

A CONTEXT AWARE FRAMEWORK FOR USER CENTERED

SERVICES

SIMON HOH

British Telecommunications Plc, 1B-17, Plaza Sentral, Jalan Stesen

Sentral 5, Kuala Lumpur Sentral, 50470 Kuala Lumpur, Malaysia.

Email address: simon.hoh@bt.com

ANUSURIYA DEVARAJU

University Technical Malaysia Melaka (UTeM), 1, Jalan TU43,

Taman Tasik Utama, Hang Tuah Jaya, Ayer Keroh, 75450, Melaka,

Malaysia.

Email address: anusuriya@utem.edu.my

AND

CHIN CHIN WONG

British Telecommunications Plc, 1B-17, Plaza Sentral, Jalan Stesen

Sentral 5, Kuala Lumpur Sentral, 50470 Kuala Lumpur, Malaysia.

Email address: chinchin.wong@bt.com

Abstract. In this paper, we introduce a context aware middleware
framework that has been developed over the years to serve as an
enabler for user centered services. Firstly, we will discuss about a

sensory API mechanism developed to allow an abstraction of sensing
elements to report information in a structured manner. We will then
proceed to discuss how this sensed information is represented in an

ontology, replicating a virtual model of the environment. This will
facilitate reasoning capabilities, where entities that are inter-related

can be resolved and used by the service. And finally we will describe
how context specific to a user-centered service could be subscribed
from the middleware. The context, once subscribed, will enable

actions to be fired off when the particular context is met. The three
core components when put together, will allow for services to react
more specific to the users needs, based on the user’s ever changing

context.

2 S. HOH, A. DEVARAJU AND C. WONG

1. Introduction

With the introduction of device heterogeneity, humans will be surrounded

by intelligent interfaces supported by computing and networking

technologies. Intelligence will be incorporated in everyday objects like

clothes, vehicles, picture frames, even the cup of which we drink from. To

support the level of complexities that will be introduced, information will

need to be filtered adequately to provide only specific information relevant

to an individual at any point in time. These intelligence built-in in the

environment focuses on performing its specific task well. However, this task

may not be necessarily attuned to the user at a specific moment in time.

Future applications and services needs to synchronously customised to the

users’ needs at any moment in time, putting the user as focal point of its

operation requirements. This behaviour is known as user-centric behaviour.

 Research in context awareness is a very important area for user-centric

communications. This is because context awareness provides the ability for

solutions to be aware to the situation a user is in, thus providing the ability

for such solutions to react around the users every need. In order to achieve

such goals, many issues that surrounds how context information can be

gathered, represented, processed and consumed appropriately by the

solution needs to be looked at.

1.1. PROBLEM STATEMENTS

Context aware applications rely on sensors to observe aspects of the context

(Henricksen et al. 2006). The basis of adaptive solutions comes from inputs

that form data sets for analysis and design of corresponding prediction

model. This input information varies as it could be information based on a

physical entity, e.g. person, device, place, or non-physical entity (e.g.

activity, mood, time of day). A ubiquitous environment contain a diverse

range of sensors, each uses its native access mechanisms and output formats,

potentially leading to complexity in system design and implementation

(Shchzad et al. 2005). The complexities of this diverse set of input types

make it very tricky for solutions to use this information. Most context aware

applications embed the interpretation logic of context inside the

applications. Delegating the data acquisition and context processing task to

the application makes them almost impossible for reuse (Davidyuk et al.

2004; Shchzad et al. 2005). There needs to be a standardised manner to

represent these data, validate them against recognisable entities, with a

standardised manner of which they could be obtained for solutions to use

this information consistently.

A CONTEXT AWARE MIDDLEWARE FRAMEWORK FOR USER CENTERED

SERVICES 3

 The information that are captured via the sensors then needs to be

modeled in the computing system, where there are issues concerning sharing

of these context information. The five issues identified by Nihei (2004) are:

i. Interconnectivity

ii. Operability

iii. Pre-processing of context information

iv. Largeness of scale and real time sharing

v. Rights management, privacy protection and authentication

 The ultimate goal of a context aware application is having the ability to

act in response to the situation, when certain context is met. To this end, a

standard manner of addressing actions can be carried out is required. Similar

to sensors, the diversification of what these actions meant that there are

potential issues on how the actions can be understood and triggered.

2. User Centric Solution Requirements

The initial step to provide user centric solutions is to study requirements that

are imposed on the solution. To achieve this, one needs to understand the

different processes that may happen in an interaction instance.

