
International Journal of Computer Information Systems and Industrial Management Applications.
ISSN 2150-7988 Volume 10 (2018) pp. 038–046
c© MIR Labs, www.mirlabs.net/ijcisim/index.html

Database Tuning Using Oracle Materialized View
for Manufacturing Industry

Norazah Md Khushairi1, Nurul A. Emran2 and Anil Kumar Menon3

1Silterra Malaysia Sdn Bhd,Kedah, Malaysia
norazah khushairi@silterra.com

2Universiti Teknikal Malaysia, Melaka,Malaysia
nurulakmar@utem.edu.my

3Oracle, Oracle Corporation, Malaysia
govindan.ak.menon@oracle.com

Abstract: The need to maintain database performance in
Silterra Malaysia is crucial as data produced from complex
manufacturing processes must be recorded in timely manner
for reporting purposes. Query rewriting using Oracle
Materialized View (MV) is one form of corrective action
adopted by Silterra in order to tune its database, which is
usually affected by problematic SQLs. However, whether MVs
are useful in most cases of query rewriting is an open problem.
In this paper, the flow of SQL query rewriting process using
MVs is presented. Steps to identify problematic SQLs and to
rewrite them are given based on DBA’s experience in dealing
with database performance issue in this industry. The result
of using MVs shown using real fabrication data in Silterra
reveals that, even though most MVs perform better than queries
without MVs, there are cases that require alternative for MVs.
Keywords: query rewriting, materialized view, database tuning

I. Introduction

The challenge of handling large volume of real-time and
persistent data in databases has become the attention in data
management community for decades [1]. In most industries,
large volumes of raw data are collected, accumulated
and transformed into huge datasets and prepared (through
data cleaning stages) before it can be further used for
reporting and analytics. Large data volume can cause
overhead to Database Management System (DBMS) that
usually causes database performance issues [2]. The
performance overhead is faced by many manufacturing
industries especially those that rely on complex processes in
producing their commercial products.
For example, manufacturing industry for semiconductors
that relies on the most complex manufacturing process
in the world (refer [3],[4]) is among the industries that
is affected by poor database performance. Among the
semiconductor processes, wafer fabrication is the most
complex process that requires the highest capital investment
[32]. It takes about 50 to 70 days to process 40,000 to
50,000 Work-In-Process (WIP) involving 400 equipments
and between 300 to 900 steps to complete the cycle [5],

[7], [8]. Furthermore, there is a demand to fabricate a
product within a tight time frame since competitive cycle
time is the main factor for business success [5]. Indeed,
reduction of this cyclic time frames will shorten product
time to market, boost up throughput, decrease operational
costs and strengthen customer’s confidence [5]. Therefore,
in this industry, it is crucial to observe the wafer production
cycle time closely. Each activity, movement, transaction,
and processing history needs to be closely monitored for
quality assurance and for shortening development cycle
time. Furthermore, semiconductor processes are delicate and
require close monitoring that is beyond human’s capabilities
[6].
Semiconductor industry evolves in a complex environment
in which strategic IT alignment must be ensured [9].
Thus, effective reporting tools need to be adopted for
monitoring. However, poor database performance can affect
the effectiveness of reporting tool. Database performance
is a crucial issue as it becomes the barrier for DBMS to
promptly response to the reporting tool’s query. This poor
performance of the monitoring tools affect production’s cycle
time and therefore the industry’s productivity and profits
generation. The top management in this industry relies on
immediate reporting result in order to effectively manage
the competitive fabrication cycle time. Thus, database
performance issue is crucial for this industry. One of the
main causes of database performance issue is slow query due
to problematic Structure Query Language (SQL).
In this paper we will explore the problem of reporting delay
caused by SQLs in Silterra Malaysia Sdn Bhd, (a Wafer
Semiconductor Factory). In particular, we will reveal how
Silterra deals with this problem. We present related works
on database workload issue related to SQL query and how
to identify the problematic SQL query in Section 2. Focus
is given to tune the problematic SQL using SQL rewriting
process in Section 3. In Section 4 we present how SQL query
performance is improved using MV. Section 5 presents the
improvement analysis by using MVs. Section 6 concludes
the paper.

