
 
Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted 

use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 

 

International Journal of Engineering & Technology, 7 (3.14) (2018) 414-418 
 

International Journal of Engineering & Technology 
 

Website: www.sciencepubco.com/index.php/IJET 

 

Research paper 
 

 

 

 

Analysis of Spinal Electromyography Signal When Lifting an 

Object 
 

M.B. Bahar*, S.A. Zainal, J.W. Too, M.F. Miskon, N.I.A. Apandi, N.L.A. Shaari, M.S.M. Aras, F. Ali 

 
Center of Excellence in Robotic and Industrial Automation, Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, 

Malaysia  

*Corresponding author E-mail: mohdbazli@utem.edu.my 

 

 

Abstract 
 

Lifting and swinging are daily activities that human do using the spine. Furthermore, spine provides support during standing and walking. 

Therefore, it is very important in everyday activities and it will be inconvenient when it is injured. Technology has provided ways to 

machine and human integration in helping or supporting people in their daily tasks. To make this integration successful, machines or 

robots need to understand the human muscle activity. To do so, electromyography (EMG) a bio signal record the electricity generated by 

muscle was implemented. However, the signal often influenced by the unwanted noise. In this paper, the MVC normalization method is 

applied to determine the spinal EMG signal on lumbar multifidus muscle when lifting an object. In order to analyze the identity of spinal 

EMG signal, two statistical analyses are done; 1) ANOVA analysis and 2) Boxplot analysis. The signal will go through 8th order Gaussi-

an function or Exponential Weight Moving Average Filter before being analysed. Results show that Exponential Weight Moving Aver-

age Filter gives more consistent value compared to 8th order Gaussian function which is 0.0428V RMSE based on linear fitting done 

from the maximum amplitude gather from the boxplot analysis done.  
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1. Introduction 

Mobility and strength of a human supported by lower spine or 

lumbar spine that connects the upper body to lower body. This 

connection allows movements such as turning, bending or twisting 

while strength provide support during standing, walking and lift-

ing posture [1]. Nearly 85% of the caregivers are experience in 

lower back pain and survey conducted by [2] have determine the 

prevalence and risk factors of low back pain among automotive 

industry workers. The result shows an increment in the point prev-

alence of 57.9%, 49.5% and 35.1 % in 12 months, one month and 

in 7 days respectively. Due to the importance and sensitivity of 

spinal, the EMG was used in order to help the patient with spinal 

injuries in physiotherapy [3, 4]. Moreover, with the involvement 

of EMG in robotic, robot has the ability to mimic human motion 

which able robotics to be used in rehabilitation, therapy and medi-

cal test [5-7]. 

Recently, researchers emphases on the upper limb rehabilitation 

training system development [8] and studying the relation between 

the surface EMG signal and ideal motor muscle [9]. Besides, some 

of them focus to improve the process speed and response of EMG 

device [10, 11]. Furthermore, implementation of two electrode 

systems in electromyogram detection was investigated [12]. Due 

to lack of research that stress on the recognition of EMG signal at 

spinal muscle, robotic or rehabilitation studies faces difficulties in 

designing the best response to overcome spinal injuries.       

The EMG signal can be depending by several external factors 

altering its shape and characteristics, from the muscle membrane 

up to the electrodes [13]. The factors that affect EMG signal and 

force falls into three basic groups: causative, intermediate and 

deterministic factors [14]. According to [15], the transformation of 

measure EMG signals into a reduced set of features is normally 

extracted in time domain and frequency domain. In addition, in 

[13] describes that a significant amount of EMG that is detected 

by the local electrode site may be produced by neighboring mus-

cles. Lastly, the inaccuracy of the surface EMG pattern recogni-

tion affected the results. The review shows that a lot of researchers 

having difficulties in getting high accuracy of the surface EMG 

pattern recognition [15-17]. 

The purpose of this report is to analyse the EMG signal produce 

by spinal muscle using statistical analysis methods. The Maximal 

Voluntary Contraction (MVC) used to determine the EMG signal 

on spinal. The experiment is divided into subject, pre-experiment 

and experiment protocol. The experiment focuses on 0%, 25%, 

50%, 75% and 100% MVC when lifting an object. The EMG sig-

nals then will be analysed using two methods which are one-way 

ANOVA analysis and boxplot analysis. The one-way ANOVA 

was made to analyse the mean and variance of EMG signal be-

tween each subject. It will justify the EMG signal differences 

between all subjects. Lastly, the box plot analysis will recognise 

each %MVC based on three features maximum normalise ampli-

tude, interquartile range and median. The method and methodolo-

gy were plan same as [18] to ensure the comparison between the 

signals gather here can be directly compared with the swinging 

motion. 

