UNIVERSITI TEKNOLOGI MALAYSIA

DECLARA	TION OF THESIS /	UNDERGRADUATE PROJECT PAPER AND COPYRIGHT
Author's ful Date of birt Title	I name : ISMAIL BI h : 15 TH MAY : DAMAGE DRAW FC	n ABU SHAH 7 1972 E MECHANICS BASED APPROACH IN FAILURE PREDICTION OF DRMING PROCESSES
Academic	Session: 2016/201	7 (2)
l declare th	hat this thesis is class	ified as :
	CONFIDENTIAL	(Contains confidential information under the Official Secr Act 1972)*
	RESTRICTED	(Contains restricted information as specified by the organization where research was done)*
/	OPEN ACCESS	l agree that my thesis to be published as online open access (full text)
l acknowle	edged that Universiti thesis is the propert	Teknologi Malaysia reserves the right as follows: y of Universiti Teknologi Malaysia.
 The of real of real of real of real of the second se	Library of Universiti 1 esearch only. Library has the right	Teknologi Malaysia has the right to make copies for the purpose to make copies of the thesis for academic exchange.
	SIGNATURE	Certified by : Helining SIGNATURE OF SUPERVISOR
	720515045415	PROF. DR. MOHD NASIR BIN TAMIN
	/ IC NO /PASSPORT	NO.) NAME OF SUPERVISOR
(NEW		

C Universiti Teknikal Malaysia Melaka

"I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of the degree of Doctor of Philosophy in Mechanical Engineering"

•

Signature Name of Supervisor Date

Holinia fr

Prof. Dr. Mohd Nasir bin Tamin
6th July 2017

BAHAGIAN A – Pengesahan Kerjasama*

Adalah disahkan bahawa projek penyelidikan tesis ini telah dilaksanakan melalui kerjasama antara______dengan _____

Disahkan oleh:

Tandatangan :	Tarikh :
Nama :	
Jawatan :	
(Cop rasmi)	

* Jika penyediaan tesis/projek melibatkan kerjasama.

BAHAGIAN B – Untuk Kegunaan Pejabat Sekolah Pengajian Siswazah

Tesis ini telah diperiksa dan diakui oleh:

Nama dan Alamat Pemeriksa Luar : Prof. Ir. Dr. Ahmad Kamal Ariffin bin Ihsan Jabatan Kejuruteraan Mekanik & Bahan, Fakulti Kejuruteraan dan Alam Bina Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor

Nama dan Alamat Pemeriksa Dalam : Prof. Madya Ir. Dr. Amran bin Ayob

<u>Fakulti Kejuruteraan Mekanikal</u> <u>UTM Johor Bahru</u>

Disahkan oleh Timbalan Pendaftar di Sekolah Pengajian Siswazah:

Tandatangan :

Tarikh :

Nama : ASRAM BIN SULAIMAN @ SIAM

C Universiti Teknikal Malaysia Melaka

DAMAGE MECHANICS BASED APPROACH IN FAILURE PREDICTION OF DRAW FORMING PROCESSES

ISMAIL BIN ABU SHAH

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Mechanical Engineering)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > JULY 2017

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "*Damage Mechanics Based Approach in Failure Prediction of Draw Forming Processes*" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in the candidature of any other degree.

		Harr
Signature	:	
Name	:	ISMAIL BIN ABU SHAH
Date	:	6 ^{тн} JULY 2017

DEDICATION

To my beloved parents and family

ACKNOWLEDGEMENT

Praise to the Almighty.

First and foremost, thanks to Allah s.w.t for the continuous blessing and for giving me the strength and chances in completing this thesis. I would like to express my heartfelt appreciation to my respectful supervisor, Prof. Dr. Mohd. Nasir Tamin for his invaluable advice and supervision throughout this research.

Grateful acknowledgement is also made for financial support by the Ministry of Higher Education (MOHE) Malaysia and Universiti Teknikal Malaysia Melaka. This project is funded by the Ministry of Science, Technology and Innovation (MOSTI) Malaysia and Universiti Teknologi Malaysia through Grant No. TF0608C073-3H010 and RUG-00G42, respectively.

Apart from this, I am thankful to Computational Solid Mechanics Laboratory (CSMLab) members who have shared valuable information, knowledge and thought with me generously. It helps me to solve a lot of problems and difficulties. Their constructive ideas and opinions are also making this research a success indirectly.

Finally yet importantly, further gratitude is forwarded to my beloved family members and friends for their continuous supports and encouragements throughout these years.