MIR Labs, USA

39 Khushairi et al.

II. Identifying Problematic SQL Query

In monitoring database performance, main indicators to
look for are: executed reports that exceed the average
run times and data loads that consume more resources (or
time) than average. There are many possible causes of
poor database performance such as large tables, poorly
implemented database design or badly rewritten code. The
common initial step taken is to identify the possible areas
of performance problem. These areas are operating system,
hardware, database or application. Performance tuning can
be performed at hardware level, instant workload, instant
object or SQL statement [10]. In this paper, we will
explore the performance tuning at application level since
application level tuning can bring better performance results
as compared to other levels [11]. In this level, we need to
find inefficient or high load run-time SQL statements. These
run-time SQL statements, might consume high database
time, longer time for completion and therefore causing
performance degradation.
Identifying problematic SQL query in database environment
is a fundamental step of SQL query tuning. It involves
identifying high load or top low performant SQL statements,
improving the SQL execution plan produced by optimizer
and finally, implementing the corrective actions [12]. The
easiest way to accomplish this is by periodically collecting
SQL execution statistics and analyzing the results [13].
With Oracle Database, the Database Administrator (DBA)
can use the Oracle Enterprise Manager (OEM) which
provides functions such as top activity information (along
charts), top sessions, and top SQL queries. This product
will list down the run-time queries that consume longer
completion time and will assist the DBA to quickly identify
the SQL statements that are responsible for performance
degradation at a specific point of time. OEM also provides a
tool to identify SQL queries that consume high DB time, long
running SQLs and operations, and SQLs with execution plan
changes. Automatic Database Diagnostic Monitor (ADDM)
is a tool commonly used to identify the top SQLs and to study
the impact. It also will show the SQL’s occurrence frequency
and will identify the possible root causes. The example of
root causes are poorly written SQL with bad execution plan
(i.e., full table scan, cartesian join and incorrect index).
DBAs also can create a custom script to expedite the search
of inefficient SQL statements that need to go through the
tuning process. Should it identify that poor performance is
caused by inefficient SQL queries, these queries are used as
samples in tuning process.

III. SQL Rewriting Process

Based on literature and observation, we present a
methodology for current practice adopted in SQL tuning
process as shown in Figure 1. This diagram is used as a
guideline for the tuning process that is normally performed
whenever database performance problem is detected.
SQL tuning starts with DBAs collecting monitoring data
from the production database in an attempt to diagnose the
problems. At this stage, any SQL statement that needs to
undergo the SQL tuning flow will be identified.
In the second step, the execution plan that describes the

detailed steps necessary to execute the SQL statement is
analyzed to diagnose the cause of the problem. The
Explain Plan command is used to display the execution
plan report. SQL statement performance depends heavily
on the optimal execution of plans generated by the query
optimizer with the unenviable task of generating efficient
SQL statement [14].
By analyzing the plans, DBAs are able to get more
detailed information to understand which plan is selected by
optimizer and the reason of the selection. From this plan,
expert DBAs propose solutions for the problematic queries
and decide whether the queries need to be rewritten or not.
The success of SQL tuning usually depends on skilled
DBAs or the laborious trial-and-error steps [15]. DBAs
and developers will try to tune SQL statement based on
the execution plan or other solutions. As shown in Figure
1, coding process consists of Rewrite, Execute, Verify and
Apply. The coding process will be repeated until a solution
is found.
The third step, which is the rewrite step will be initiated
once the decision to rewrite is made by the DBAs. There
are several ways to rewrite SQL queries. One way to rewrite
is by fixing wrongly written SQL committed by application
developers. Normally, we will try to tune or rewrite the SQL
using the common case. For example a developer does not
use the indexed field correctly or no index is used at all.
If a table has high cardinality, index is useful to avoid full
table scan. Using fields that are indexed in the WHERE
clause of the SQL statement will improve the performance
faster than using non-indexed fields. However, in some cases,
simple solution like this cannot solve the problem. In this
case, further investigation is required before the query can be
rewritten.
After the query execution, verification step is made to
check the accuracy of query results and performance’s
improvement. If the result of the query is correct, and the
performance has shown acceptable improvement, the new
corrective version of SQL query will be applied. Otherwise,
the query needs to be rewritten. The coding process stage
will be repeated until acceptable results are yielded.
In Silterra, several methods have been adopted to tune
problematic SQL queries as shown in Figure 2. As database
performance degrades with increasing data volumes, the
common practices are to ensure proper use of index for
table fields, table partitioning, and query rewriting using
materialized views (MVs). It is important for a developer to
know how to write an efficient SQL because inefficient SQLs
in production can highly impact the overall performance of
the database and the downstream applications. Most of the
methods are performed by DBAs, assisted by application
developers. DBAs need to perform regular inspection
and database performance diagnosis to identify the top ten
activities that cause the problems before corrective method
can be applied. DBAs need to decide which method is
suitable based on the problems. Each of the method has
its own advantages and limitations in database performance
tuning. One of the most successful performance tuning steps
is to rewrite the SQL using MVs. Among the adopted
methods, query rewriting using MVs has recorded more
promising performance.