2. Proposed Method 

Explanation on the research method was divided into three which 

are the data gathering process, data analysis and statistical analysis. 

MVC normalization method is shown in Fig. 1. The dash box 

represents the data analysis process while the solid box shows the 

http://www.sciencepubco.com/index.php/IJET


International Journal of Engineering & Technology 415 

 
process of data gathering by applying MVC shows how the data 

was gather. 

 
Fig. 1: Summarization of MVC normalization method 

2.1. Data Gathering 

Maximal voluntary contractions (MVC) were implemented to 

represent different level of muscle contraction. The method used 

due to fatigue, which is the feeble symptom and it is always hap-

pening after muscle activity. The review showed there is no rela-

tion between fatigue awareness on subjects and physiological 

measures of fatigability [19]. Several variables such as load, task 

repetition, number of tasks and trials, time to rest and type of task 

had to be concerned in order to achieve a good prescription in the 

experiment. A reference is needed to overcome the problem in real 

muscle strength comparison since a human has different muscle 

strength. 

MVC normalization is an amplitude analysis technique applies to 

EMG signals. The MVC normalization method is widely used in 

EMG field and it is an act of subject own free will when the mus-

cle contract at the maximum contraction based on muscle status. 

Besides, the series of EMG data was normalized using the maxi-

mum root means square (RMS) [20]. When there is a movement a 

force is produced and MVC can be used to measure the percentage 

ratio force applied on maximal voluntary contraction. Normaliza-

tion based on MVC is useful to increase the consistency in isomet-

ric contraction. In EMG normalization. Maximal voluntary iso-

metric contraction is a common method for extraction of reference 

amplitude [21]. 

A normalization method based on MVC is used to measure the 

relative force at the beginning. Then, each subject is asked to per-

form a lifting motion with a load based on their muscle strength 

which is 100%, 75%, 50%, 25% and 0% of their maximum volun-

tary contraction and the trials is repeated. The normalization is 

completely done and stops at the moment when the muscle of the 

subject reached maximum and could not lift the load. One minute 

resting period was given between trials [20].  

2.2. Data Analysis 

After gathering all the EMG data, it will go through data analysis. 

The analysis included two types of filter, which is curve fitting 

and weight moving average filter. 

The curve fitting performs exploratory data analysis, pre-process 

data, post-process data and remove outliers in order to model the 

pattern of muscle recovery behaviour that obtained from pre ex-

periment protocol to be the truth of normalization method. The 8th 

order Gaussian function examination of all subject data, thus mus-

cle recovery behaviour can be defined in mathematical form as in 

((1). 
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Secondly, an exponential weight moving average (EWMA) filter 

is used to smooth the signal and remove unwanted line noise. The 

EWMA filter is similar to Gaussian expansion filter and it is ap-

plied in order to remove the unwanted noise from the signal. By 

applying this filter, the observer is able to see the tendency in the 

signal. 

2.3. Statistical Analysis 

After obtaining the data from actions and activity which recorded 

by using the EMG sensors. The statistical analysis methods had 

been applied to analyse muscle activation and they are good to 

indicate muscular activities. Statistical analysis consists of two 

methods and these methods are showing good results in previous 

work done. The statistical methods are one-way ANOVA analysis 

and boxplot analysis. 

The EMG signal will go through an analysis and determination of 

the effect on the EMG signal classification performance of lumbar 

multifidus muscles by using one-way ANOVA method [22]. It 

also test the feature in order to observe the characteristic of each 

feature between different classes [23]. One-way ANOVA analysis 

integrated normalized EMG activities of lumbar multifidus muscle 

for each respective phase [24]. To do so, assumptions were made 

which is: The null hypothesis,                   . 
The one-way ANOVA analysis was used to compare the means 

and variance between 15 subjects in MVC normalization method. 

A signal that achieves a common mean of p > 0.05 and it means 

there are no significant differences between all subjects. On the 

other hand, when the significant level   p < 0.05, the mean value 

for 15 subjects are not all the same. Therefore, the tests are known 

as significant when the variance of tests is small as compared to 

the variance between subjects [25]. 

