PERFORMANCE COMPARISON OF SELF-TUNING PID CONTROLLER FOR CONTROLLING THE SPEED OF A DC MOTOR

Karam Khairullah Mohammed

Master of Electrical Engineering (Industrial Power)

2018
PERFORMANCE COMPARISON OF SELF-TUNING PID CONTROLLER FOR CONTROLLING THE SPEED OF A DC MOTOR

KARAM KHAIRULLAH MOHAMMED

A dissertation submitted
In partial fulfillment of the requirements for the degree of Master of Electrical Engineering (Industrial Power)

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018
DECLARATION

I declare that this dissertation entitled "Performance Comparison of Self Tuning PID Controller for Controlling the Speed of a DC Motor" is the result of my own research except as cited in the references. The dissertation has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature :
Name : Karam Khairullah Mohammed
Date : 7/9/2018
APPROVAL

I hereby declare that I have read this dissertation, and, in my opinion, this dissertation is sufficient in terms of scope and quality for the award of Master of Electrical Engineering (Industrial Power).

Signature: ...

Supervisor Name: DR. Nurul Ain Binti Mohd Said

Date: 7/9/2018
DEDICATION

To my father
For earning an honest living for us and for supporting and encouraging me to believe
In myself

To my mother
A strong and gentle soul who taught me to trust in Allah, believe in hard work and that
So much could be done with little

To my brothers and sisters
I am really grateful to my family
The reason of what I become today
Thanks for your great support and continuous care.
ABSTRACT

DC motors are widely used in industrial applications, such as electric trains, robot manipulators and home appliances where speed and position control of the motor are required. The DC motors have high primary torque that makes it suitable in many applications. Moreover, the DC motors have the advantage of implementing in a wide range of operating speed, such as above or below the rated speed. In addition, the control system of the DC motor is simple, flexible and low cost when compared to other types of motors. In industrial applications the speed control system that able to give a fast response with a minimum overshoot, lower steady state error, shorter settling time and faster rising time are essential. The speed control of the DC motor is fed through a buck-converter. The buck converter will regulate the desired output voltage level and maintain the speed of the DC motor constant. Any change in torque does not affect the speed of the motor. Therefore, in this thesis, the DC motor speed control by using three different types of controller are being analyzed and developed. The controller gains are obtained based on conventional PID, self-tuning fuzzy logic and self-tuning genetic algorithm (GA) controller. The performance evaluation of the system is developed based on the MATLAB/Simulink. Results are investigated considering the system running with no load and half load at 500 and 1000 rpm. The results demonstrate that the proposed GA tuned PID provides improved performance as compared to PID controller and fuzzy logic tuned PID controller in terms of time specification such as 0% overshoot, shorter settling time, faster rise time and zero steady state error.
ABSTRAK

ACKNOWLEDGMENTS

My utmost thanks and gratitude must first be offered to Almighty Allah for all his blessings, and in granting me good health throughout the duration of this research.

Profound appreciation and thanks are given to my Supervisor, DR. NURUL AIN BINTI MOHD SAID from the Faculty of Electrical Engineering Universiti Teknikal Malaysia Melaka (UTeM), for her supervision, guidance, constructive suggestion and comments during the entire research period until its completion. Her advice and support throughout the program have been invaluable. Without her tireless help, leadership, and confidence in my ability, the completion of this dissertation would not have been possible. I also offer my gratitude to her for opening my mind to a new world of knowledge, opportunities and experience, giving me a better understanding throughout.

I would also like to express my greatest gratitude to Professor Ir. Dr. Marizan Bin Sulaiman from the Faculty of Electrical Engineering Universiti Teknikal Malaysia Melaka (UTeM), co-supervisor of this project.

Finally, I must acknowledge my loyal and faithful friends Ibrahim Ismail, Mohammed Rasheed and Zeina Raad. For all their assistance with every stage of the research, on both a personal and academic level.

My sincere and grateful thanks to all these gentlemen!
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>i</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 General Overview
1.2 Problem Statements
1.3 Thesis Objectives
1.4 Thesis Scopes
1.5 Layout

2 LITERATURE REVIEW

2.1 Introduction
2.2 Critical Literature Review
2.3 Brushless DC (BLDC) motors controller
2.4 DC motor position controllers
2.5 DC motor speed control fed by a buck converter
2.6 Conclusion

3 MATHEMATICAL MODELLING

3.1 Introduction
3.2 System components
3.2.1 Mathematical Model for Direct Current Motor (DC Motor)
3.2.2 DC-DC converters
3.2.3 Trigger Circuit
3.3 PID controller
3.3.1 Ziegler Nichols method for tuning PID controller
3.4 Fuzzy Logic Controller