Database Tuning Using Oracle Materialized View for Manufacturing Industry 40

Figure. 1: Common SQL Query Rewriting Flow

Similar flow as shown in Figure 1 is adopted in Silterra
to tune slow SQL queries. MV is a well-known
optimization strategy with potential improvements in query
processing time [17]. Implementation of MVs in Silterra’s
Manufacturing Executing System (MES) reporting function
so far has successfully reduced the time taken for queries
completion especially for queries against large tables. In
the next section, we present the MV concept and it’s role
in dealing with slow SQL queries.

IV. Materialized View

MVs are physical database objects[18]. It is a database object
that uses a query script and executes it at a specific time,
and store the results of the query in the storage [19]. Even
though the name MV has a ”view” in it, it is not a virtual
table like views. The similarities are in terms of keeping the
structure of the SQL query being embedded in the objects.
However views only keep the structure but MVs keep the
both, structure and the data. MVs are similar to normal
views, but the result of query has been stored into table [18].
Views are only executed when used as part of a SELECT
statement whereas MVs will persist the results of query in the
storage. The MV’s query is executed and refreshed during

Table 1: Selected Research in Materialized Views
Researcher Findings Authors
Modified strategy of group query based on MV
(GQMV) by making full use of the star schema
feature from the aspect of improving searching
capability.

Li Guodong, Wang
Shuai, and Liu
Chang’an. 2010
[18]

Materialized reporting function views which
rewrite queries with reporting functions as well
as aggregation queries.

Dirk Habich,
Wolfgang Lehner,
and Michael Just
Dresden, 2006 [19]

XPath Queries rewriting using MVs with an
algorithm for finding minimal rewritings.

Wanhong Xu,
and Z. Meral
Ozsoyoglu, 2005
[20]

Answering queries using MVs with minimum
size can reduce the size of the relations needed
to compute the query answer.

Chirkova, Rada Li,
Chen Li and Jia,
2006 [21]

specified time and the data will be kept physically until next
refresh. MV is like a cache, a copy of data that can be
promptly accessed [23]. Oracle defines MV as a replica of
a master target from a single point in time where replication
tables are continuously updated by other master tables [27].
MV’s data will be updated by refreshing them after changes
made to the base tables, either by using incremental or
complete refresh method. After its creation, MV can be used
to query the data same as the base tables. Some contribution
of MVs are as shown in Table 1.
Figure 3 shows the logical diagram of view materialization
process as proposed by Karde and Thankare (2010) [24].
There are three layers involved, which are the base table,
process to materialize and the MV. Base table become a
source data for MV and the view selector will process it
based on the configuration set up during MV creation. The
architecture of view materialization process shows the view
selector interacts with the query processor (QP), that will be
refreshed based on the query updates. The relevant set of data
will be selected based on the given set of queries. The layer
between view and MV shown in the diagram is a process
to materialize the source of the query. Moreover, there is a
methodological layer to determine what kind of views will
be beneficial under various situations such as selectivity,
complexity and database size including the maintenance
cost consideration [20]. The common MV management
activities are identifying the MVs to be created, ensuring that
MVs properly refreshed, determining the MVs effectiveness,
measuring the MV space, and preforming MV housekeeping
(such as dropping all the unused MVs) [25][23].
Based on the problematic SQL list, the DBAs or developers
will decide which table needs to be materialized by setting
the timing for queries updates. The refresh time setting is
specified during the MV creation. Whenever the queries
update time is triggered, view selector will process the
queries and perform data retrieval selection. The selection on
which source of data to be materialized will be systematically
made to achieve the purpose of getting the best query
performance from a given SQL environment workload.
Karde and Thakare (2010) stated that selecting views to
materialize for the purpose of efficiently supporting the
decision making is one of the important decisions in
designing data warehouse [20].
In Silterra, the need for fast data retrieval is driven by rapid