In boxplot, it shows the graphical layout which consists of five 

values. They are the minimum value and maximum value in the 

dataset, lower hinge (first quartile), upper hinge (third quartile) 

and median. It helps in summarizing the outliers and determina-

tion of trimmed mean value. An extreme observation can signifi-

cantly affect the data measured in a larger data set [26]. The objec-

tive of boxplot is to understand the data distribution. The red line 

that divided the box. 

3. Methodology 

The experiment consists of 15 male subjects between 20 to 30 

years old. There is no record of accidents or unhealthy between all 

subjects, particularly at their spine. Before proceed with the data 

gathering. There are two preparation sessions, the first session is 

briefing session while the second session is skin preparation. In 

skin preparation, fur at the electrode area will be removed and the 

alcohol was swept. 

The experiment was conducted based on 0%, 25%, 50%, 75% and 

100% MVC test and each test is repeated for three times for each 

subject. In order to determine and evaluate any inconsistent issue, 

the experiment applied the MVC normalization method. Fig. 2 

shows the electrode position. Positive electrodes are connected to 

the muscle (lumbar multifidus), while negative electrode is con-

nected to the bone. The Lumbar multifidus muscle was chosen 

because it is a small and powerful muscle, which related to upper 

limb movement and provide support to the spine [27].  

Determine 100%, 75%, 50%, 25% and 0% MVC 

Lifting the load with 100% MVC 

Repeat the activity for each % MVC until 3 set of repetition 

Calculate the mean value for 3 set of repetition 

Recovering the muscle pattern recognition 

Use recovery muscle pattern recognition to analyze 

the EMG signal 
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Fig. 2: Location of electrodes on lumbar multifidus muscle 

 

The electrode is connected to the muscle sensor V3 kit that used to 

filter and rectified electrical activity of a muscle. For data acquisi-

tion, the digital oscilloscope was used. Collected data then will be 

analysed. The experiment started with the MVC normalization 

method. This procedure is followed the experiment procedure 

done by [28]. To make sure the results are consistent, all the ex-

periment setup, task and activity must be the same. All the exper-

iments are done in the laboratory. Firstly, subject is requested to 

stand in rest position for 1 second before lifting the weight for 3 

second and hold it for another 1 second. Data and waveform from 

the oscilloscope (muscle sensor V3) are collected for 4 second 

starting from the rest position until holding the weight. After that, 

a subject is requested to rest for 1 minute before repeating the task. 

The task will be repeated for another two times. The experimental 

setup shown in Fig. 3. 

 

 
Fig. 3: Movement of subject in lifting object 

4. Results and Discussion 

Fig. 4 shows the average result of 0%, 25%, 50%, 75% and 100% 

of MVC test among 15 subjects which had been filtered by muscle 

sensor V3 kit. 

 

 
Fig. 4: Average of %MVC Test 

 

The normalized amplitude is higher when %MVC is greater. It 

shows that the greater the load, the greater the myoelectric gener-

ated by the muscle. At 0% MVC, the normalized amplitude is 

falling below 0V due to the greater distance between positive and 

negative electrode location. However, this setup was consistently 

used for others %MVC where it will not affect the recognition 

process. 

4.1. One-Way ANOVA Analysis 

In One-way ANOVA analysis, the significant level set p < 0.05 

for all the data and allocate variance to different trials. The one-

way ANOVA analysis for 100% MVC is shown in Fig. 5, the p 

value is 4.48069e-243 which is less than 0.05. The results are 

same for another 0%, 25%, 50% and 75% MVC, the p-values are 

less than 0.05. It shows that the differences between mean and 

variance are statistically significant. In addition, it states that the 

mean and variance value from all the 15 subjects are not all same. 

The null hypothesis state in the method section is rejected and the 

difference between the means are great enough for the researcher 

to exclude sampling error explanation. 

 

 
Fig. 5: One-way ANOVA analysis 

4.2. Boxplot analysis 

Only the boxplot analysis was done to the average of all 15 sub-

ject normalized amplitude signals based on %MVC. The Inter-

quartile range (IQR), maximum amplitude, and median are ob-

served to identify the signal characteristic for each %MVC. The 

normalized amplitude than go through 1) 8th order Gaussian func-

tion and 2) EWMA filter before the Interquartile range (IQR), 

maximum amplitude, and median is observed. The value will be 

compared to identify the best method to recognize the signal. 

