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Abstract 
 

The overhead gantry crane systems are extensively used in harbours and factories for transportation of heavy loads. The crane speeding up, 

required for motion, always induces undesirable load swing. This writings present dynamic modelling of a 3D overhead gantry crane sys-

tem based on closed-form equations of motion. By using the Lagrange technique, a 3D overhead gantry crane system nonlinear dynamic 

model is deriving. Then perform a linearization process to obtain a linear model dynamic system. Finally, simulation results systems re-

sponses of the derived nonlinear and linear model are presented showing the accuracy and performance of both model. 
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1. Introduction 

A 3D gantry crane system is used commonly to transport a large 

and heavy cargo in factories (Figure 1). But there is a number of 

serious problems occur in overhead cranes [1-4]. Example, crane 

acceleration or deceleration always induces undesirable load swing. 

In addition crane performance is also reduce or disturbed due to 

several factors including wind and rain. Other factors may also 

cause from a crane machinist may not effectively control a crane 

due to lack of care or lack of familiarity. Such problems decrease 

the work efficiency and in some cases cause damage to the loads 

and cause safety accidents.  

 

 
Fig. 1: Real 3D Overhead Crane System. 

 

Therefore, research on the dynamic modelling of the framework 

crane system is crucial previous to any controller can be imple-

mented to the system. A number of studies developed the dynamic 

representation and control design for 3D overhead gantry crane co-

ordination. The effect of payload value on response of the system 

is study in [5-6]. The employment of dynamic crane model to de-

termine an optimal speed that minimized load swing has been in-

vestigated and energy based nonlinear control for crane lifters has 

been reported in [7]. In these studies, complex system dynamic 

equations for a crane must be considered for the controller. Anti-

swinging control and motion planning for 3-D gantry and the study 

of the dynamic modelling of the other vibratory system incorporat-

ing payload is also has been reported [8].  

While M. S. Omar et al. study on scheduling algorithm in order to 

find best performance in term of settling time and percentage of 

overshoot [9]. Another method scheduling optimization of RTGC 

by considering on moving distance, turning distance and practical 

operation rule [10]. 

This paper will study the nonlinear dynamic model equation of the 

system 3D overhead gantry crane system. Then perform a lineari-

zation process to obtain a linear model equation of the system. The 

Langrage principal is use to derive the dynamic model of the sys-

tem. To analyse the accuracy and performance of both model, 

MATLAB software is used to simulate the system response of the 

models. 

2. System description 

The 3D overhead gantry crane system discuss in this work as shown 

in Figure 2 below. It consist [3] item in this system which is rail (r), 

cart (c) and payload (p). Θ and ∅ denote the swing angle of the rope, 

l is the length of rope, and F is the cart drive force. 
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Fig. 2: Description of the 3D Overhead Gantry Crane. 

 

For simplicity, the cart friction force is ignored. Also the cart and 

payload will be considered as point mass. The tension force that 

may cause the rope elongates is also ignored. 

3. 3D Overhead gantry crane system mathe-

matical model 

3.1. Nonlinear mathematical model equation 

To derive the mathematical equation of the 3D overhead gantry 

crane system, the total energy associated with the crane system 

needs to be computed using the Lagrange method [11]. 

Based on Figure 2, the rail, cart and payload position vectors are 

given by, 

 

rail position, Xr = [ x, 0, 0]  
 

cart position, Xc = [x, y, 0]  
 

payload position, Xp = [x + lsinθsinØ, y + lsinθcos∅, −lcosθ]  

 

Where x and y are the cart positions in X- and Y-directions respec-

tively. 

