall Lathe Machines	107
4.19	Tabulation of OEE Calculation for University 1	111
4.20	Tabulation of OEE Calculation	112
4.21	Cronbach Alpha and Internal Consistency	114
4.22	Reliability Statistic Result	115
4.23	General Organizational Management Reliability Coefficient	116
4.24	Departmental Organizational Management Reliability Coefficient	117
4.25	Technical Training Reliability Coefficient	118
4.26	CE Management Reliability Coefficient	119

4.27	Maintenance Management Reliability Coefficient	120	
4.28	Reliability Engineering Management Reliability Coefficient	121	
4.29	Normality test result tabulation	122	
4.30	Strength of Correlation	124	
4.31	Spearman correlation test for GOM and Individual Perceiveness	125	
4.32	Spearman correlation test for DOM and Individual Perceiveness	126	
4.33	Spearman correlation test for TTP and Individual Perceiveness	127	
4.34	Spearman correlation test for CEM and Individual Perceiveness	128	
4.35	Spearman correlation test for MM and Individual Perceiveness	129	
4.36	Spearman correlation test for REM and Individual Perceiveness	130	
4.37	Spearman correlation test for CEMF and Individual Perceiveness	131	
4.38	Spearman correlation test for Individual Perceiveness and OEE	132	
4.39	Spearman correlation test for CEMF and OEE	133	
4.40	Spearman correlation test for CEMF with Individual Perceiveness and OEE	134	
4.41	Summary of Hypothesis	136	

x

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Research Framework	12
1.2	Organization of the research process	15
2.1	Production Performance Losses due to Chronic and Sporadic Disturbance	43
3.1	Flow of Research Methodology	56
3.2	Research Model	61
3.3	Conventional Lathe Machine	66
4.1	Percentage of Downtime for Lathe Machine A1	88
4.2	Percentage of Downtime for Lathe Machine A2	90
4.3	Percentage of Downtime for Lathe Machine A3	92
4.4	Percentage of Downtime for Lathe Machine A4	93
4.5	Percentage of Downtime for Lathe Machine A5	95
4.6	Comparison between Actual Operating Time and Theoretical Operation Time (Total Operation Time) for Lathe Machine A1	100
4.7	Comparison between Actual Operating Time and Theoretical Operation Time (Total Operation Time) for Lathe Machine A2	101
4.8	Comparison between Actual Operating Time and Theoretical Operation Time (Total Operation Time) for Lathe Machine A3	103
4.9	Comparison between Actual Operating Time and Theoretical Operation Time (Total Operation Time) for Lathe Machine A4	104
4.10	Comparison between Actual Operating Time and Theoretical Operation Time (Total Operation Time) for Lathe Machine A5	106

xi

4.11	Inferior scale of OEE	113
4.12	Correlation between CEMF and Individual Perceiveness	139
4.13	Correlation between CEMF and OEE	140
4.14	Correlation between Individual Perceiveness and OEE	141
4.15	Correlation between CEMF with Individual Perceiveness and OEE	142

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Performance Improvement/Human Performance Model Overall	197
В	Validation of Research Instrument	198
С	OEE Calculation	208
D	Survey Questionnaire	221
Е	Alpha Cronbach's Computation - Reliability For Overall Variables	232

LIST OF ABBREVIATIONS

APEC - Asia-Pacific Economy Corporation

BM - Breakdown Maintenance

CE - Capital Equipment

CEM - Capital Equipment Management

CEMF - Capital Equipment Management Factor

CNC - Computer Numeric Controlled

CU - Comprehensive University

DOM - Departmental Organizational Management

GOM - General Organizational Management

HLI - Higher Learning Institution

HPT - Human Performance Technology

JH - Jishu Hozen

JIPM - Japan In-Plant Maintenance

KPI - Key Performance Index

KSA - Knowledge, Skill, and Attitude

LCC - Life Cycle Cost

MBTI - Myers-Briggs Type Indicator

MM - Maintenance Management

MOHE - Ministry of Higher Education

MP - Maintenance Prevention

MPU - Malaysian Public University

MTUN - Malaysian Technical University Network

OEE - Overall Equipment Efficiency

PM - Preventive Maintenance

PredM - Predictive Maintenance

PreM - Periodic Maintenance

QA - Quality Assurance

QC - Quality Control

QFD - Quality Function Deployment

RAM - Reliability, Availability, Maintenance

REM - Reliability Engineering Management

ROI - Return on Investment

RU - Research University

SMRP - Society for Maintenance Reliability Professionals

SU - Specialized University

TEEP - Total Effective Equipment Performance

TIPS - Theory of Inventive Problem Solving

TOC - Theory of Constraints

TOTPM - Technology Oriented Total Productivity Measurement Model

TPM - Total Productive Maintenance

TQM - Total Quality Management

TTP - Technical Training Program

UiTM - Universiti Teknologi Mara

UM - Universiti Malaya

USA - United States of America

USM - Universiti Sains Malaysia

UTHM - Universiti Tun Hussein Onn Malaysia

UTM - Universiti Teknologi Malaysia

LIST OF PUBLICATIONS

Some of research contained in this research have been published as follows:

- Ngadiman, Y., Hussin, B., and Abdul Majid, I., (2011). A Study of Human Skill
 Achievement in Malaysian Public Universities: Knowledge, Skill, and Attitude.

