
A Context Gathering Framework for
Context-Aware Mobile Solutions

Anusuriya Devaraju
University Technical Malaysia

Melaka
Locked Bag 1200, Hang Tuah Jaya,

Ayer Keroh, Melaka,
Malaysia

+606-2332318

anusuriya@utem.edu.my

Simon Hoh
British Telecommunications Plc

1B-17, Plaza Sentral,
Jalan Stesen Sentral 5, Kuala

Lumpur, Malaysia
+603-20919328

simon.hoh@bt.com

Dr. Michael Hartley
University of Nottingham
Jalan Broga, Semenyih
Selangor Darul Ehsan

Malaysia
+603-89248137

michael.hartley@nottingham.edu.my

ABSTRACT
One of the fundamental design issues in context-aware mobile
services development is the necessary support for adequately
powerful yet efficient querying of the sensory data. This issue
argues for research into the creation of a technology-independent,
high-level software application programming interface (API) that
provides mechanisms for dealing with the heterogeneity of
sensors providing raw context data. In this paper, we review
approaches in existing context-aware platforms especially those
that consider with sensory data acquisition. The review formed
the basis for the design and development of the context gathering
framework which consists of sensor data model, messaging and
communication protocol and software application programming
interface. These components form as one of the enabler to support
the development of context aware mobile applications.

Categories and Subject Descriptors
C.2.4 [COMPUTER-COMMUNICATION NETWORKS]:
Distributed Systems – Client/Server, Distributed Applications

General Terms
Design, Standardization, Languages.

Keywords
Context Awareness, Sensor, Framework, Protocol

1. INTRODUCTION
There is an abundance of information around us that is often taken
for granted. At times, the subconscious mind acts upon these
environment stimuli without the individual even noticing it.
Research in context awareness seeks to enable a new breed of
applications and services which would extend the functionality of
the human’s subconscious, being able to provide or act at the right

time, with the right level of information.
As computing becomes increasingly mobile and pervasive today,
it is necessary that mobile applications and services must ‘aware’
and adapt to highly dynamic environments to enhance end user’s
experience. In order to develop enablers for context aware mobile
applications, one of the initial requirements is a mechanism for
gathering raw context information itself. Here, we propose a
generic context gathering framework that will simplify the
process of acquiring sensor data and delivering them to our
context-aware service platform.
A context-aware computing scenario from [13]:
“Cheryl has invited her boyfriend and his parents for dinner
tonight. The dinner will take place at her house at 8pm and she is
currently sitting in an important meeting with her manager.
Fortunately, Cheryl has her Reminder Buddy, RB, running on her
mobile phone, to take care of notifying her, if she forgets
something. Knowing calendar of Cheryl, RB assumes she has
forgotten the dinner, therefore RB decides to notify Cheryl about
the dinner menu preparation. However, RB realizes, after
verifying with the manager's personal assistant, that Cheryl is
currently having a meeting, and the notification had better be
given after the meeting is over. The meeting is over, and Cheryl
walks to her office. RB informs Cheryl about the dinner tonight.
When she enters car at the parking lot, she asks RB for menu
preparation. RB communicates with Cheryl’s electronic
Household Buddy, HB, which registers any discovered item via
RFIDs that come with each product. HB indicates that there are
not enough ingredients in her refrigerator, thus he suggests a
menu and a related shopping list to RB. The shopping list is not
only based on the contents of the refrigerator, but it also takes
into account the Cheryl’s and the parent’s favorite recipes. Based
on responses from HB, RB checks the availability and price of
products in the supermarkets along the route to Cheryl’s home.
RB selects one or two markets, which offer all the products in
order to avoid several stops, and displays the info to Cheryl.
Related recipes are automatically transferred to HB and HB will
display them on LCD in the kitchen once Cheryl enters the
house.”
The example above refers to a context-aware computing scenario.
This scenario reveals how the ‘contexts’ or characteristics of the
surrounding environment (for example, Cheryl’s ‘home
environment’, ‘office’ and ‘way to work’) that determine and
adapt the behaviors of applications (RB and HB). The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

applications are able to specify the request according to the
interest in a certain part of the available context information. To
be able to use context in above application, of course, there must
be a mechanism to sense the current context data from sensors
such as RFIDs at the products and respective readers, to deliver
them to the interested applications.