Below given Lagrange equation formula is used, 

 
∂

∂t
(

dl

dqi̇
) − (

dl

dq
) = Qi i=1, 2, 3, 4 

 

Lagrangian function, L=T-V  

T: Kinetic energy 

V: Potential energy 

Qi: nonconservative generalized forces 

Qi: independent generalized coordinate 

N: total number of independent generalized coordinate  

The state vector q and the control vector F are define as below, 

 

State vector, q=[x y θ ∅]; 

 

Control vector, QT=[fx, fy, 0,0]T 

 

The total kinetic energy, T and potential energy, V of the whole 

system are given by 

 

Total kinetic energy, Ttotal = Tr +  Tc + Tp 

 

Kinetic energy for rail, Tr =
1

2
mv2=

1

2
mrẋ2 

 

Kinetic energy for cart, Tc =
1

2
mv2 =

1

2
mrẋ2 =

1

2
mcẏ2  

 

Kinetic energy for load, Tp =
1

2
mpẋ2 +

1

2
mpẏ2 +

mpl cos θ sin Ø ẋθ̇+mpl sin θ cos Ø Ø̇ẋ+mpl cos θ cos Ø ẏθ̇- 

mpl sin θ sin Ø ẏØ̇+
1

2
(mpl2 + J)θ̇2+

1

2
(mpl2 sin2 θ + J)Ø̇2 

 

Potential energy, Vtotal = Ve + Vg = Vpayload 

 

Vtotal= - mpgl cos θ 

 

Where J denotes the moment of inertia of the payload and g is the 

gravity acceleration. Then the total energy and the total potential 

energy are obtained as 

 

L=T-V 

 

= 
1

2
 (𝑚𝑝 +𝑚𝑟 + 𝑚𝑐) �̇�2 + 

1

2
 (𝑚𝑝 +𝑚𝑐) �̇�2 +

 𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 Ø �̇��̇�  +  𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 Ø Ø̇�̇� 

+ 𝑚𝑝𝑙 𝑐𝑜𝑠 Ø 𝑐𝑜𝑠 Ø �̇�𝜃 ̇ - 𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 Ø �̇�Ø̇ + 
1

2
(𝑚𝑝𝑙2 +

𝐽)�̇�2 + 
1

2
(𝑚𝑝𝑙2 𝑠𝑖𝑛2 𝜃 + 𝐽)Ø̇2 -  𝑚𝑝𝑔𝑙 𝑐𝑜𝑠 𝜃 

 

When, i=1, q=x 

 
𝜕

𝜕𝑡
(

𝑑𝑙

𝑑�̇�
)-

𝑑𝑙

𝑑𝑥
= 𝑄𝑖 

 
𝑑𝑙

𝑑𝑥
= 0 

 
𝑑𝑙

𝑑�̇�
= (𝑚𝑝 +𝑚𝑟 + 𝑚𝑐) �̇�+𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 Ø 𝜃 +̇ 𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 Ø Ø̇ 

 
𝜕

𝜕𝑡
(

𝑑𝑙

𝑑�̇�
)=(𝑚𝑝 +𝑚𝑟 +

𝑚𝑐)�̈�+𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 Ø �̈�+𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 Ø Ø̈-𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 Ø �̇�2 

+𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 Ø �̇�Ø̇+𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 Ø �̇�Ø̇-𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 Ø Ø̇2 

 

Substitute into Lagrange equation, 
𝜕

𝜕𝑡
(

𝑑𝑙

𝑑�̇�
)-

𝑑𝑙

𝑑𝑥
= 𝑄𝑖 

 

= (𝑚𝑝 +𝑚𝑟 + 𝑚𝑐) �̈�+𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 Ø �̈�+𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 Ø Ø̈-

𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 Ø �̇�2+𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 Ø �̇�Ø̇+𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 Ø �̇�Ø̇-

𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 Ø Ø̇2=𝑓𝑥 

 

�̈� =
𝑓𝑥−𝑚𝑝𝑙 (𝑐𝑜𝑠𝜃𝑠𝑖𝑛Ø�̈�+ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠ØØ̈− 𝑠𝑖𝑛𝜃𝑠𝑖𝑛ØØ̇2+2𝑐𝑜𝑠𝜃𝑐𝑜𝑠Ø�̇�Ø̇−𝑠𝑖𝑛𝜃𝑠𝑖𝑛ØØ̇2