41 Khushairi et al.

Figure. 2: Silterra’s Database Performance Tuning Methods

Figure. 3: View Materialization Process (Karde and
Thakare,2010) [20] [26]

decision making requirement. Since most of data retrieval
from base tables and views are slow, Global Temporary Table
(GTT) and MVs are used to speed up data retrieval. These
options are good as they able to increase the speed of the
slow reports that utilize huge tables. However their usage
might need customization. MV acts like a temporary table
except that DBAs does not need to do the housekeeping and
maintenance of the table. Unlike GTT, MV data will still be
available to be used even if the session has ended.
Furthermore, MVs are easier to be administered since

they will be auto refreshed at a predefined time. MVs
are beneficial in applications such as data warehousing,
replication servers, data recording systems, data
visualization and mobile systems [21], [22]. Since
MVs store the results of the query, it makes MVs readily
available when needed to answer the query [18].
Complex SQL query processes such as table joins, selection,
aggregation, and calculation have been executed during
the predefined time to refresh the MVs. For this reason,
SQL query submitted against MVs will be a simple SQL
statement. MVs are able to minimize the overall execution
time of the workload of queries [20]. The results of the
query will be loaded into the storage where these results
are more reliable because they only retrieve the required
data in the MV. MV has been proven to be an excellent
technique in decision support applications, and to preserve
the integrated data to ensure better access, performance, and
high availability [16].
According to Oracle Manual 2017, SQL query used to create
a MV can be categorized into simple and complex [27], as
illustrated in Figure 4. The diagram illustrates two databases:
the master database (with two base tables) and the MVs
database (with two methods for creating MVs). Method A
is an example of a complex MV where the join operation
is defined during MV creation. During MV refresh, the
SQL with join operation will be executed. Since the MV
is complex, it performs slower complete refreshes while the
simple MVs can perform quicker fast refreshes [27]. Simple

Database Tuning Using Oracle Materialized View for Manufacturing Industry 42

MV is created from one base table and is able to be refreshed
quicker as compared to complex MVs. In this example,
method B is a simple MV where MV is created using single
base table as a source of data. In order to get the same result
for this example, a view to join both the MVs is created.
The performance of method A will be faster as compared
to method B. However the simple MVs can be refreshed
more efficiently using fast refresh. These examples show
that selection on MV category (either simple or complex) is
based on the system’s requirements. If the user needs regular
refreshes, simple MVs are recommended. However, users
can also select complex MV if they need the data faster but
the refresh will be less frequent.

Figure. 4: Comparison of Simple and Complex MVs
(Oracle’s manual) [27]

Figure 5 shows the structure of how MVs are beneficial
in Silterra’s MES environment. The historical database
(HDB) is a FACTORYworks (FW) module that is stored in
a data repository organized for efficient data retrieval and is
completely separated from the production FW DB [28]. A
utility, called HDB Extract utility, loads the data from FW to
HDB in almost real time.

Figure. 5: Implementation of MV in Production
Environment

All the reporting utilities need to be run against HDB so that
there will be no impact on the performance of production
database. However, some information that are not available
in HDB are stored in production databases. MV can be
used to retrieve the information from production database
with lesser impact provided that the MVs are created and
executed in HDB. It is able to solve performance issues
since reports and queries will select MVs in HDB. With the

use MVs, complex joins with aggregation between different
MES databases are able to be executed with very less
impact. Thus, MVs are useful in the situation where there is
increasing number of report request, consistent data growth
and highly demand data.