Fig. 6(a), (c) and (e) show the boxplot analysis for 

ent %MVC test. From the analysis, it shows that the characteristic 

in term of maximum value, 1st quartile and 3rd quartile was nearly 

the same for all three graphs. The minimum IQR is when subject 

lifting the object at 0% MVC.  

The boxplot for 50% MVC and 75% MVC cross at the 1st quartile 

in which the minimum value was nearly the same. This is due to 

the subject need to use nearly the same force in completing the 

task. This is based on increasing of cross data from 0% MVC to 

100% MVC for each boxplot analysis. However, the IQR is sig-

nificantly different between each % MVC. 

From the boxplot analysis, the median did not lie at half of the 

first quartile and third quartile. Therefore, the distribution is not 

symmetrical. IQR is a more appropriate measure of variability 

than standard deviation if the data is not symmetrical [29]. High-

er %MVC results in greater median and IQR. The larger the IQR, 

the data set is more variable while the smaller the IQR, the data 

has higher consistency. For the average IQR different from 0% 

until 100%, the signal undergo EWMA filter is the smallest, 

0.106648 while the signal undergoes 8th order Gaussian function 

in curve fitting is the highest, 0.121189. It shows that the EMG 

signal undergoes 8th order Gaussian function in curve fitting has a 

lower consistency of data, but more variable the data set is. 

The detailed for each variable on each boxplot analysis in Fig. 6(a), 

(c) and (e) represented in Fig. 6(b), (d) and (f). Variables that ob-

served are the Median, inter quartile range and maximum ampli-

tude. These variables can represent the signal identity in the classi-

fication process. To do that, the variable should be significantly 

different between each MVC%. Fig. 6(b), (d) and (f) had used 

linear fitting based on the three variables state before. From the 

linear line, the RMSE was calculated to represent the consistency 

of the data to the linear line. Larger the RMSE more inconsistent 

the data record. If the RMSE is too high, it will be difficult for the 

Negative 
electrodes 

Positive 
electrodes 

Ruler placed 

on the shoul-

der to indi-

cate the limit 

of the weight 

lifted 

Weight 

lifted must 

be parallel 

to the sub-

ject’s waist  
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classification process. This was due to the variable may lays on 

different MVC%.  

 

 
(a) Without any filter 

 
(b) Variables from boxplot without any filter 

 
(c) 8th order Gaussian function 

 
(d) Variables from boxplot after go through 8th order Gaussian func-

tion 

 
(e) EWMA filter 

 
(f) Variables from boxplot after go through EWMA filter 

Fig. 6: Figure (a), (c) and (e) are the Boxplot analysis from 0% to 100% 

MVC based on 15 sample data. Figure (b), (d) and (f) are the linear fitting 
plot based on the boxplot analysis. 

 

From Fig. 6(b), the RMSE for the median is smaller compared to 

IQR and maximum amplitude which is 0.02286V. However, IQR 

becomes the smaller value when go through 8th order Gaussian 

function which is 0.03144V. When the signal goes through EW-

MA filter, the minimum RMSE is 0.0279V where came from the 

maximum amplitude. Table 2 shows all the RMSE for the varia-

bles observed in Fig. 6. 

From Table 1, it can be said that the EWMA filter is the best 

method due to the average RMSE for all three variables is 

0.0428V. However, if refer to the variables, median is more con-

sistent based on the average RMSE from all three types of signal 

is 0.0359V.  

In order to proceed with classification process, EWMA filter is 

recommended to be used with the maximum amplitude value of 

the boxplot. The RMSE is 0.027V, the smaller among variables go 

through EWMA filter and 2nd from all data gather in here. Howev-

er, it is the best to use more than one variable to represent the 

signal. For example, median and maximum amplitude can be used 

to ensure the accuracy of the classification. From the analysis, it 

also shows that IQR are not consistent for most of the time. This 

can be seen from the RMSE value and the boxplot analysis in Fig. 

6. In term of filter used, 8th order Gaussian function is not suitable 

in this case because the average RMSE is greater.  
 