𝑚𝑝+𝑚𝑐+𝑚𝑟
  (1) 

 

𝑊ℎ𝑒𝑛, 𝑖 = 2 , 𝑞 = 𝑦  

 
𝜕𝐿

𝜕𝑦
= 0  

 
𝜕𝐿

𝜕�̇�
=

1

2
(2)(𝑚𝑝 + 𝑚𝑐)�̇� + 𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 Ø �̇� − 𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 Ø Ø̇  

 
𝜕

𝜕𝑡
(

𝜕𝐿

𝜕�̇�
) = (𝑚𝑝 + 𝑚𝑐)�̈� + 𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 Ø �̈� −

𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 Ø Ø̈ − 𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 Ø �̇�2 − 𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 Ø �̇�Ø̇ −

𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 Ø Ø̇�̇� − 𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 Ø �̇�2  

 

Substitute into Lagrange equation, 
𝜕𝑦

𝜕𝑥
(

𝜕𝑦

𝜕𝑥
) −

𝜕𝑦

𝜕𝑥
= 𝑄𝑖 

 

(𝑚𝑝 + 𝑚𝑐)�̈� + 𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 Ø �̈� − 𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 Ø Ø̈ −

𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 Ø �̇�2 − 𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 Ø �̇�Ø̇ − 𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 Ø Ø̇�̇� −

𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 Ø �̇�2 = 𝐹𝑦  

 

𝑦 ̈ = (𝐹_𝑦 − 𝑚_𝑝 𝑙(𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 Ø 𝜃 ̈ − 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 Ø Ø ̈ −
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 Ø 𝜃 ̇^2 − 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 Ø 𝜃 ̇Ø ̇ − 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 Ø Ø ̇𝜃 ̇ −
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 Ø 𝜃 ̇^2 ))/((𝑚_𝑝 + 𝑚_𝑐 ) )                                        (2) 
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𝑊ℎ𝑒𝑛, 𝑖 = 3 , 𝑞 = 𝜃  

 
𝜕𝑦

𝜕𝑥
= −𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 Ø �̇��̇� + 𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 Ø �̇�Ø̇ −

𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 Ø �̇��̇� − 𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 Ø �̇�Ø̇ + 𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 Ø2̇ −

𝑚𝑝𝑦𝑙 𝑠𝑖𝑛 𝜃  

 
𝜕𝐿

𝜕�̇�
= 𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 Ø �̇� + 𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 Ø �̇� + 𝑚𝑝𝑙2�̇�  

 
𝜕

𝜕𝑡
(

𝜕𝐿

𝜕�̇�
) = 𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 Ø �̈� + 𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 Ø �̈� + 𝑚𝑝𝑙2�̈� −

𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 Ø �̇��̇� + 𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 Ø �̇�Ø̇ − 𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 Ø �̇��̇� −

𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 Ø �̇�Ø̇  

 

Substitute into Lagrange equation, 
𝜕

𝜕𝑡
(

𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝜃
= 𝑄𝑖 

 

𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 Ø �̈� + 𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 Ø �̈� + 𝑚𝑝𝑙2�̈� −

𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 Ø �̇��̇� + 𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 Ø �̇��̇� − 𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 Ø �̈��̇� −

𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 Ø �̇�Ø̇ + 𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 Ø �̇��̇� −

𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 Ø �̇�Ø̇ + 𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 Ø �̇��̇� +

𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 Ø �̇�Ø̇ − 𝑚𝑝𝑙2 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 Ø̇2 + 𝑚𝑝𝑙𝑔𝑙 𝑠𝑖𝑛 𝜃 = 0  

 

𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 Ø �̈� + 𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 Ø �̈� + (𝑚𝑝𝑙2 +  𝐽)�̈� −

𝑚𝑝𝑙2 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 𝑥Ø̇2 + 𝑚𝑝𝑔𝑙 𝑠𝑖𝑛 𝜃 = 0  

 

�̈� =
−𝑚𝑝𝑙 (𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 Ø�̈�+𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 Ø𝑦−𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃𝑥Ø̇2+𝑔 𝑠𝑖𝑛 𝜃)̈