© Universiti Teknikal Malaysia Melaka
3.4.1 Fuzzy Input
3.4.2 Fuzzification
3.4.3 Knowledge Based / Rule Based
3.4.4 Fuzzy Logical
3.4.5 Defuzzification
3.4.6 Fuzzy Output
3.4.7 Linguistic Descriptions in Fuzzy Logic
3.4.8 Tuning PID by using fuzzy logic

3.5 Genetic Algorithm
3.5.1 Chromosomal representation
3.5.2 Population
3.5.3 Simple GA
3.5.4 Steady state GA
3.5.5 Struggle GA
3.5.6 Fitness function
3.5.7 Basic steps
3.5.8 Parameters and operators
3.5.9 Implementation of GA to Choose PID gains

3.6 Conclusion

4 METHODOLOGY
4.1 Introduction
4.2 Research Methodology
4.3 DC Motor Modelling
4.4 Design of the Buck Converter Circuit
4.5 Open loop system
4.6 Close loop system
4.6.1 PID Controller Design
4.6.2 Fuzzy Logic Controller Self Tuning PID Modelling System
4.6.3 Genetic Algorithm Based Tuning of the PID Controller

5 SIMULATION RESULTS AND DISCUSSION
5.1 Introduction
5.2 Simulation Results for Uncontrolled DC Motor (open loop)
5.3 Simulation Results for controlled DC Motor (close loop system)
5.3.1 Simulation Results when the system running at 1000 rpm with no load torque
5.3.2 Simulation results when the system is subjected to increased load values starting from no load to half load torque at 1000 rpm
5.3.3 Simulation results when the system speed is increased from 500 to 1000 rpm with half load torque 81
5.3.3.1 Advantages of fuzzy self-tuning PID controller 83
5.3.3.2 Shortcomings of fuzzy self-tuning PID controller 84
5.3.4 Simulation Results of PID Controller with GA 84
5.3.5 Simulation results when the system is subjected to an increased load ranging from no load to half load torque at 1000 rpm 87
5.3.6 Simulation results when the system exposed to speed changes from 500 to 1000 rpm with half load torque 88
5.3.7 Simulation results when the system is subjected to speed changes from 500 to 1000 rpm with half load torque 89
5.3.7.1 Advantages of GA-PID controller 90
5.3.7.2 Shortcomings of GA-PID controller 90
5.4 Results Comparison 91
5.5 Conclusion 92

6 CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH 93
6.1 Introduction 93
6.2 Conclusion of the Research 93
6.3 Contributions of the Research 94
6.4 Future Studies 94

REFERENCES 96
APPENDICES 105
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Related research works on DC motor controller techniques</td>
<td>12</td>
</tr>
<tr>
<td>3.1</td>
<td>Main effects of the three PID elements values</td>
<td>28</td>
</tr>
<tr>
<td>3.2</td>
<td>Ziegler–Nichols Tuning Rule Based on a unit-step response</td>
<td>31</td>
</tr>
<tr>
<td>4.1</td>
<td>Linguistic values of the FLC entries</td>
<td>60</td>
</tr>
<tr>
<td>4.2</td>
<td>Linguistic values of the FLC outputs</td>
<td>60</td>
</tr>
<tr>
<td>4.3</td>
<td>Rule base parameters for K_P</td>
<td>63</td>
</tr>
<tr>
<td>4.4</td>
<td>Rule base parameters for K_I</td>
<td>64</td>
</tr>
<tr>
<td>4.5</td>
<td>Rule base parameters for K_D</td>
<td>64</td>
</tr>
<tr>
<td>4.6</td>
<td>GA Settings for PID controller optimization</td>
<td>72</td>
</tr>
<tr>
<td>5.1</td>
<td>Open loop test for DC motor block diagram</td>
<td>76</td>
</tr>
<tr>
<td>5.2</td>
<td>Comparison of results</td>
<td>91</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Equivalent circuit of the DC motor</td>
<td>16</td>
</tr>
<tr>
<td>3.2</td>
<td>Buck Converter Circuit</td>
<td>18</td>
</tr>
<tr>
<td>3.3</td>
<td>(a) Equivalent circuit of the buck converter when the switch is OFF</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>(b) Equivalent circuit of the buck converter when the switch is ON</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Buck converter for voltage and current</td>
<td>23</td>
</tr>
<tr>
<td>3.5</td>
<td>Demonstrates the method of generating trigger pulses</td>
<td>24</td>
</tr>
<tr>
<td>3.6</td>
<td>(a) The process of comparing the triangle wave with the DC level</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>(b) The resulting wave from comparison process</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>Block diagram of the PID controller</td>
<td>26</td>
</tr>
<tr>
<td>3.8</td>
<td>PID control of a plant</td>
<td>29</td>
</tr>
<tr>
<td>3.9</td>
<td>Unit-step response of a plant</td>
<td>30</td>
</tr>
<tr>
<td>3.10</td>
<td>S-shaped response curve</td>
<td>30</td>
</tr>
<tr>
<td>3.11</td>
<td>Structure of FLC</td>
<td>32</td>
</tr>
<tr>
<td>3.12</td>
<td>Demonstrates intelligent tuning of the PID controller by using FLC</td>
<td>36</td>
</tr>
<tr>
<td>3.13</td>
<td>Flow chart of GA functions and process</td>
<td>38</td>
</tr>
<tr>
<td>3.14</td>
<td>GA loop</td>
<td>41</td>
</tr>
<tr>
<td>3.15</td>
<td>Basic steps of a GA</td>
<td>45</td>
</tr>
<tr>
<td>3.16</td>
<td>Crossover</td>
<td>48</td>
</tr>
</tbody>
</table>
3.17 Mutation
3.18 Flow chart of GA based tuning of PID controller parameters
4.1 Flow chart of the work flow for the whole thesis
4.2 Open loop system of the motor speed control system
4.3 PID controller modelling system
4.4 MATLAB/ Fuzzy logic toolbox
4.5 (a) Membership functions of error
(b) Membership function of to the change in error
4.6 Membership functions of the proportional, integrative and differential gains
4.7 Rule editor
4.8 FLC tuning PID
4.9 Error area IAE
4.10 Flow chart for GA tuning PID
4.11 GA tuning PID
5.1 The response of a DC motor when is exposed to half load at 5 sec
5.2 Simulation results with no load torque at 1000 rpm the result showing
(a) PID controller (b) FLC
5.3 Simulation results with half load torque at 1000 rpm for
(a) PID controller (b) FLC
5.4 Simulation results when the speed changes from 500 to 1000 rpm with half load for (a) PID controller (b) FLC
5.5 (a) PID parameters value at no-load (b) PID parameters value at half load
5.6 Control signal of the DC motor with PID tuning by using GA
at reference speed at 1000 rpm at no load
5.7 Control signal of the DC motor with PID tuning by using GA at reference speed 1000rpm when is exposed to half load at 5 sec.