Table 1: RMSE between linear fitting and the variables 
Filter median IQR Max Average 

normal 0.0228 0.0794 0.0326 0.0449 

8th order Gaussian 0.055 0.0314 0.0648 0.0507 

EWMA 0.0290 0.0715 0.027 0.0428 

5. Conclusion  

The experiment shows that the boxplot analysis able to differenti-

ate the signal based on %MVC. Despite the inconsistency of raw 

data collected effected the boxplot, it still has a significant differ-

ence. When the signal undergoes two types of filters, it shows that 
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there is advantages and disadvantages for each. When median, 

IQR and maximum amplitude taken from the boxplot, the varia-

bles are in positive linear line. To ensure the best filter and varia-

ble that can be used to represent the signal, RMSE was calculated. 

The RMSE was taken from the value observed from the boxplot 

with the linear fitting of the variables i.e. median, IQR and maxi-

mum amplitude. It shows that the EWMA filter has average 

RMSE 0.0428. With minimum RMSE came from the maximum 

amplitude. This method is sufficient to use as classification be-

tween percent MVC when lifting an object. However, if there is 

more motion, such as swinging [22] or punching need to be classi-

fied, this might create inaccuracy on the classifying the signal. It is 

recommended to use a higher level of filter and pattern recognition 

method before analysing the signal. This will increase the con-

sistency of the signal gather. Secondly, the classification also need 

are proper artificial intelligence method due to the EMG signal 

was surely having high inconsistency and noise. This work will be 

used as the reference data for the classification process.  

Acknowledgement 

Authors would like to thank Centre for Robotic and Automation 

(CeRIA), Centre of Research and Innovation Management 

(CRIM), University Teknikal Malaysia Melaka (UTeM), and min-

istry of education for supporting this research. 

References  

[1] Mayfield Clinic and T. Hines, Anatomy of the Spine, Univ. Wis-
consin Sch. Med. Public Heal. Dep. Radiol, (2015) pp. 2–6. 

[2] N. S. M. Isa, B. M. Deros, M. Sahani, and A. R. Ismail, “Personal 

and Psychosocial Risk Factor for Low Back Pain among Automo-
tive Manual Handling Workers in Selangor, Malaysia,” Int. J. Pub-

lic Heal. Res., vol. 4, no. 1, (2013), pp. 412–418,  

[3] Y. Su, S. Routhu, C. Aydinalp, K. Moon, and Y. Ozturk, “Low 
power spinal motion and muscle activity monitor,” in IEEE Global 

Communications Conference, (2015). 
[4] S. Mihcin, “Spinal curvature for the assessment of spinal stability,” 

Int. J. Biomed. Eng. Technol., vol. 20, no. 3, (2016), pp. 226–242. 

[5] S. L. Grona, B. Bath, L. Bustamante, and I. Mendez, “Case report: 
Using a remote presence robot to improve access to physical thera-

py for people with chronic back disorders in an underserved com-

munity,” Physiother. Canada, vol. 69, no. 1, (2017), pp. 14–19. 
[6] F. Marini et al., “Robotic wrist training after stroke: Adaptive mod-

ulation of assistance in pediatric rehabilitation,” Rob. Auton. Syst., 

vol. 91, (2017), pp. 169–178. 
[7] M. B. Bahar, M. F. Miskon, N. A. Bakar, F. Ali, and A. Z. Shukor, 

“STS motion control using humanoid robot,” Res. J. Appl. Sci. Eng. 

Technol., vol. 8, no. 1, (2014), pp. 95–108. 
[8] L. Liu, X. Chen, Z. Lu, S. Cao, D. Wu, and X. Zhang, “Develop-

ment of an EMG-ACC-Based Upper Limb Rehabilitation Training 

System,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 3, 
(2017), pp. 244–253. 

[9] X. Li, F. Jahanmiri-Nezhad, W. Z. Rymer, and P. Zhou, “An Exam-

ination of the Motor Unit Number Index (MUNIX) in Muscles Par-

alyzed by Spinal Cord Injury,” IEEE Trans. Inf. Technol. Biomed., 

vol. 16, no. 6, (2012), pp. 1143–1149. 

[10] C. M. D. Acevedo and J. E. J. Duarte, “Development of an embed-
ded system for classification of EMG signals,” in III International 

Congress of Engineering Mechatronics and Automation, (2014), pp. 

1–5. 
[11] E. Ceseracciu et al., “A flexible architecture to enhance wearable 

robots: Integration of EMG-informed models,” in IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems, (2015), pp. 
4368–4374. 

[12] N. J. Fauzani et al., “Two electrodes system: Performance on ECG 

FECG and EMG detection,” in 2013 IEEE Student Conference on 
Research and Developement, (2013), pp. 506–510. 