V. Performance Improvement Analysis Using
MVs

In order to compare the performance of SQL queries with
and without MVs, an experiment has been conducted. The
experiment was executed on Fujitsu M5000 with 3CPU of
SPARC64 VII 2.6GHz and 32 GB memory on the MES
database server that was running on Oracle 11g in the
Linux platform. The queries are created using TOAD for
Oracle and Oracle SQL Developer. The experiment has
been conducted using three MES databases that are: WIP,
Historical WIP (HDB), and Equipment Monitoring (EQP)
database. Since WIP and EQP databases are riskier to
be interrupted, we replicated the production environment.
This is to ensure that the query optimizer will select the
same execution plan for the problems query [15]. For
HDB database, we are able to execute the experiment
in the production environment. The risk of performance
degrade can be minimized by bounding the impact of the
experiment, ensuring inexcessive use of database resource,
and maintaining low overhead on the production system [15].
100 sets of query have been created for the experiment. Each
set consist of query to base table (QBT) and query using MVs
(QMV). We created a mixed type of SQL queries, involving
single to multiple tables (of different databases), with varying
result set size. The queries are from simple to complex
queries (with aggregation, summation and grouping). To
ensure accuracy, the output of the query using QBT and
QMV in the same set must be identical. If the results are
inconsistent, correction will be made by recreating MVs or
QMVs. The average elapsed time for query execution for
the query sets are recorded, where the query execution is
repeated for three times.

VI. Results and Discussion

Figure 6 shows the result of elapsed time (in seconds) for the
query sets under measure. The line chart of elapsed time for
100 set queries has been plotted in QBT elapsed time order.
Even though it seems in the chart that performance of QBTs
and QMVs are similar for more than half of the query sets
(due to large time range in Y axis), QMVs do perform better
than QBTs for most cases.
We have conducted the analysis with Performance
Improvement (PI), as a way to study a relation and
change in a variable. Based on literature, PI has been used
to show the percentage improvement difference between
two results [30], [15], [31]. While Herodotou et al., (2009)
used PI to evaluate the effectiveness of zTuned to find better
execution plans for poorly performing queries, LeFevre et
al., (2014) used PI to analyse query rewrite using optimistic
view for execution time [30], [15]. Tang et al., (2016) used
PI to prove that their algorithm for Map Reduce Workloads
are 15% to 89% better than the currently unoptimized
Hadoop in terms of reduction in running time [31]. These

43 Khushairi et al.

Figure. 6: Experiment Results of QBTs and QMVs in Elapsed Time

examples show that PI is widely used to examine the
differences between two numbers effectively in percentage
format. PI is calculated by dividing the difference between
two numbers by the original number and multiply the value
by 100 [15],[31],[29]. Percentage difference equals to the
value of the change, divided by the main reference number,
all multiplied by 100. In the experiment, PI is calculated
using QBT and QMV elapsed time where QBT’s elapse time
is used as the reference number, as the following:

PI =
QBTElapsedT ime−QMV ElapsedT ime

QBTElapsedT ime
× 100

As smaller elapsed time value is desirable, positive
percentage values indicate elapsed time has improved for
queries using MVs. As illustrated in Figure 7 there is an
average improvement of 82.26% for QMV sets. We observed
that 98% query sets of QMV show higher improvement and
48% set of queries show nearly 100% of PI. In particular,
for Q51, QBT with the highest elapsed time (29573 second)
has been tuned to 0.69 second with QMV. In this case, PI is
100%. More than half queries (59) perform very well with
PI more than 90%.
The results show that QMVs perform significantly faster
as compared to QBT in most query sets as expected.
Nevertheless, in this experiment we are more interested to
discover QMVs that exhibit low performance, where PI is
less than 50% and those with longer elapsed time (more than
10 seconds).
Table 2 highlights the presence of 13 query sets with PI less
than 50% and 13 QMVs with more than 10 seconds elapsed
time. Even though the overall results show that MVs are
able to tune most queries under measure, there are cases
where further tuning is needed.
Among the queries that have PI less than 50%, there are two
queries namely Q21 and Q32 show negative values (-7.27%
and -0.32% respectively). This case signifies that, the use
of MV is not enough to tune the queries’ performance. The
possible reasons for this case are: 1) the size of the tables
used by this queries are relatively larger as compared to
other queries’ table size (Q21’s table size is 85941.84MB,
and Q32’s table size is 22607.58MB), and, 2) the way QMV
is written (i.e not using the correct index).
Attention must be given for Q67 as even though PI
yielded is high (89.15%), the elapsed time is the
highest (with 328 seconds). Other queries that exhibit