1.1 Background
Common factors that lead to the difficulties in context-aware
system design and implementation are the plethora of sensing
technologies with differing data formats. As such, it is difficult to
abstract the data for the application in a standard manner. For
example, mobile devices may acquire location information in the
form of geographical coordinates from outdoor GPS receivers or
indoor positioning systems. But tour guide applications would
make better use of higher-level information such as street or
building names [20].
Addressing above difficulties, we have followed the ‘middleware’
approach to develop a context-aware service platform, named
CASP that can assist the context-aware service providers to build
and deploy services. CASP provides the fundamental required
components as an abstraction layer for the developed context-
aware services. The components provided by our platform are
sixfold: Context Sensing, Context Modelling, Context
Association, Context Storage and Retrieval.
The Context Sensing in CASP relies on sensors to observe aspects
of the context. To make the sensory outputs made available for
the platform, a framework is required to interface with sensors
and to deliver the sensed data to the Context Modeling component
in CASP.
The paper is organized as follows. Section 2 clarifies terminology
used throughout this paper. This is followed by a brief
introduction to context-data acquisition methods when designing
context-aware systems. The relative strengths and weaknesses of
context sensing components in chosen context-aware platforms
appear in Section 4. In Section 5, we present requirements and
design of the context gathering framework. Next, we open a
discussion highlights some likely future directions of the
framework development. Finally, conclusions are presented.

2. TERMINOLOGY
Context awareness is based on a group of interrelated areas of
research: mobile computing, ubiquitous and pervasive computing,
serviceware networking, programmable networks, autonomic
communications and ambient computing. In these research areas,
context has been used to enhance human-computer and computer-
computer interaction, thereby providing seamless computing and
networking anytime, anywhere [18].

2.1 What is Context?
With the many implementations of applications and services that
make use of context information, context has been interpreted
very differently. Here, we investigate how different researchers
define context, starting with a generalized definition from
dictionary references.
Dictionary references define ‘context’ as
a. WordNet : Lexical Database for the English Language [24]

i. ‘discourse that surrounds a language unit and helps to
determine its interpretation’

ii. ‘the set of facts or circumstances that surround a
situation or event’

b. The Free On-line Dictionary of Computing: ‘That which
surrounds, and gives meaning to, something else’.

Context Synonyms are [23] Circumstance, situation, phase,
position, posture, attitude, place, point; terms; regime; footing,
standing, status, occasion, surroundings, environment, location,
dependence.
Dey [5] defined context as ‘Any information that can be used to
characterize the situation of an entity. An entity is a person, place
or object that is considered relevant to the interaction between a
user and an application, including the user and application
themselves’.
Panayiotou [16] defined context as ‘A set of premises expressed in
some language, gathered intentionally or unintentionally in a
relevant, coherent manner and which can itself constitute and
adequate set of inferences (meaningful) or lead to some
meaningful results (inferences)’.
Rakotonirainy et al [17] stated that ‘Context (from an entity’s
viewpoint) is information that can be used to characterize the
situation of an entity and can be obtained by the entity, where an
entity can be a person, place, physical or computational object’.
Schmidt et al [22] defined context as ‘Knowledge about the user’s
and IT device’s state, including surroundings, situation and to a
less extent, location’.
Chen et al [4] suggested context as ‘Set of environmental states
and settings that either determines and application’s behavior or
in which an application event occurs and is interesting to the
user’.
Moran et al [15] referred context as ‘Physical and social situation
in which computational devices are embedded’.
From the various refinements in the definition of the term context
awareness, Dey’s definition have become widely accepted and
adopted to provide a consistent understanding of the subject
studied by researchers [10].

2.2 What is Sensor?
According to [21], one can broadly define sensor as device,
hardware, or software or their combination, that can be used to
acquire context information. This definition of sensor is broad;
devices not normally thought of as sensors might be also used to
return context information and, therefore, are sensors under this
definition, for example, the computer clock accessed using an
operating system call or a video camera. In our work, the level of
abstraction of context information is a key idea related to our
definition of sensor. For instance, a GPS sensor on mobile device
can provide user’s location readings, but an application querying
a ‘positioning service’ to return current location of that user can
also be regarded as sensor from the perspective of an application.
Therefore, in this paper we refer ‘sensor’ as any resource that
outputs raw context data.
In our opinion, there is distinction between ‘sensor data’ and
‘context data’. Generally, sensor data has several properties which
affect how it is interpreted as higher-level context data. In our
work, we use the term ‘raw context data’ or ‘sensor data’ to

represents raw data sensed from the sensors. When the subsequent
pre-processing and reasoning applied to the sensor data by our
platform, the resulting information regarded as ‘context data’ or
‘context information.’