5.8 Control signal of DC motor with PID tuning by using GA when the speed is increased at time 5 sec from 500 to 1000 rpm at half load

5.9 Comparative responses at the half load
<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 1</td>
<td>SYSTEM MODEL PARAMETERS</td>
<td>105</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

DC
Direct current

V_b
Armature voltage

R_a
Armature resistance

L_a
Armature inductance

K_b
Damping friction of the mechanical system

K_a
Back electromotive force constant

J
Moment of inertia of the rotor

T
Torque of motor

w
Angular velocity

$e.m.f$
Electro Motive Force

PID
Proportional Integral Derivative

K_P
Proportional gain

K_I
Integral gain

K_D
Derivative gain

FLC
Fuzzy Logic Controller

STFLC
Fuzzy logic Self-Tuning of PID Controller

MF
Membership Function
LIST OF ABBREVIATIONS

GA Genetic Algorithm
NL Negative Large
NS Negative Small
ZE Zero
PS Positive Small
PL Positive Large
PVS Positive Very Small
PMS Positive Medium Small
PM Positive Medium
PML Proportional Integral Derivative
PVL Positive Very Large
PWM Pulse With Modulation
CHAPTER 1

INTRODUCTION

1.1 General Overview

Electric motors such as DC motors is used in a wide variety of applications, one of it is as a source of mechanical motor energy for industrial wheel and productivity. Not only that the DC motors, can be used in a wide range of speed, either above or below the rated speed. Moreover, the DC motor has high primary torque that makes it suitable in many applications (Rashid, 2004). The used of the DC motors can be found in Cement kilns, Robots, cars and all applications that needs variable speed with high installation accuracy (Chan, 1987). Hence, the need to build a staid control system for the DC motor speed control is necessary.

In variable speed applications, the close loop DC motor is practically in used. The control system works on a comparison between the reference speed and the instantaneous speed. The armature voltage is generated through a buck converter circuit to control the motor speed. In this thesis three types of control were studied to control the speed of DC motor.

1. Proportional Integral Differential controller (PID).

The PID controller is characterized by its durability and simple installation. Not only that, the PID controller can enhanced the transient and steady state of the control system by reducing the error to zero \((e_o=0) \). This PID controller normally found used in the industrial applications is largely due to its high efficiency. However, if the PID
controller exposed to external disturbance the system will not function well (Johnson & Moradi, 2006).

2. Fuzzy logic Self-Tuning of PID Controller (STFLC).

The implementation of fuzzy logic in control application was firstly utilized by Assilian and Mamdani (Gil, et al. 2015). The components of Fuzzy Logic Controller (FLC) includes linguistic variables, rule sets and membership function. These three components can determine the control task to be accomplished. The FLC is built based on the fuzzy system which can be considered as approximately reasoning-based control method. The FLC does not need exact analytic modelling and is very close to human thoughts compared to the conventional logic control. The FLC can be represented as the implementation of human thinking-based system. Meaning that the FLC parameters such as membership functions, rules or scaling factors can be adjusted. The parameters adjusting process is faster in the real time in contrast of other methods, because the value of the elements gain is constant (Sharma & Palwalia, 2017).