ABSTRACT

In a cup draw forming operation, the desired shape results from the material hardening process under controlled plastic deformation and the springback phenomena. In this study, a mechanics-of-deformation approach is developed based on damage variables and large plastic deformation. The approach is then employed to estimate the onset of the material damage event and the location of fracture based on the mechanics response of the metal blank. Draw forming behavior of low carbon steel is examined as a case study. The loading rate is conducted at a slow loading response of the steels in the large deformation of the draw forming processes. Axisymmetric and 3D solid models are developed for finite element (FE) simulations to gain insight into the evolution of internal states and damage in the steel blanks during the draw forming process. In the FE simulation, Johnson-Cook constitutive model with isotropic hardening rule is employed. The Rice-Tracey ductile damage criterion is employed to indicate damage initiation event along with a linear energy-displacement relation for damage evolution rule. Results show that while the applied loading (tool displacement) is quasi-static corresponding to the strain rate of 0.001 sec^{-1} , the maximum plastic strain rate at fracture could reach 100 times greater at the critical material flow region. Failure of the deforming steel blank is localized with excessive plastic deformation. While the onset of damage can be efficiently predicted using the axisymmetric FE model with damage-based model, the subsequent damage evolution of the localized ductile failure requires a 3D continuum FE model. The predicted tool load-displacement response is employed in validating the FE model. Effects of drawing parameters including drawing speed, blank holder force and die clearance on the resulting deformation of the drawn cup-shape part are established. Based on the response of the mechanics-of-deformation, the established failure prediction approach is proven more accurate and reliable.

ABSTRAK

Di dalam operasi pembentukan cawan, bentuk yang diinginkan terhasil daripada proses pengerasan bahan di bawah fenomena tindakan ubah bentuk plastik dan anjalan. Di dalam kajian ini, kaedah mekanik ubah bentuk dibangunkan berdasarkan pemboleh ubah kerosakan dan ubah bentuk besar plastik. Kaedah ini kemudiannya diguna pakai bagi menganggarkan permulaan kejadian kerosakan bahan serta lokasi retakan berdasarkan tindak balas mekanik kepingan logam kosong. Sifat pembentukan keluli berkarbon rendah adalah dikaji sebagai satu kajian kes. Muatan ke besi dikenakan pada kadar tindak balas perlahan mengakibatkan perubahan besar dalam proses penghasilan pembentukan. Model asimetrik dan model pepejal 3D dibangunkan untuk simulasi unsur terhingga bagi mendapatkan pemahaman evolusi keadaan dalaman dan kerosakan logam kosong semasa proses pembentukan tarikan. Di dalam simulasi unsur terhingga, model menjuzuk Johnson-Cook bersama dengan peraturan pengerasan isotrop adalah diguna pakai. Kriteria kerosakan mulur Rice-Tracey digunakan bagi menunjukkan kejadian permulaan kerosakan berserta hubungan linear tenaga dan sesaran untuk peraturan evolusi kerosakan. Hasil menunjukkan walaupun laju alat yang dikenakan adalah pada kuasi-statik menurut kadar terikan 0.001saat⁻¹, kadar terikan retakan plastik tertinggi boleh mencecah 100 kali ganda di kawasan genting pengaliran bahan. Kerosakan oleh perubahan logam kosong disetempatkan dengan lebihan ubah bentuk plastik. Sementara itu permulaan kerosakan boleh di jangka dengan berkesan menggunakan model simulasi unsur terhingga asimetrik menggunakan model berasaskan model kerosakan, evolusi kerosakan seterusnya adalah kerosakan mulur setempat memerlukan model unsur terhingga 3D. Jangkaan respon beban kepada sesaran digunakan bagi mengesahkan model simulasi unsur terhingga. Kesan parameter penarikan termasuk kelajuan penarikan, daya pemegang logam kosong dan kelegaan acuan tekan pada hasil ubah bentuk oleh tertarik berbentuk cawan adalah tertubuh. Berdasarkan respon mekanik ubah bentuk, pendekatan jangkaan kerosakan tertubuh dibuktikan lebih tepat dan yakin.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	DEC	LARATION	ii
	DED	ICATION	iii
	ACK	NOWLEDGEMENT	iv
	ABS	TRACT	V
	ABS	TRAK	vi
	ТАВ	LE OF CONTENTS	vii
	LIST	FOF TABLES	Х
	LIST	Γ OF FIGURES	xi
	LIST	FOF ABBREVIATIONS	xvi
	LIST	FOF SYMBOLS	xvii
1	INTI	RODUCTION	1
	1.1	Background of the Study	1
	1.2	Statement of the Research Problem	3
	1.3	Research Objectives	3
	1.4	Scope of the Study	4
	1.5	Significance of Study	4
	1.6	Thesis Layout	5
2	LITI	ERATURE REVIEW	7
	2.1	Introduction	7
	2.2	Trends in Sheet Metal Forming Processes	7
		Automotive Steel Sheets	9
	2.3	Formability in Draw Forming Processes	10
		Forming Limit Diagram	11
	2.4	Mechanics of Large Plastic Deformation	19
	(🔘 Universiti Teknikal Malaysia Melaka	