3. CONTEXT ACQUISITION METHODS
The method of context-data acquisition is very important when
designing context-aware systems because it predefines the
architectural style of the system at least to some extent [2]. Chen
[3] defines the following are three categories of context
acquisition methods:

i. Direct access to hardware sensors. The sensors are
integrated into the devices. The client software gathers the
context information directly from these sensors rather than
by a specialized infrastructure.
In this approach, typically drivers for the sensors are
hardwired into the applications. The high-level applications
can have great controls over the operations of the low-level
sensors, thus can have better knowledge about how different
data is collected and computed. However, this method is not
suited for distributed systems due to its direct access nature
which lacks a component capable of managing multiple
concurrent sensor accesses [2]. Further, typically, only small
amount of context can be determined and supplied in a
resource constrained device.

ii. Facilitated by a middle-ware infrastructure
The idea is that instead of letting the applications to manage
the low-level sensing details, middleware infrastructures are
provided to facilitate sensing. Context acquisition
middleware typically built into the hosting devices or
platform on which the context-aware applications operate.
The advantage of this method is context-aware applications’
implementations can focus on how to use context while
middleware can focus on how to acquire the context. This
separation means that both components can be developed
and replaced independently of each other. Compared to
direct sensor access this technique eases extensibility since
the client code has not be modified anymore and it simplifies
the reusability of hardware dependent sensing code due to
the strict encapsulation [2]. The drawback of middleware
approach is it imposes additional computation burden on the
hosting devices because it consumes certain amount of
computation resources to maintain a generic programming
interface between the high-level applications and the low-
level sensors. This might lead to resource contention
problem in resource-less devices, for instance, mobile
phones and embedded devices.

iii. Acquire context from a context server
This approach shifts the context acquisition procedures into
the implementation of a server entity that runs on a resource-
rich device. The server entity provides contextual
information to different context-aware applications in a
distributed environment.
This approach overcomes the drawbacks noted with hosting
device of a context-aware application that has limited
computing resource. Besides the reuse of sensors, the usage
of a context server has the advantage of relieving clients of
resource intensive operations [2]. As the server runs on a

resource-rich device, it can preserve the history of more
contextual data sensed. It can detect and resolve inconsistent
information that may have been acquired from unreliable
sensors. However, one has to consider about appropriate
protocols, network performance, and quality of service
parameters and so on when designing a context-aware
system based on client-server architecture [2].

4. RELATED WORKS
A comprehensive context aware system has the ability to illicit
information from the environment supports information
interpretation that is relevant to any application/service and the
situation at any point in time, and be able to formulate a reaction
to the said situation. Figure 1 [21] categorized the components of
a Context Aware Pervasive system as sensing, thinking and
acting.

Figure 1. Abstract layered architecture for context aware

systems.

Sensing forms the initial part of the equation where it looks at
how raw environmental information could be acquired,
represented and interpreted in a cohesive manner. A significant
body of related research has already been carried out in the area
of developing appropriate high-level programming abstractions
and toolkits to simplify the process of sensory data acquisition.
The following section discusses the strengths and weaknesses of
existing implementation.

i. Context Toolkit
Dey and Abowd [6] have defined Context Toolkits in 1999 to
create a framework for the Context Aware application
development. In the architecture, the context toolkits have three
primary components which are widgets, aggregators and
interpreters. These three components provide the abstraction to
the context aware application on contextual information. The
widgets are the source of contextual information. It extracts
contextual information and translates raw data from sensors that
are monitoring the environment. The interpreters will then further
derive the information to more meaningful higher level contextual
information. Lastly the aggregators help to aggregate the
contextual information to minimize the complexity of context
aware applications.
The major drawback of the Context Toolkit is, therefore, its
context model, a set of attribute-value tuples. Such attributes do
not have a meaning, thus no contextual data modeling supported
to enable context knowledge sharing and context reasoning [2].
Besides, using non-ontology based models requires a lot of
programming effort and tightly couples the context model to the

rest of the system. The tight coupled widget approach is not
robust to component failures. In addition, there is no quantifiable
aspect for quality of context within the Context Toolkit.

ii. Technology for Enabling Awareness (TEA)
The TEA project introduces a three layer approach to abstracting
and representing context information. The lowest layer is the
sensors itself, captures raw data from a set of heterogeneous
sensors. The proceeding layer represents the functionalities of
each sensor in terms of functional cues. The third layer, context
layer, aggregates the cues from various sensors to suggest the
context.