Table 2: Experiment Results of QBT and QMV elapsed time
order by PI
QuerySets QBT QMV (rewrite) PI(%)
Q21 0.18 0.20 -7.27
Q32 12.72 12.80 -0.60
Q31 35.57 35.37 0.56
Q27 22.39 21.73 2.92
Q40 16.14 13.81 14.47
Q44 11.88 9.80 17.51
Q59 0.93 0.71 23.57
Q2 2.04 1.40 31.65
Q98 3.00 2.00 33.33
Q17 0.93 0.60 35.36
Q37 7.49 4.81 35.80
Q92 14.68 8.31 43.42
Q25 0.84 0.42 49.60
Q100 58.00 16.00 72.41
Q67 3029.15 328.78 89.15
Q83 2795.15 30.13 98.92
Q79 3774.14 24.18 99.36
Q71 2980.77 12.49 99.58
Q76 3064.49 10.03 99.67
Q68 5547.17 11.81 99.79
Q69 5730.87 10.57 99.82
Q66 8832.00 11.77 99.87

high PI, but more than 10 seconds elapsed time are
Q83,Q79,Q71,Q76,Q68,Q69, and Q66. Thus, for
applications that aims for speed, PI may not be used as the
only factor for consideration in adopting MVs. Furthermore,
while offline analysis can reveal the usefulness of MVs for
routined-based queries, ways to determine MVs’ usefulness
for ad-hoc queries will be very much needed in many
real-time manufacturing applications today.

VII. Conclusion and Future Work

As a conclusion, to maintain good database performance,
effective monitoring is crucial especially in manufacturing
industry that deals with massive volumes of data.
Nevertheless, monitoring processes through reports
generation can be affected by slow SQL queries. In
this paper, the common flow of SQL rewriting has been
presented, where focus is given on MVs for SQL tuning
adopted by Silterra. Materialized views have been useful in
optimizing queries for many years. Nevertheless, based on
the results of the experiment presented in this paper, there

Database Tuning Using Oracle Materialized View for Manufacturing Industry 44

Figure. 7: Experiment Results on Elapsed Time Improvement

are cases that suggests that MVs are inadequate to improve
SQL queries’ performance. Therefore, further investigation
is needed in order to find ways to deal with this limitation.

Acknowledgments

We acknowledge financial assistance received from the
Ministry of Education Malaysia under Fundamental
Research Grant (FRGS/1/2015/ICT04/FTMK/02/F00289)
and the support from Universiti Teknikal Malaysia Melaka.

References

[1] H. Zhou, Z. Yao and H. Xiao, The Design Research
on the Storage Structure for Large Amount of Data of
the Database, Proceeding of the International Conference
on Advance Mechatronic System, Zhengzhao. China,
pp.384-388, 2011

[2] A. Jacobs, The Pathologies of Big Data,
Communications of the ACM, v.52 n.8, pp.36–44,
2009

[3] M.A. Chik, S.M. Hazmuni, U. Hashim, Z. Yao and
H. Xiao, Industrial Engineering Roles in Semiconductor
Fabrication, In Asia Pacific Industrial Engineering and
Management Systems Conference APIEM , pp.7-10, 2010

[4] K. Ibrahim and M.A. Chik and U. Hashim, Horrendous
Capacity Cost of Semiconductor Wafer Manufacturing, In
2014 IEEE International Conference on Semiconductor
Electronics (ICSE2014), pp.329-331, 2014

[5] T. Ponsignon and L. Monch, Architecture for
Simulation-Based Performance Assessment of Planning
Approaches in Semiconductor Manufacturing. In
Proceedings of IEEE Winter Simulation Conference,
Neubiberg. Germany, pp.3341-3349, 2010

[6] L. Wein, Scheduling Semiconductor Wafer Fabrication.
IEEE Transactions on Semiconductor Manufacturing.
v1.n.3, pp.115-130, 1988