2.5	Strain Rate Dependent Models	26
	Johnson-Cook Model	27
2.6	Continuum Damage Mechanics	28
	Damage Initiation Criterion	34
	Damage Evolution Equation	36
2.7	Mechanisms of Failure	38
2.8	FE Simulation of Sheet Metal Forming Processes	42
2.9	Summary of Literature Review	49
RESI	EARCH METHODOLOGY	52
3.1	Introduction.	52
3.2	Research Framework	57
3.3	Demonstrator Material.	57
	Material Properties	57
	Properties and the Constitutive Model	59
	Material Damage Model	62
3.4	Experimental Procedure.	64
	Erichsen Cup Forming Machine	64
3.5	Finite Element Simulation of the Draw Forming Process	66
	FE Circular Cup Draw Forming Model.	68
	Mesh Convergence Study	72
	Model Validation	74
3.6	Concluding Remarks	76
DEF	ORMATION AND FAILURE PROCESSES IN DRAW	
FOR	MING OF A CIRCULAR CUP	77
4.1	Introduction	77
4.2	Mechanics Deformation	78
4.3	Effects of Blank Holder Force and Die Clearance Setting	
	on Deformation Processes	80
4.4	Evolution of Plastic Instability.	84
4.5	Fracture Location and Failure Mechanism C Universiti Teknikal Malaysia Melaka	86

viii

	4.6	Summary	88
5	SIM	PLIFIED OF FE SIMULATION OF THE DRA	AW
	FOR	MING PROCESS	89
	5.1	Introduction	89
	5.2	Characteristic of Stress and Strain Fields	89
	5.3	Evolution of Plastic Instability	94
	5.4	Failure Mechanics	98
	5.7	Summary	98
6	FUL	L THREE DIMENSIONAL FE SIMULATION	OF THE
	DRA	W FORMING PROCESS	100
	6.1	Introduction	100
	6.2	Fracture Location	100
	6.3	Failure Mechanics	101
	6.4	Damage Initiation	103
	6.5	Damage Evolution	104
	6.6	Stress and Strain Behavior	106
	6.7	Characterization of Localized Thinning	107
	6.8	Fracture Propagation Path	109
	6.9	Summary	110
8	CON	ICLUSIONS & RECOMMENDATIONS	112
	7.1	Conclusions	112
	7.2	Recommendations	113
REFERE	NCES		114
Appendice	es A - B		126-127

ix

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Three different deformation theories	20
2.2	Typical strain rates for various engineering problem	26
3.1	Chemical composition of low carbon steel sheet (wt. %)	58
3.2	Tensile properties at different strain rates	60
3.3	Elastic property and material density of LCS	60
3.4	Materials parameters used for J-C model	61
3.5	Combinations of process parameters for drawing cases examined	65
5.1	Interrupted sample test at various draw forming depth	94

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1.1	Cross sectional view of typical cup draw forming process	2
2.1	Trends of new material debut in every five years	8
2.2	Relationship between ductility and tensile strength of various steel sheets	9
2.3	Relationship between stress vs. percent elongation for various steel grades and their applications in auto-body structure	10
2.4	Forming limit diagram	12
2.5	Schematic representation of the strain path followed before and after necking	14
2.6	An example of FFL on FLD plot	14
2.7	M-K with the thickness imperfection method	16
2.8	Deformation regimes in cup draw forming operation	22
2.9	Diffused and localized necking phenomenon in thin sheet specimen	25
2.10	Large plastic deformation covering elastic deformation, yielding, onset of diffused necking, onset of local necking and fracture	25
2.11	Analysis domains for solid mechanics	29
2.12	Mechanical representation of damage	30
2.13	Deformation and damage concept for mechanical equivalence of damage at mesoscale	32