The GA can be defined as searching method that begins without any information about the proper solution and fully relies on the reactions obtained from its surrounding area and development operators (i.e. regeneration, crossover and mutation) to reach the optimum solution. The method averts minimum domestic and reaching to the closest optimum solutions, by commencing at various distinguished points. The GA has the capability of finding better performance and efficiency locations in complicated fields with
no knowledge of the barriers related with higher dimensions. In this thesis, GA technique is utilized for the mentioned two aims:

1. To find the enhanced value of PID controller gains referred as K_P, K_I and K_D.
2. To minimize the error amount between existed high order and proposed minimized order systems.

1.2 Problem Statement

The DC motors can be found implemented in variable speed applications such as, cars and electric trains. Which the control system is subjected to disturbance. It is important that these disturbances do not drive the system to unstable conditions. The loss of the required speed or having overshoot and undershoot for the output waveform can be created by small disturbances in the system; such as load changes. Hence, the need to build a robust control system is needed. The control method that capable to obtain overshoot, lower steady state error, shorter settling time and faster rising time are essential and required in the applications.

Even though the PID controller is simple structure and normally found used in the literatures, it has the disadvantages of mainly depends on the plant behaviours (Thomas and Poongodi, 2009). The nonlinearity and instable open-loop system are the elements that contribute to the difficulties of the PID tuning process.

It is shown in the literatures that the existing PID tuning methods are not capable to provide satisfaction performance when the disturbance elements are present in the system. Therefore, to overcome the PID issues this research will propose a control method that capable to have minimum overshoot, lower steady state, shorter settling time and faster
rising time even when the disturbance is added in the system (Swarup and Yamashiro, 2002).

1.3 Thesis Objectives

The aims to be accomplished in this thesis are as follow:

i. To design a DC motor speed control with traditional PID controller.

ii. To design a DC motor speed control with self-tuning FLC of PID controller.

iii. To design a DC motor speed control with self-tuning PID controller using Generic Algorithm.

iv. To perform performance comparison analysis the speed responses for the three algorithms relative to the overshoot, settling time, steady state error and rise time based on MATLAB/Simulink simulation of the DC motor.

1.4 Thesis Scopes

This thesis focused on the DC-DC buck converter that used DC motor as a load. The DC motor will be running at different values of speed and loads. Three methods are used in finding the controllers gain. Firstly, by utilizing the Ziegler Nichols method based on the PID controller. Second is by utilizing self-tuning FLC PID controller and the last one is by using the GA. The speed controller gain value that is obtained based on PID, FLC and GA methods will be analysed based on the rise time, settling time, overshoot and steady state error values. The MATLAB /Simulink is used to develop and analyse this research.
1.5 Layout

This thesis consists of six chapters: Chapter 1 presents an introduction to the principles of the study, the reasons and motivation and also discusses the objectives and outline methodologies of the study. Chapter 2 discusses the literature review. Chapter 3 theoretical backgrounds of DC motor, PID controller, fuzzy system, tuning PID by using FLC, GA and tuning PID by using GA. Chapter 4 presents the methodology and system control design of DC motor system, PID controller, tuning PID by using FLC and tuning PID by using GA. Chapter 5 presents the simulation results. Finally, Chapter 6 provides the conclusion and recommendation.
CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter presents the literature cited on the DC motors, PID controller, FLC self-tuning PID controller, and GA for self-tuning PID controller. The DC motors are deployed in a wide range of applications such as electric trains, robot manipulation and house gadgets. The mentioned applications particularly involved with speed and position control of the motor. The conventional PID controller are usually in used due to the basic constructions and intuitive understandable controlling methods. However, the PID controller has the drawback of dealing with disturbances.

In FLC is capable to deal with model non-linearities or disturbances. However, the FLC need to be designed utilizing commonly trial and error methods utilizing the IF, ELSE, THEN rule sets. These trial and error method is not accurate, therefore, limits performance of FLC in various control methods.

Additionally, GA is used for searching the global optimum solution in the control system. The development operation of GA is in accordance to the naturally selecting mechanism (Meza, et al. 2012). The GA implements chromosomes via three processes known as reproduction, crossover, and mutations. These processes are able to obtain offspring for the second process. The superiority of GA free from derivation random optimizing and can be implemented in both continuously and discretely existed issues. In recent years, many researchers focusing on designing self-tuning PID utilizing GA to raise the abilities of PID controllers. Therefore, a comprehensive review will be provided in this chapter to