Figure 2. TEA architecture

Cx = ∑ Cn,k [where n = sensor number and k = cue of sensor n]
Here, context is said to be made up of one or more cues from the
various sensors that are capturing the environment. This enables a
context action to take place when the correct cues are met,
demonstrating the context aware behavior in applications.
Nevertheless, the TEA project lacks formality in modeling of the
context information [10]. The proposed context model couples the
representation of context with its direct use, thus fail to clearly
separate concerns making it less extensible. The architecture does
not prescribe the specific methods for calculating context from
cues; rule-based algorithms, statistical methods and neural
networks may for instance be used. Conceptually, context is
calculated from all available cues [8].

iii. A Service-Oriented Context-Aware Middleware
(SOCAM)

Service-Oriented Context-Aware Middleware (SOCAM) is a
middleware architecture that targets to enable rapid prototyping of
context aware services [9]. SOCAM models the contextual
information based on the ontology using OWL to resolve the
issues of semantic representation, context reasoning, context
classification and dependency. SOCAM define ontology in OWL
to enable it to describe context semantically which is independent
from any programming language and enabling computer system
to understand the semantic value. This combination of technology
enables the formal analysis on domain knowledge that could be
done automatically by the computer system. A set of independent
services is provided within SOCAM to facilitate the context
aware applications and enabling contextual information exchange
with other context providers. These services provide the
fundamental functionalities such as context acquisition, context
discovery, context interpretation and context dissemination.
iv. Context-awareness sub-structure (CASS)
The CASS [7] is a server-based middleware to facilitate context-
aware applications on mobile computers connecting over wireless
networks. In CASS, the sensory component is implemented via

sensor nodes, essentially computers with sensors attached to
collect sensory data. One or more sensors may be attached locally
at a sensor node. Because the middleware is server-based, it does
not suffer from the processor and memory constraints that would
apply on a mobile computer. This allows use of a database and
artificial intelligence components as required, as well as the
facility to store large amounts of data. However there is a reliance
on communications between the mobile platform and the server
hosting the middleware. Because of this reliance, CASS supports
applications in the use of local caching of information to reduce
the effect of intermittent connections.

4.1 Summary of Related Works
Currently, there is no standard description language or ontology
for sensing contextual information from various sources to enable
reuse across various middleware systems and frameworks.
Therefore, proprietary solutions as used by the different
frameworks have emerged as summarized in Table 2 [2].

Table 1. Context Sensing Summary

Project Architectur
e Sensing Context

Model

Context
Toolkit

Widget
based

Context
widgets

Attribute-
value tuples

CASS Centralized
middleware

Sensor nodes Relational
data model

Context
Broker
Architecture
(CoBra)

Agent based Context
acquisition
module

OWL
Ontology,
SOUPA

Cooperating
Real-time
sentient
objects
(CORTEX)

Sentient
object model

Context
component
framework

Relational
data model

Gaia Model-View-
Controller
(MVC)
(extended)

Context
providers

4-ary
predicates
(DAML +
OIL)

Hydrogen Three
layered
architecture

Adapters for
various
context types

Object-
oriented

SOCAM Distributed
architecture

Context
providers

OWL
Ontology

Me-Centric
Domain Server

Domain
Server
Architecture

relational
database (for
the internal
knowledge
base)

Ontology
(RDF)

Context
Mediated
Framework
(CMF)

Centralized
blackboard
architecture

Resource
servers

Ontology
based

STU21
(associates
with the
CoBrA context

Distributed
agent-based

Sensor Agent OWL &
RDF

broker model,
expanding that
model using
concepts from
JCAF)

Java Context-
Awareness
Framework
(JCAF)

Service-
oriented,
distributed,
event-based

Context
Monitor

Object-
oriented
models in
Java

5. CONTEXT GATHERING FRAMEWORK
After examining previous work on context gathering frameworks,
we propose the following as essential requirements for our
framework.