 International Journal of Management and Technology, 62, pp.1280-1292. ISSN: 0267-5730.
- Ngadiman, Y., Hussin, B., and Abdul Majid, I., (2012). A Study of Total Productive Maintenance Implementation in the Manufacturing Industry. International Journal on Management, Economy, and Finance. pp.963-980. (Academic Journal)
- Ngadiman, Y., Hussin, B., and Abdul Majid, I., (2013). Exploring the overall equipment effectiveness (OEE) in an industrial manufacturing plant. *Journal of Kalam*, 2(42): pp.203-255. Academic Journal.
- Ngadiman, Y., Hussin, B., A.H. Nor Aziati, Abdul Talib Bon, M.F. Ahmad, Raja Zuraidah R.M. Rasi and Martin Yaw Swee Hock (2015). Identification of Public Awareness in Preventive Maintenance for Personal Automobile. *Institute of Creative Advanced Technologies, Science, and Engineering (ICATSE)* - Scopus Indexed.
- Ngadiman, Y., Hussin, B., M.F. Ahmad, A.H. Nor Aziati, Abdul Talib Bon, Shiau Wei Chan (2015). Review Relationship TPM as Mediator between TQM and Business Performance. *Institute of Creative Advanced Technologies, Science and Engineering (ICATSE)* - Scopus Indexed.
- A.H. Nor Aziati, Ngadiman, Y., Abdul Talib Bon, Shiau Wei Chan (2015).
 Exploring the ISO 14001 Environmental Management System (EMS) towards
 SMEs Organizational Performance: Case Study of Southern Malaysia Furniture

- Manufacturers. Institute of Creative Advanced Technologies, Science and Engineering (ICATSE) Springer Lecture Notes in Electrical Engineering series (LNEE) which is indexed in El and Scopus Scopus Indexed.
- Ngadiman, Y., Hussin, B., Rohaizan Ramlan, Siti Sarah Omar (2015).
 Quantification of Machine Performance through Overall Equipment Effectiveness, Malaysia Technical Scientist Association/UMS/UTM - Scopus Indexed.
- Shiau Wei Chan, M.F. Ahmad, Ngadiman, Y., and Siti Sarah Omar (2015).
 Emotional Intelligence and Job Performance: A Qualitative Meta-analysis.
 Advance Science Lett. Scopus Indexed.
- Ngadiman, Y., Hussin, B., Raja Zuraidah RM Rasi, A.H. Nor Aziati, Shiau Wei Chan, Rohaizan Ramlan (2015). Line Balancing Scorecard for Production Line in Small and Medium Enterprise. *International Society for Engineering Research* and Development (ISERD) – ISSN: 2250-1584, Impact Factor: 1.6842, Index Copernicus Value (ICV): 3.0.
- A.H. Nor Aziati, Nor Hazana Abdullah, Ngadiman, Y., 2015. The Relationship Between Worker Involvement Factor and Cleaner Production Factor Towards Green Production Performance. ARPN Journal of Engineering and Applied Science (ARPN-JEAS). ISSN – 1876-1100, ISBN 9783-662-47199-9. Scopus Indexed.
- Yunos Ngadiman, Burairah Hussin, Nor Aziati Abdul Hamid, Rohaizan Ramlan, Liew Kai Boon, 2016. Relationship between Human Errors in Maintenance and Overall Equipment Effectiveness in Food Industries. International Conference on Industrial Engineering and Operations Management (IEOM 2016), Kuala Lumpur, Malaysia, March 8-10, 2016. Indexed by Scopus.
- Yunos Ngadiman, Burairah Hussin & Nor Aziati Abdul Hamid, 2016.
 Computation of Overall Equipment effectiveness towards growing the productivity performance in manufacturing industry. Conference on Engineering

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Performance Improvement/Human Performance Model Overall	196
В	Validation of Research Instrument	197
C	OEE Calculation	207
D	Survey Questionnaire	220
Е	Alpha Cronbach's Computation - Reliability For Overall Variables	231

CHAPTER 1

INTRODUCTION

1.1 Overview Research

This research was accompanied to determining management factors of Overall Equipment Efficiency (OEE) in selected Malaysian public universities. Strengthening of the Capital Equipment Management Factors (CEMF) was currently focused on the effective management of the Capital Equipment (CE) utilization in the university perspective (Liao, 2005; Daniel & Jeff., 2006). Searching through researchers or the literature related to OEE in Malaysia is not an easily accessible. From the limited source of researchers, it can be implied that OEE remains as a new area to be revealed and undertaken to Malaysian university perspective. However, the concept of OEE is applicable to all operations practiced the manufacturing plant and machinery (Suzuki, 1997; Fernandez, 2001).

The CE is an item considered to have a value and durability that used to provide a service or to make a product by Caernarven-Smith (1994), whereas, Liggett & Brenda (2005) has stated that CE is included with a long-lasting equipment acquired. It owned by the Malaysian public universities under the mechanical engineering laboratory. CE is expected to provide operating benefits over a long period of time, usually several years or more (Caenarven-Smith, 1994; Liggett & Brenda, 2005). Most organizations establish criteria for designating acquired items as either capital or non-capital items (McKone, 1996).