[13] P. Konrad, The ABC of EMG, Noraxon INC., (2005), pp. 1–60. 

[14] O. Bida, “Influence of Electromyogram (EMG) Amplitude Pro-
cessing in EMG-Torque Estimation,” System, no. January, (2005), 

p. 93. 

[15] S. Thongpanja, A. Phinyomark, F. Quaine, Y. Laurillau, C. Lim-
sakul, and P. Phukpattaranont, “Probability Density Functions of 

Stationary Surface EMG Signals in Noisy Environments,” IEEE 

Trans. Instrum. Meas., vol. 65, no. 7, (2016), pp. 1547–1557. 

[16] R. H. Chowdhury, M. B. I. Reaz, M. A. B. M. Ali, A. A. A. Bakar, 

K. Chellappan, and T. G. Chang, “Surface electromyography signal 

processing and classification techniques,” Sensors, vol. 13, no. 9, 

(2013), pp. 12431–12466. 
[17] A. C. Sy, N. T. Bugtai, A. D. Domingo, S. Y. M. V. Liang, and M. 

L. R. Santos, “Effects of movement velocity, acceleration and ini-

tial degree of muscle flexion on bicep EMG signal amplitude,” in 
International Conference on Humanoid, Nanotechnology, Infor-

mation Technology,Communication and Control, Environment and 
Management, (2015), pp. 1–6. 

[18] M. B. Bahar, J. W. Too, M. F. Miskon, N. M. Sobran, and N. L. A. 

Shaari, “Analysis of Spinal EMG Signal When Swinging an Object,” 
Int. J. Appl. Eng. Res., vol. 12, no. 12, (2017), pp. 3431–3438. 

[19] A. Steens et al., “Fatigue Perceived by Multiple Sclerosis Patients 

Is Associated With Muscle Fatigue,” Neurorehabil. Neural Repair, 
vol. 26, no. 1, (2012), pp. 48–57. 

[20] C. J. De Luca and P. Contessa, “Hierarchical control of motor units 

in voluntary contractions,” J. Neurophysiol., vol. 107, no. 1, (2012), 
pp. 178–195. 

[21] J. N. Hodder and P. J. Keir, “Obtaining maximum muscle excita-

tion for normalizing shoulder electromyography in dynamic con-
tractions,” J. Electromyogr. Kinesiol., vol. 23, no. 5, (2013), pp. 

1166–1173. 

[22] Y. Huang and H. Liu, “Performances of surface EMG and Ultra-
sound signals in recognizing finger motion,” in 9th International 

Conference on Human System Interactions, (2016), pp. 117–122. 

[23] B. S. Zheng, M. Murugappan, S. Yaacob, and S. Murugappan, 
“Human emotional stress analysis through time domain electromy-

ogram features,” in IEEE Symposium on Industrial Electronics and 

Applications, (2013), pp. 172–177. 
[24] S. Mazzoleni, E. Battini, G. Stampacchia, and T. Tombini, “Effects 

of robot-assisted locomotor training in patients with gait disorders 

following neurological injury: An integrated EMG and kinematic 
approach,” in IEEE International Conference on Rehabilitation Ro-

botics, (2015), pp. 775–779. 

[25] I. Nam, M. Lee, Y. Kim, J. Shin, Y. S. Lee, and Y. Chung, “The 
effects of foot position on erector spinae and gluteus maximus mus-

cle activation during sit-to-stand in persons with stroke,” in IEEE 

19th International Functional Electrical Stimulation Society Annual 

Conference, (2014), pp. 1–3. 

[26] R. Pandey, N. Srivastava, and S. Fatima, “Extending R Boxplot 

Analysis to Big Data in Education,” in 5th International Conference 
on Communication Systems and Network Technologies, (2015), pp. 

1030–1033. 

[27] K. S. Saladin, Human Anatomy, McGraw-Hill Companies, (2008). 
[28] M. I. Sabri, M. F. Miskon, M. R. Yaacob, A. B. D. S. H. Basri, Y. 

Soo, and W. M. Bukhari, “Mvc Based Normalization To Improve 

The Consistency of EMG Signal,” J. Theor. Appl. Inf. Technol., vol. 
65, no. 2, (2014). 

[29] B. Iglewicz, Boxplot, in Encyclopedia of Environmetrics, John 

Wiley and Sons, (2006). 

 