xi

2.14	The concept for continuum damage mechanics	34
2.15	Relationship between the equivalent strain with the stress triaxiality	35
2.16	Damage evolution paths	37
2.17	Mechanism of failure	39
2.18	Damage process in different length scale	40
2.19	Nucleation, growth and coalescence of micro- voids	41
2.20	Ductile failure behavior corresponding to the true stress strain	42
2.21	A quarter of deformable blank illustrating the fracture in FLD post-processor	45
2.22	Simulation results at different drawn depth with different stiffness degradation value compare to the experimental test	46
2.23	Simulation results prior to fracture at different drawn depth with different stiffness degradation	47
2.24	Illustration of fracture in experiment and FE simulation corresponding to the FLD result and the load-displacement curve	48
2.25	Comparison between implicit and explicit integration domain	49
3.1	Overall research methodology flow-chart	53
3.2	Overall research methodology	54
3.3	Microstructure of as received cold rolled 0.034C steel sheet (a) surface and (b) across thickness	59
3.4	True stress-plastic strain curves at different strain rate	60
3.5	Measured (solid lines) and predicted (dashed lines) true stress-plastic strain curves of 0.034C cold- drawn steel sheet at different strain rates	62
3.6	Damage initiation parameter for ductile failure	63

3.7	Erichsen Cup Forming Machine	65
3.8	Flow-chart of FE model setup with the preparation and model sensitivity analysis	67
3.9	Physical model of circular cup shape part	68
3.10	Schematic sectional view of forming tool design set-up for draw forming of cup-shape parts	69
3.11	Boundary conditions of the draw forming process	70
3.12	(a) Top view of meshed steel blank (b) compression and elongation region demonstrated in three-dimensional one over eight-size cup	71
3.13	Sectional view of 3D draw forming model with boundary condition	72
3.14	Mesh sensitivity analysis for selected region in the deformable blank	73
3.15	Mesh sensitivity study conducted at the onset of fracture	74
3.16	Comparison between measured and calculated tool force-displacement curve using axisymmetric model	75
3.17	Comparison between measured and calculated tool force-displacement curve using 3D model	75
4.1	Punch force-displacement curve illustrating the three stages of the steel blank deformation throughout the drawing process	80
4.2	Variation of punch force with BHF and DC setting for sheet metal drawing of cup shape parts	81
4.3	Variations of maximum drawing depth, d_{max} and limit (non-damage) drawing depth, d_L for sheet metal drawing of cup-shape parts.	82
4.4	Punch force-displacement curves at various DC settings for drawing case with BHF of 70 kN.	83
4.5	Distance of fracture location at various DC setting at 70 kN of BHF.	84

4.6	Progressive thickness variation across necking band, shown at selected draw forming depth, case A11.	85
4.7	Evolution of necking during sheet metal drawing process for drawing case A11.	86
4.8	Fracture locations.	87
4.9	Fractured section of drawn cup for drawing case A11. Inset figure shows enlargement of the selected ductile failure area	87
4.10	Characteristic of fractured surface at different BHF loading	88
5.1	(a) Equivalent stress at draw forming depth of 10.7 mm (b) residual stress, (c) residual strain	90
5.2	Plastic strain rate measured at various locations	91
5.3	Calculated strain rates at various location	93
5.4	Evolution of necking during the sheet metal drawing process	95
5.5	Thinning section along the blank profile	96
5.6	The stress-strain behavior-along the profile	97
5.7	Comparison between FE and experimental test with illustration of ductile failure.	98
6.1	Comparison between the simulated FE and observed fracture location in the draw forming test	101
6.2	Comparison between FE and experimental draw forming test	102
6.3	An element is separated from the cup sidewall at the onset of fracture	103
6.4	Comparison between localized damage initiation variable and the global load-displacement response of the draw forming test	104
6.5	Degradation of critical element until it is separated	105
6.6	Characteristic of stress and strain evolution throughout the draw forming process	106

6.7	Simulation results at several drawn depths of the interrupted draw forming	107
6.8	Comparison between FE simulations and experimental test of thru-thickness evolution	108
6.9	Sectional view of fracture propagation from outer to inner fiber at various draw forming depths	109
6.10	Crack propagation of fracture in biaxial direction of fiber at different draw forming depth	110

XV

LIST OF ABBREVIATIONS

AHSS	-	Advance High Strength Steel		
BHF	-	Blank Holder Force		
CAE	-	Computer Aided Engineering		
CDM	-	Continuum Damage Mechanics		
Cof	-	Coefficient of friction		
C-S	-	Cowper- Symonds		
DC	-	Die Clearance		
DIC	-	Digital Image Correlation		
FE	-	Finite Element		
FFL	-	Fracture Forming Limit		
FLC	-	Forming Limit Curve		
FLD	-	Forming Limit Diagram		
FLDF	-	Forming Limit Diagram at Fracture		
FLDN	-	Forming Limit Diagram at Necking		
GTN	-	Gurson–Tvergaard–Needleman		
HER	-	Hole Expansion Ratio		
J-C	-	Johnson-Cook		
LCS	-	Low Carbon Steel		
LDH	-	Limiting Dome Height		
LDR	-	Limiting Drawing Ratio		
R-K	-	Rusineck-Klapeczko		
RVE	-	Representative Volume Element		
SEM	-	Scanning Electron Microscope		
ТМ	-	Tanimura-Mimura		
Z-A	-	Zerilli-Armstrong		