• Programming Interface: Uniform interface to provide easy
access to sensor data

• Active/Passive Sensor mode: Provide mechanism for sensors
to both report data automatically or when queried

• Simplicity: Simplification of the implementation of sensors
via API

• Multi-transport Support: XML-based messaging to allow use
of different transport technologies

• Separation of Concerns: Abstraction of sensor, sensor data
acquisition and sensor data dissemination requires to be
'loosely-coupled' to promote extensibility of the framework

• Sensor Data Model: Extensible XML-based syntax for
Sensor Messaging protocol

5.1 Architecture
The context gathering framework has been designed in a way to
facilitate the operational requirements of the other components in
the platform. For instance, the data modelling requirements from
the ontology component would influence how the data structure is
designed to encapsulate the sensory data.
The following Figure 3 shows the overall design principles of the
developed context gathering framework. The sensor abstraction
written by the developers supports the collection of low-level
sensing from the physical sensors. They typically run on the
machines where the sensors are connected to. The raw data will
be reported to the CASP platform via the context gathering
framework. The framework and sensor abstraction part is ‘loosely
coupled’ to generalize the framework to other implementations.
The framework consists of two components- Client-side Sensory
API and the Server-side Sensory API, which are connected over
TCP. To communicate with the platform, the client needs to
specify the IP address or hostname of the platform and the port
number of the platform that is used for sensory interface
communications. This Client-side Sensory API translates the raw
data supplied by the sensor abstraction into platform-
understandable format and then send the request to the platform,
while the Server Sensor API on the platform receives the
formatted request and unmarshall them. The unmarshalling output
will be used by the Ontology Manager to create ontologies
expressed in the form of OWL descriptions. To process many
simultaneous incoming connection efficiently, the Server Sensory
API supports a non-blocking I/O. The requests and replies
between the two components of the framework are encoded in

Extensible Markup Language (XML) and each component runs an
XML parser. Both components are written in Java.

Figure 3. Overview of Context Gathering Framework

5.2 Sensor Data Representation
The following diagram describes the sensor data model. The
model comprises sensor profile, entities and properties. According
to the model given in Figure 4, each sensor data object has one
basic profile which is used to identify the sensor and the mode of
operation.

Figure 4. Sensor Data Model

The sensed data itself is represented using entities and properties.
Entities are simply context categories for example Subject,
Location, Activity, Time, and so on. An entity includes timestamp
attribute to define the date and time values the raw data captured.
This piece of information can be used to handle context history
and sensing conflicts. Further, the quality attribute can be used to
rate the reliability of raw context data. Each entity contains a
collection of properties, and property describes some
characteristics of an entity. For example, entity ‘Location’ can be
described by using properties such as LatitudeDirection,
LatitudeDegree, LongitudeDegree, Address, IP address and so on.
Besides, a sensor data object can be modeled after a group of
existing entities, for instance, ‘location of a person’ can be
represented using the ‘Location’ and ‘Subject’ entities.

5.3 Sensor Messaging Protocol
The framework supports a uniform messaging protocol based on
XML to provide an easy access to sensor data. The expressive
power and flexibility of XML make it a good for representation
language for heterogeneous context data. Further, an information
model that describes interrelationships between different types of
context data could provide an easy mechanism for accessing and
reasoning about context [14]. Apart from that, the sensory data
representation can be easily extended to accommodate new and
unanticipated elements without any reprogramming in the

Sensory API module. The following are types of messages
supported in the framework developed.
i. REGISTER : Sensor Subscription
ii. OK : Positive/successful reply
iii. NOT_OK : Negative/unsuccessful reply
iv. ACQUIRE : Raw context data acquisition
v. REPORT : Raw context data reporting
vi. ONLINE : Ready/Active state
vii. OFFILINE : Idle state
viii. UPDATE_LOC: Network location change notification
ix. GET_STATUS : Support for querying the sensor state
x. DEREGISTER : Remove sensor subscription
xi. RESET : Restore the sensor configurations
xii. ABORT : Abort the given operation
xiii. ACK : Generic Acknowledge