(𝑚𝑝𝑙2+ 𝐽)
               (3) 

 

𝑊ℎ𝑒𝑛, 𝑖 = 4 ,𝑞 = Ø 

 
𝜕𝐿

𝜕Ø
= 𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 Ø 𝑥 ̇ 𝜃 ̇ − 𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 Ø �̇�Ø̇ −

𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 Ø �̇��̇� − 𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 Ø �̇�Ø̇ 

 
𝜕𝐿

𝜕Ø̇
= 𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 Ø �̇� − 𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 Ø �̇� + (𝑚𝑝𝑙2 𝑠𝑖𝑛2 𝜃 +

𝑦)Ø̇  

 
𝜕

𝜕𝑡
(

𝜕𝐿

𝜕Ø̇
) =  𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 Ø �̈� − 𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 Ø �̈� +

(𝑚𝑝𝑙2 𝑠𝑖𝑛2 𝜃 + 𝑦)Ø̈ + 𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 Ø �̇��̇�  −

𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 Ø �̇�Ø̇ − 𝑚𝑝𝑙 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 Ø �̇��̇� − 𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 Ø �̇�Ø̇ +

2𝑚𝑝𝑙2 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 Ø̇�̇�  

 

Substitute into Lagrange equation, 
𝜕

𝜕𝑡
(

𝜕𝐿

𝜕Ø̇
) −

𝜕𝐿

𝜕Ø
= 𝑄𝑖 

 

𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 Ø �̈� − 𝑚𝑝𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 Ø �̈� + (𝑚𝑝𝑙2 𝑠𝑖𝑛2 𝜃 + 𝐽)Ø̈ +

2𝑚𝑝𝑙2 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 Ø̇�̇� = 0  

 

Ø̈ =
−𝑚𝑝𝑙 (𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 Ø�̈� −𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 Ø�̈�+2𝑙 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃Ø̇�̇�)

(𝑚𝑝𝑙2 𝑠𝑖𝑛2 𝜃+𝑦)
                          (4) 

 

Comparison is done for the equation derive above (1), (2), (3) and 

(4) with the paper [1], where the equation derive is same. 

3.1. Linear mathematical model equation 

Based on the nonlinear equation in part A, first step is needed to 

determine the operating point of the system. 

 

𝑥 = �̅� , 𝑦 = �̅� , 𝜃 = �̅� , 𝜙 = �̅�  

 

�̇̅� = 0 , �̇̅� = 0 , �̇̅� = 0 , �̇̅� = 0   
 

�̈̅� = 0 , �̈̅� = 0 , �̈̅� = 0 , �̈̅� = 0  

 

Substitute to equation (1), (2), (3) and (4) then will get the operating 

point (equilibrium condition) of the system. 

 
(𝑥 = 0 , 𝑦 = 0 , 𝜃 = 0 , 𝜙 = 0 ) 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑖𝑢𝑚 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛   
 

Then to perform the linearization for all the nonlinear term as below: 

 

𝑇𝑎𝑦𝑙𝑜𝑟 𝑠𝑒𝑟𝑖𝑒𝑠 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, 𝐹(𝑥, 𝑦, 𝜃, Ø) = 𝐹(�̅�, �̅�) +
𝜕𝐹

𝜕𝜃
|(𝜃,̅̅ ̅̅ �̅�)∆𝜃 +

𝜕𝐹

𝜕𝜙
|(𝜃,̅̅ ̅̅ �̅�)∆Ø  

 

𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜙 = 𝑐𝑜𝑠 �̅� 𝑠𝑖𝑛 �̅� + (−𝑠𝑖𝑛 �̅�)(𝑠𝑖𝑛 �̅�)∆𝜃 +
𝑐𝑜𝑠 �̅� 𝑐𝑜𝑠 �̅� ∆𝜙  

 

𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜙 = 𝑐𝑜𝑠 0 𝑠𝑖𝑛 0 + (− 𝑠𝑖𝑛 0)(𝑠𝑖𝑛 0) + 𝑐𝑜𝑠 0 𝑐𝑜𝑠 0 ∆𝜙  

 

𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜙 = 0 + 0 + 𝜙  

 

𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜙 = 𝜙                                                                           (5) 

 

𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜙 = 𝑠𝑖𝑛 �̅� 𝑠𝑖𝑛 �̅� + (𝑐𝑜𝑠 �̅�) 𝑠𝑖𝑛 �̅� ∆𝜃 + 𝑠𝑖𝑛 �̅� 𝑐𝑜𝑠 �̅�  ∆𝜙  

 

𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜙 = 𝑠𝑖𝑛 0 𝑠𝑖𝑛 0 + 𝑐𝑜𝑠 0 𝑠𝑖𝑛 0 ∆𝜃 + 𝑠𝑖𝑛 0 𝑐𝑜𝑠 0 ∆𝜙  

 

𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜙 = 0                                                                            (6) 

 

𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜙 = 𝑐𝑜𝑠 �̅� 𝑐𝑜𝑠 �̅� + (−𝑠𝑖𝑛 𝜃) 𝑐𝑜𝑠 𝜙 ∆𝜃 +
𝑐𝑜𝑠 𝜃 (−𝑠𝑖𝑛 𝜙)∆𝜙  

 

𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜙 = 1                                                                            (7) 

 

𝑠𝑖𝑛 𝜃 = 𝑠𝑖𝑛 �̅� + 𝑐𝑜𝑠 �̅�  ∆𝜃  

 

𝑠𝑖𝑛 𝜃 = 0 + 1(𝜃)  

 

𝑠𝑖𝑛 𝜃 = 𝜃                                                                                      (8) 

 

𝑠𝑖𝑛2 𝜃 = 𝑠𝑖𝑛2 �̅� + 2 𝑠𝑖𝑛 �̅� 𝑐𝑜𝑠 �̅� ∆𝜃  

 

𝑠𝑖𝑛2 𝜃 = 0                                                                                    (9) 

 

To find the linear equation for this system by substitute all the term 

from equation (5) to (9) into the nonlinear equation (1) to (4). 

 

Substitute into equation (1):  

 

(𝑚𝑝 + 𝑚𝑣 + 𝑚𝑐)�̈� + 𝑚𝑝𝑙𝜙�̈� + 𝑚𝑝𝑙𝜃�̈� + 2𝑚𝑝𝑙�̇��̇� = 𝐹𝑥  

 

�̈� =
𝐹𝑥−𝑚𝑝𝑙 (𝜙�̈�+𝜃�̈�+2�̈��̈�)

(𝑚𝑝+𝑚𝑣+𝑚𝑐)
                                                            (10) 

 

Substitute into equation (2):  

 

(𝑚𝑝 + 𝑚𝑐)�̈� + 𝑚𝑝𝑙�̈� − 2𝑚𝑝𝑙𝜙�̈��̈� = 𝐹𝑦  

 

�̈� =
𝐹𝑦−𝑚𝑝𝑙 (�̈�−2𝜙�̈��̈�)

(𝑚𝑝+𝑚𝑐)
                                                                        (11) 

 

Substitute into equation (3):  

 

𝑚𝑝𝑙𝜙�̈� + 𝑚𝑝𝑙�̈� + 𝑚𝑝𝑙2�̈� − 𝑚𝑝𝑙𝑔𝜃 = 0  

 

�̈� =
−𝑚𝑝𝑙(𝜙�̈�+�̈�+𝑔𝜃)

𝑚𝑝𝑙2                                                                     (12) 

 

Substitute into equation (4):  

 

𝑚𝑝𝑙𝜃�̈� + 2𝑚𝑝𝑙2𝜃�̈��̈� + 𝐽�̈� = 0  

 



1260 International Journal of Engineering & Technology 

 

�̈� =
−𝑚𝑝𝑙(𝜃�̈�+2𝑙𝜃�̈��̈�)

𝐽
                                                                   (13) 