[7] R.S. Chen, C.M. Sun, M.M. Helms and W.J. Jih,
Aligning Information Technology and Business Strategy
with a Dynamic Capabilities Perspective: A Longitudinal
Study of a Taiwanese Semiconductor Company, In
International Journal of Information Management, v28
n.5, pp.366-378, 2008

[8] R. Birke, M. Bjoerkqvist, L.Y. Chen, E. Smirni
and T. Engbersen, (Big) Data in a Virtualized World:
Volume, Velocity, and Variety in Cloud Datacenters, In
Proceedings of the 12th USENIX Conference on File and
Storage Technologies (FAST 14), pp.177-189, 2014

45 Khushairi et al.

[9] B. Darmawan, G. Groenewald, A. Irving, S. Henrique
and M. Snedeker, Database Performance Tuning on
AIX, IBM International Technical Support Organization,
pp.291, 2003

[10] D.K. Burleson, Advanced Oracle SQL Tuning the
Definitive Reference, Rampant Tech Press, (2nd ed.),
2010)

[11] T.M. Connolly and C.E. Begg, Database Systems:
A Practical Approach to Design, Implementation
and Management, SQL: Data Manipulation in A.D.
McGettrick (3rd ed.), pp.110-155, 2002

[12] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait and
M. Ziauddin, Automatic SQL Tuning in Oracle 10G, In
Proceedings of the Thirtieth International Conference on
Very Large Data Bases Volume 30, VLDB 04, Toronto,
Canada,pp1098-1109 ,2004

[13] R. Schumacher, Oracle Performance Troubleshooting,
Oracle Performance Troubleshooting: With Dictionary
Internals SQL and Tuning Scripts Oracle In-Focus series,
Rampant Techpress ,2003

[14] M. Ziauddin, D. Das, H. Su, Y. Zhu and K. Yagoub,
Optimizer Plan Change Management: Improved Stability
and Performance, In Oracle 11G, Proc. VLDB Endow.,
v.1 n.2, pp.1346-1355, ,2008

[15] H. Herodotou and S. Babu, Automated SQL Tuning
through Trial and (Sometimes) Error, In Proc. of DBTest
09, ACM, ,2009

[16] P. Bagale and S.R. Joshi, Optimal Materialized
View Management in Distributed Environment using
Random Walk Approach, Journal of Advanced College of
Engineering and Management, v.1, pp.67073, 2016

[17] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He,
W. Gao, Z. Jia, Y. Shi, S. Zhang, C. Zheng, G. Lu, K.
Zhan, X. Li and B. Qiu, BigDataBench: A Big Data
Benchmark Suite from Internet Services, In 2014 IEEE
20th International Symposium on High Performance
Computer Architecture (HPCA), pp.488-499, 2014

[18] S. Kurzadkar and A. Bajpayee, Anatomization
of Miscellaneous Approaches for Selection and
Maintenance of Materialized View, In IEEE Sponsored
9th International Conference on Intelligent Systems and
Control (ISCO)2015, pp.1-5, 2015

[19] T.F. Yu, T. Tong, M. Xiao and R. Jack, Materialized
View Tuning Mechanism and Usability Enhancement,
In Distributed Computing and Internet Technology:
Third International Conference, Heidelberg, Berlin,
pp.347-360, 2006)

[20] P.P. Karde and V.M. Thakare, An Efficient Materialized
View Selection Approach for Query Processing. Database
Management, Journal of Computer Science, v.10 n.9,
2010

[21] C. Surajit and D. Umeshwar, An Overview of Data
Warehousing and OLAP Technology, SIGMOD Rec., v.26
n.1, New York. USA, pp.65-74, 1997

[22] S. Chen and E.A. Rundensteiner, GPIVOT: Efficient
Incremental Maintenance of Complex ROLAP Views,
In 21st International Conference on Data Engineering
(ICDE’05), pp.552-563, 2005

[23] A.N.M.B. Rashid and M.S. Islam , An Incremental
View Materialization Approach in ORDBMS, In
International Conference on Recent Trends in
Information, Telecommunication and Computing pp.
105-109 ,2010)