5.4 Sensing Context
In our work, we categorised the sensor into two types, one is
passive and another one is active. ‘Passive’ sensor means sensor
data that need to be queried while ‘Active’ sensor means sensor
data that can be queried or configured to report periodically.
A normal sequence of operation of an ‘active’ sensor begins with
the sensor subscription with the platform via a REGISTER
message. The registration request consists of sensor profile and
the list of sensor data properties the sensor can provide. Upon
receiving the request, the platform determines the network
location and the port number the client component receives
communications. Then it stores acquired communication
parameters with registration parameters in the sensory database.
The sensor properties information will be used as parameters to
handle context query in future, whereas the ‘sensorid’ and
communication parameters will used to ensure platform delivers
subsequent message to the correct client component. An
‘ONLINE’ message is sent to platform when the sensor is ‘active’
or ready to report sensed data. This is followed by the
‘ACQUIRE’ command from the platform to request that sensor
queries for the last acquired value or newly sensed data. The data
will be reported periodically according to the time interval
specified. This operation is interrupted by ‘OFFLINE’ message
which indicates the sensor’s idle state. The following sequence
diagram (Figure 5) summarizes the normal sequence of operation
of an ‘active’ sensor.

Figure 5. Typical sequence of operation of an ‘active’ sensor

This following Figure 6 is a typical example of raw context data
describing the user’s identity and his location, retrieved from a
built-in GPS sensor on a mobile phone. The Client Sensor API
includes ‘sensorid’ with the sensed parameters to form a
‘REPORT’ xml and then delivered it to the platform. The
acquisition time of each context type is expressed as
‘yyyyMMddhhmmss’. The quality attribute has a value ranging
from ‘0.0’ to ‘1.0’, can be used to rate the reliability of raw data.
We suggested that data captured from sensors can be rated as
reliable while, the data retrieved from interpreters should be rated
as less reliable.

Figure 6. REPORT xml

5.5 Error Handling
The framework also supports messaging protocol to report errors.
Further error details can be indicated in <info> element as in
Figure 7.

Figure 7. Error message

The error codes supported by the framework are divided in ranges
as below. Few examples of possible errors for each range are also
listed.
i. 1xx (Message Validation Error)

FORMAT ERROR, DATA MISSING, PROTOCOL
ELEMENT NOT SUPPORTED

ii. 2xx Client Error (Bad or illegal request and the request
cannot be fulfilled)
UNKNOWN SUBSCRIBER, ILLEGAL OPERATION,
ACQUISITION FAILURE

iii. 3xx Server Error (The server failed to fulfill an apparently
valid request)
SYSTEM FAILURE, NOT IMPLEMENTED, SERVICE
UNAVAILABLE

6. FUTURE WORKS
Currently, the work on context gathering framework delivered in
this paper is in its final development stage. Although it has proved
useful in its current state, the framework still has room for
improvements. The communication mechanism will be extended
to support other kind of transport protocol, for example XML
over HTTP. An accurate processing of context data requires their
quality to be taken into explicit consideration. Since the relevant
quality characteristics may be application-specific, context data
quality has to be represented in a generic and extensible manner

[10]. The ‘quality’ element for each context entity will be refined
to accommodate other quality attributes such as the accuracy, the
precision, the correctness, and the level of trust. We plan to
enhance the current sensory data specification by introducing a
message extension mechanism allowing the addition of new
elements. This mechanism works by specifying an element called
‘<extension>’, encapsulating the actual parameters being
added into sensory data structure. The server component should
ignore any extension that is not recognized and process the
message as if the extension is not available.

7. CONCLUSION
In this study, we have deliver a context gathering framework that
introduces the sensor data formats, set of interfaces and
messaging protocols that allows context gathering from sensor
resources. The framework collects raw context data from the
physical sensors via sensor abstraction programs written by the
sensor providers, translates it to CASP platform-understandable
format, and then delivers it to the platform for context modeling
and reasoning.
The framework has looked at how to provide a software
application programming interface that assist with reporting data
from the sensor implementation programs without requiring the
application developers to deal with much programming tasks and
communication mechanism with the platform. By freeing
application writers from the specifics of sensing technologies, the
framework encourages the creation new context-aware
applications by helping to amortize development efforts.