4. Simulation results 

To investigate the characteristic of the model, the system has been 

built using MATLAB Simulink environment. Block diagram, con-

sists of the system’s block and input has been designed. Initially, 

the block diagram for nonlinear and linear in Figure 4 and 9 has 

been modelled: 

A bang-bang signal of amplitude with value 1N and 1s width is used 

as input force has been applied at the cart of the gantry crane. A 

bang-bang force has a positive (acceleration) and negative (decel-

eration) period allowing the cart to, initially, accelerate and decel-

erate and eventually stop at the target location. System responses 

are verified by undertaking computer simulation using the fourth 

order Rungge kutta integration method for duration of 20 s. 

In order to investigate this simulation, the value of parameters has 

been considered. 

 
Table 1: Parameter of the 3D Overhead Gantry Crane 

Symbol Parameter Value 

mp Payload mass 1 kg 

mc Cart mass 1.06 kg 

mr Rail mass 6.4 kg 
l Rope length 0.7 m 

J Payload moment inertia 0.005 kg m2 

g Gravity acceleration 9.8 m s2 

4.1. Nonlinear model equation simulation result 

From Figure 4 shows that the block diagram for nonlinear system 

3D overhead crane system. Figure 5 & 6 show the response of the 

cart position in X and Y direction is almost same shape signal com-

pare to paper [1]. It is noted that the average final position for both 

X and Y direction 0.14m and 0.55m with oscillation. Controller is 

needed to reduce the oscillation in this system. 

For θ and ∅ graph will not compare to the paper [1] due to paper [1] 

only show the θx and θy angular. 

 

 
Fig.4: Nonlinear Block Diagram. 

 

 
Fig. 5: Position of the Cart in X-Direction. 

 

 
Fig. 6: Position of the Cart in X-Direction. 

 

 
Fig. 7: Angle of the Θ Position. 

 

 
Fig. 8: Angle of the ∅. 

4.2. Linear model equation simulation result 

Figure 9 shows the block diagram for linear model diagram. In lin-

ear model simulation it have limitation on sampling time only can 

simulate until 1.1s, there may be a singularity in the solution. From 

figure 10 to 13 it show the graph of linear model. 

 

 
Fig.9: Linear Block Diagram. 
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Fig. 10: Position of the Cart in X-Direction for Linear Model Equation. 

 

 
Fig. 11: Position of the Cart in Y-Direction for Linear Model Equation. 

 

 
Fig. 12: Angle in Θ for Linear Model Equation. 

 

 
Fig. 13: Angle in ∅ for Linear Model Equation. 

5. Discussion 

To demonstrate the accuracy and performance of both models, the 

two of model equation is plot into same graph. The comparison is 

made only in duration 1.1s due to linear model equation limitation.  

Based on Figure 14, it shows that both plot is almost same, means 

the position value equation will give same value in linear and non-

linear equation. It shows the accuracy is good for x directions. For 

Y axis the gradient is for two models is almost same. By the way 

for θ and Ø angular do not get same value for both graphs.  

 

 
Fig. 14: Comparison between Nonlinear and Linear Model Equation (X Po-

sition). 

 

 
Fig. 15: Comparison between Nonlinear and Linear Model Equation (Y Po-

sition). 

 

 
Fig. 16: Comparison between Nonlinear and Linear Model Equation (Θ Po-
sition) 

 

 
Fig. 17: Comparison between Nonlinear and Linear Model Equation (Ø Po-
sition) 

6. Conclusion 

The paper studies with dynamic model for 3D gantry crane system 

with nonlinear and linear model equation have been presented. The 

nonlinear model equation and graph shows that the result is almost 

same with the article [1]. The cart position and angular value re-

sponse of gantry system has been obtained and analyzed in time 
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domain. But linearization process to obtain linear equation where 

linear model graph is not as expected graph after compared to non-

linear model equation. Limitation problem in simulating linear 

model also will cause difficult to see the performance between non-

linear model and linear model equation. 
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