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ABSTRACT 

In a cup draw forming operation, the desired shape results from the material 

hardening process under controlled plastic deformation and the springback 

phenomena. In this study, a mechanics-of-deformation approach is developed based 

on damage variables and large plastic deformation. The approach is then employed to 

estimate the onset of the material damage event and the location of fracture based on 

the mechanics response of the metal blank. Draw forming behavior of low carbon steel 

is examined as a case study. The loading rate is conducted at a slow loading response 

of the steels in the large deformation of the draw forming processes. Axisymmetric 

and 3D solid models are developed for finite element (FE) simulations to gain insight 

into the evolution of internal states and damage in the steel blanks during the draw 

forming process. In the FE simulation, Johnson-Cook constitutive model with 

isotropic hardening rule is employed. The Rice-Tracey ductile damage criterion is 

employed to indicate damage initiation event along with a linear energy-displacement 

relation for damage evolution rule. Results show that while the applied loading (tool 

displacement) is quasi-static corresponding to the strain rate of 0.001 sec-1, the 

maximum plastic strain rate at fracture could reach 100 times greater at the critical 

material flow region. Failure of the deforming steel blank is localized with excessive 

plastic deformation. While the onset of damage can be efficiently predicted using the 

axisymmetric FE model with damage-based model, the subsequent damage evolution 

of the localized ductile failure requires a 3D continuum FE model. The predicted tool 

load-displacement response is employed in validating the FE model. Effects of 

drawing parameters including drawing speed, blank holder force and die clearance on 

the resulting deformation of the drawn cup-shape part are established. Based on the 

response of the mechanics-of-deformation, the established 

failure prediction approach is proven more accurate and reliable.
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ABSTRAK 

Di dalam operasi pembentukan cawan, bentuk yang diinginkan terhasil 
daripada proses pengerasan bahan di bawah fenomena tindakan ubah bentuk plastik 
dan anjalan. Di dalam kajian ini, kaedah mekanik ubah bentuk dibangunkan 
berdasarkan pemboleh ubah kerosakan dan ubah bentuk besar plastik. Kaedah ini 
kemudiannya diguna pakai bagi menganggarkan permulaan kejadian kerosakan bahan 
serta lokasi retakan berdasarkan tindak balas mekanik kepingan logam kosong. Sifat 
pembentukan keluli berkarbon rendah adalah dikaji sebagai satu kajian kes. Muatan 
ke besi dikenakan pada kadar tindak balas perlahan mengakibatkan perubahan besar 
dalam proses penghasilan pembentukan. Model asimetrik dan model pepejal 3D 
dibangunkan untuk simulasi unsur terhingga bagi mendapatkan pemahaman evolusi 
keadaan dalaman dan kerosakan logam kosong semasa proses pembentukan tarikan. 
Di dalam simulasi unsur terhingga, model menjuzuk Johnson-Cook bersama dengan 
peraturan pengerasan isotrop adalah diguna pakai. Kriteria kerosakan mulur Rice-
Tracey digunakan bagi menunjukkan kejadian permulaan kerosakan berserta 
hubungan linear tenaga dan sesaran untuk peraturan evolusi kerosakan. Hasil 
menunjukkan walaupun laju alat yang dikenakan adalah pada kuasi-statik menurut 
kadar terikan 0.001saat-1, kadar terikan retakan plastik tertinggi boleh mencecah 100 
kali ganda di kawasan genting pengaliran bahan. Kerosakan oleh perubahan logam 
kosong disetempatkan dengan lebihan ubah bentuk plastik. Sementara itu permulaan 
kerosakan boleh di jangka dengan berkesan menggunakan model simulasi unsur 
terhingga asimetrik menggunakan model berasaskan model kerosakan, evolusi 
kerosakan seterusnya adalah kerosakan mulur setempat memerlukan model unsur 
terhingga 3D. Jangkaan respon beban kepada sesaran digunakan bagi mengesahkan 
model simulasi unsur terhingga. Kesan parameter penarikan termasuk kelajuan 
penarikan, daya pemegang logam kosong dan kelegaan acuan tekan pada hasil ubah 
bentuk oleh tertarik berbentuk cawan adalah tertubuh. Berdasarkan respon mekanik 
ubah bentuk, pendekatan jangkaan kerosakan tertubuh dibuktikan 
lebih tepat dan yakin. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of Study 

Automotive body parts such as front quarter panel, suspension housing and 

floor panel are produced through numerous metal forming processes. It is a process of 

governing the formability of material into the desired shape throughout the forming 

operation without fail [1]. In the classical shop floor approach, the well-known forming 

limit diagram (FLD) is employed as a tool to predict the material failure in the metal 

forming operation. It is practiced as an approach to prevent the occurrence of fracture 

in sheet metal forming production. 

In general, metal forming operation is divided into two main distinct processes, 

which are cutting and shaping. The process of cutting such as blanking is a process of 

separating the blank. While shaping for instance draw forming is to form the blank 

into desired parts. As the main shaping metal forming process in the automotive 

industries, the study of material failure concentrates on the draw forming operation. 

The typical tool and die movement are described thru the mechanism of the draw 

forming process. The tool consists of a punch, blank holder and die cavity while steel 

blank is employed as deformable parts as depicted in Figure 1.1. This monotonic 

loading process of punch draws the steel blank into the die cavity at a specified drawing 

depth and loading speed to draw forming shaped parts. The interactions between 

deformable blank and forming tools induced large plastic deformation until it is 

properly form into desired shape. 