[24] P.P. Karde and V.M. Thakare, Selection of
Materialized View using Query Optimization in Database
Management : An Efficient Methodology, International
Journal of Database Management Systems IJDMS,4,
pp.116-130,2010

[25] H. Gupta, Selection of Views to Materialize in a Data
Warehouse, Proceedings of ICDT, pp.98-112, 1997

[26] S.R. Valluri and S. Vadapalli and K. Karlapalem,
View Relevance Driven Materialized View Selection in
Data Warehousing Environment, Aust. Comput. Sci.
Commun., IEEE Computer Society Press, pp. 187-196,
Los Alamitos, CA, USA ,2002

[27] Oracle, Database Administrators Guide Read-Only
Materialized View Concepts, Oracle Database 12c
Release 2, Oracle Online Documentation, pp.70-77 ,2017

[28] FASTech Integration, Inc.,FACTORYworks
Historical Database and HDBextract Utility Guide,
in FACTORYworks Version 2.3 and FACTORYworks-Plus
Version 2.3, Fastech Integration, Lincoln North, 1998

[29] Wikipedia, Relative Change and Difference
Inc., From Wikipedia, the Free Encyclopedia,
https://en.wikipedia.org/wiki/Relative change and difference

[30] J. LeFevre, J. Sankaranarayanan, H. Hacigumus, J.
Tatemura, N. Polyzotis and M.J. Carey, Opportunistic
Physical Design for Big Data Analytics, In Proceedings
of the 2014 ACM SIGMOD International Conference on
Management of Data, ACM, pp.851-862, 2014

[31] S. Tang, B.S. Lee and B. He, Dynamic Job Ordering
and Slot Configurations for MapReduce Workloads, IEEE
Transactions On Services Computing, IEEE, 9,pp.4-17,
2016

[32] K. Ibrahim, M.A. Chik, and U. Hashim, Horrendous
Capacity Cost of Semiconductor Wafer Manufacturing,
In International Conference of Semiconductor Electronics
2014, IEEE-ICSE2014 Proc. pp. 345348,2014

Author Biographies

Norazah Md Khushairi, is a Section Manager in Data
Management and System Enhancement at Department
Computer Integrated Manufacturing (CIM) in Siltera
Malaysia Sdn Bhd. She was born in Kedah, Malaysia.
She has 18 years experience in Semiconductor Industry

Database Tuning Using Oracle Materialized View for Manufacturing Industry 46

and MES databases. She is proficient in applications
architecture, developing MES reporting , web application
and data management. She graduated in Bachelors Degree
of Computer Science from Universiti Sains Malaysia. Her
major field is computer science and with specialization
in data management. She has Master in Information
Technology, Universiti Utara Malaysia. Currently pursuing
PHD in Information Technology with Universiti Teknikal
Malaysia. Her research interest in Database Performance and
SQL tuning.

Dr. Nurul Akmar Emran was born in Melaka,
Malaysia. She received bachelor degree in Management
Information System (MIS) from the International Islamic
University Malaysia, in 2001, Msc in Internet and Database
Systems from London South Bank University in 2003 and
Ph.D. degree in computer science from the University of
Manchester, UK in 2011. In 2004, she joined the department
of Software Engineering, University Teknikal Malaysia
Melaka, as a Lecturer, and in 2011 she became a Senior
Lecturer. She holds Oracle Certified Profesional (OCP)
in 2007 and her teaching mainly covers database-related
subjects at undergraduate and postgraduate levels. Her
current research interests include storage space optimization,
query processing and data quality.

Anil Kumar Menon is a Technology Architect in Oracle
Corporation, Malaysia. He was born in Kerala India in 1969.
He received bachelor degree in Applied Science Computer
Technology from Coimbatore Institute of Technology, Tamil
Nadu India in 1991. His major field is in applied sciences and
he specializes in computer technology. He has 20 years of
experience in IT industry especially in business Intelligence,
IT Architecture and Database. He involved in developing
IT strategy and architecture for banks, and where he was
appointed as advisor for banks’ IT architecture and strategy.
He also worked on a number of data warehousing projects,
content management projects and projects in J2EE. He is
a well-versed practitioner in banking and financial services
sector.