LIST OF SYMBOLS

A	-	Area
$A^{'}$	-	Johnson-Cook material constant
a	-	Material damage initiation parameters
B	-	Johnson-Cook strain hardening coefficient
$C^{'}$	-	Johnson-Cook strain rate sensitivity
С	-	Material damage initiation parameters
D	-	Damage variable
Ď	-	Material constant
d	-	Drawing depth
d_i	-	Damage initiated
d_L	-	Drawing limit
d_{max}	-	Maximum drawing depth
dA	-	Change of area
dF	-	Change of loading force
$d\sigma$	-	Change of stress
dε	-	Change of strain
Е	-	Young's modulus
E_o	-	Young's modulus of the material in the initial
		undamaged state
E_D	-	Damaged state after loading
F	-	Force
F_{max}	-	Maximum force
F_L	-	Limit punch force
$G_{\!\scriptscriptstyle f}$	-	Fracture energy
L	-	Characteristic length of the element
т	-	Johnson-Cook temperature sensitivity

n	-	Johnson-Cook strain hardening
T^*	-	Johnson-Cook homologous temperature
T _{melt}	-	Melting temperature
T_{room}	-	Room temperature
t	-	Thickness
t _{blank}	-	Thickness of the blank
$ar{u}^{pl}$	-	Equivalent plastic displacement
$ar{u}_{f}^{pl}$	-	Equivalent plastic displacement at failure (damage
,		evolution)
ν	-	Poisson's ratio
ω_D	-	Internal state variable
ΔΑ	-	Apparent area (undamaged surface)
$\Delta ilde{A}$	-	Changes the effective area
ΔA_{void}	-	Area with micro-voids
ΔF	-	External loading force
$\bar{\sigma}$	-	Equivalent stress
$ ilde{\sigma}$	-	Effective stress
σ_m	-	Mean stress
σ_y	-	Yield stress
σ_{yo}	-	Value of yield stress when damage criterion is met
ε	-	Strain
Ė	-	Strain rate
Ė*	-	Johnson-Cook dimensionless strain rate
έ ₀	-	Johnson-Cook nominal strain rate
$arepsilon_D^{pl}$	-	Effective plastic strain at the damage initiation
$ar{arepsilon}^{pl}$	-	Equivalent plastic strain
$ar{arepsilon}_0^{pl}$	-	Effective plastic strain at the damage initiation
$ar{arepsilon}_{f}^{pl}$	-	Effective plastic strain at fracture
$ar{arepsilon}^p_D$	-	Plastic strain rate at the onset of damage

$\dot{ar{arepsilon}}^{pl}$	-	Equivalent plastic strain during the damage evolution
		stage
η	-	Stress triaxiality
ρ	-	Material density

C Universiti Teknikal Malaysia Melaka

LIST OF APPENDICES

APPENDIX.	TITLE	PAGE
A	Mesh quality index for axisymmetric model of deformable blank.	126
В	Mesh quality index for 3D model of deformable blank	127

C Universiti Teknikal Malaysia Melaka

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Automotive body parts such as front quarter panel, suspension housing and floor panel are produced through numerous metal forming processes. It is a process of governing the formability of material into the desired shape throughout the forming operation without fail [1]. In the classical shop floor approach, the well-known forming limit diagram (FLD) is employed as a tool to predict the material failure in the metal forming operation. It is practiced as an approach to prevent the occurrence of fracture in sheet metal forming production.

In general, metal forming operation is divided into two main distinct processes, which are cutting and shaping. The process of cutting such as blanking is a process of separating the blank. While shaping for instance draw forming is to form the blank into desired parts. As the main shaping metal forming process in the automotive industries, the study of material failure concentrates on the draw forming operation. The typical tool and die movement are described thru the mechanism of the draw forming process. The tool consists of a punch, blank holder and die cavity while steel blank is employed as deformable parts as depicted in Figure 1.1. This monotonic loading process of punch draws the steel blank into the die cavity at a specified drawing depth and loading speed to draw forming shaped parts. The interactions between deformable blank and forming tools induced large plastic deformation until it is properly form into desired shape.