8. REFERENCES
[1] Abhishek, S. and Conway, M., Survey of Context aware

Frameworks – Analysis and Criticism. Online Article,
Information Technology Services, University of North
Carolina of Chapel Hill, 2006.
http://its.unc.edu/teap/tap/core/cafreview.html

[2] Baldauf M., Dustdar S., Rosenberg F., A Survey on Context-
Aware Systems. International Journal of Ad Hoc and
Ubiquitous Computing, Inderscience Publishers, January
2006.

[3] Chen, H., An Intelligent Broker Architecture for Pervasive
Context-Aware Systems, PhD thesis, University of
Maryland, Baltimore County, 2004.

[4] Chen, G. and Kotz, D., A Survey of Context-Aware Mobile
Computing Research, Dartmouth College, Department of
Computer Science TR2000-381, 2000.

[5] Dey, A. K., Providing Architectural Support for Building
Context-Aware Applications, PhD. Thesis, Georgia Institute
of Technology, 2000.

[6] Dey, A.K. and Abowd, G.D., The Context Toolkit - Aiding
the Development of Context-Aware Applications.
Proceedings of Human Factors in Computing Systems (CHI
99), 434-441.

[7] Fahy, P. and Clarke, S., CASS – a middleware for mobile
context-aware applications. In Workshop on Context
Awareness, MobiSys, 2004.

[8] Gellersen, H.W., Schmidt, A., Beigl, M., Multi-Sensor
Context-Awareness in Mobile Devices and Smart Artifacts.
Mobile Networks and Applications (MONET), 2002, 341 –
351.

[9] Gu, T., Pung, H. K., Zhang, D. Q., A Service-Oriented
Middleware for Building Context-Aware Services. Elsevier
Journal of Network and Computer Applications (JNCA),
Vol. 28, Issue 1, 2005, 1-18.

[10] Haseloff, S., Context Awareness in Information Logistics,
Ph.D. Thesis, TU Berlin, Germany, 2005.

[11] Howe, D., The Free On-line Dictionary of Computing,
Department of Computing, Imperial College London,
http://foldoc.doc.ic.ac.uk/foldoc/

[12] Jason I. Hong, The Context Fabric: An Infrastructure for
Context-Aware Computing. Conference on Human Factors
in Computing Systems, 2002, 554 – 555.

[13] Kellerer, W., Tarlano, A., Context Aware Wireless
Ubiquitous Computing. In Proceeding of 10th Wireless
World Research Forum (WWRF), New York, USA, Oct. 27-
28, 2003.

[14] Maria, E., Guerney, H., and Hui, L., Joint Special Issues on
Context-Aware Computing, IEEE Pervasive Computing and
IEEE Wireless Communications, 2002.

[15] Moran, T. P. and Dourish, P., Special Issue on Context
Aware Computing, Human Computer Interaction, vol. 16,
2001.

[16] Panayiotou, C., Context Awareness, Proceedings of the
Conference on Human Factors in Computing Systems, 2000.

[17] Rakotonirainy, A., Loke, S. W. and Fitzpatrick, G., Context-
Awareness for the Mobile Environment, Proceedings of the
Conference on Human Factors in Computing Systems, 2000.

[18] Raz, d., Juhola, A.T., Serrat-Fernandez, J., Fast and Efficient
Context-Aware Services, John Wiley & Sons Canada, Ltd.; 1
edition (May 17 2006), ISBN-10: 047001668X.

[19] Salber, D., Abowd, G. The Design and Use of a Generic
Context Server. Technical Report GIT-GVU-98-32, Georgia
Institute of Technology, 1998.

[20] Salber, D., Dey, A.K., and Abowd, G.D. The Context
Toolkit: Aiding the development of context-enabled
applications. Proceedings of CHI'99, 1999, 434-441.

[21] Seng Loke, Context-Aware Pervasive Systems: Architectures
for a New Breed of Applications. AUERBACH, December
7, 2006, ISBN-10: 0849372550.

[22] Schmidt, A., Aidoo, K. A., Takaluomo, A., Tuomela, U.,
Laerhoven, K. V., and Velde, W. V. d. , Advanced
Interaction in Context, Proceedings of 1st International
Symposium on Handhelds and Ubiquitous Computing, 89-
101, 1999.

[23] Thesaurus.com, Lexico Publishing Group, LLC.
http://www.thesaurus.com

[24] WordNet : a lexical database for the English language,
Cognitive Science Laboratory, Princeton University
http://wordnet.princeton.edu/perl/webwn