Figure 1. Norman’s Stages of Action

 As proposed by Arbanowski (2003), the main features of user centric

communications of the future are ambient awareness, personalization and

adaptability. Ambient Awareness is the ability to sense and exchange

information about the current environment an individual is in at a specific

4 S. HOH, A. DEVARAJU AND C. WONG

moment in time. Personalisation provides the information necessary to

model the preferences of an individual’s communication space. And finally,

adaptability is the ability to react taking into consideration changes in

ambient information and individual preferences.

 A more elaborate study of an individual’s interaction with objects lead

Suttcliffe (2002) to propose 22 generic tasks that describes the different task

types involved in the sequence of an individual’s interaction. To simplify

the discussion of the tasks involved, Montabert (2006) grouped the tasks

into Norman’s Stages of Action (see Figure 1). The authors shall refer to the

Stages of Action mentioned above in the following sections as the core

requirements of user centric interaction that may take place.

3. Context Aware Primer and Framework Description

A definition of context awareness is given (Dey et al. 1999) as: ‘a system is

context aware if it uses context to provide relevant information and/or

services to the user, where relevancy depends on the user’s task’. To

simplify the construction of context-aware applications, many context-aware

frameworks have evolved during the last years (Baldauf et al. 2007; Singh et

al. 2006), where most of them differ in functional range, location and

naming of layers, the use of optional agents or other architectural concerns.

3.1. LAYERED ARCHITECTURE FOR A CONTEXT AWARE PLATFORM

The design consideration for constructing context-aware systems is based on

the three basic subsystems stated by (Loke 2007): Sensing, Thinking and

Acting. Baldauf (2007) describes the three basic subsystems into abstract

layered architecture as below (see Figure 2). The Sensing subsystem relates

to raw sensory information that could be acquired and translated into

knowledge. Chen (2004) presented the three different approaches on how to

acquire sensor information which are direct access to sensors, middleware

infrastructure and context acquisition from a context server. The benefits

and drawbacks of the stated approaches have been discussed in our previous

paper (Devaraju et al. 2007). A summary of sensing component on existing

context-aware systems can be found at Devaraju (2007) and Baldauf (2007).

 In the Thinking subsystem, the appropriate reasoning technique is then

chosen, ranging from simple event-condition rules to sophisticated AI

techniques. Some data or knowledge extracted via reasoning might also be

stored in this subsystem. Finally, in the Acting subsystem, appropriate

effectors, hardware and software are employed (Loke 2007).

A CONTEXT AWARE MIDDLEWARE FRAMEWORK FOR USER CENTERED

SERVICES 5

Figure 2. Abstract Architecture for Context Aware Systems

 The surveys on context-aware systems by Baldauf (2007), Singh (2006)

and Chen (2000) show that existing context-aware frameworks show their

similarity concerning the three layered architecture. Yet, this indicates a

clear separation of concerns between the context acquisition and user

components as proposed by Dey (2000).

4. Mapping the Framework

Using Norman’s Stages of Action as requirements for a user centered

solutions, we can surmise that Perception requires sensory entities

implemented that sense and perceive information in real environment. This

information is needed to be interpreted to provide its meaning to an

individual, where definition of context would make sense of what

information interpreted means. A user centered solution would then be

required to define its goal when a certain context is met. The reaction of a

user centered solution consists of action plans declared in its adaptability

service taking into consideration preferences of the individual at hand. The

execution of the action plan is then carried out to provide the necessary user

centered behaviour as defined by the solution itself.

5. The Implementation

5.1. CONTEXT AWARE SERVICE PLATFORM (CASP)

The CASP is a middleware-based infrastructure designed to simplify the

development of context-aware services by providing a common set of

functionalities, which services can simply utilise. It defines a framework for

creation of services to facilitate use of pre-built infrastructure to define

specific contexts which are relevant to the service, and specific actions that

need to be carried out when these contexts are met. It also provides a

knowledge base which is a virtual representation of the environment with

6 S. HOH, A. DEVARAJU AND C. WONG

the use of ontology, and provides mechanisms to query them. This reduces

the efforts required to develop context sensitive services, enabling the

service developer to focus more on development of the core service itself.

 Figure 3 shows how the layered architecture described earlier suggests

subsystems than can be abstracted into our infrastructure.

Figure 3. CASP Architecture

5.2. CONTEXT SENSING

The sensing subsystem abstracts sensor types that exist in the physical or

non-physical world provide a consistent interface method for sensory

information to be programmatically fed into the CASP via its Sensor Data

Acquisition API. The sensors used for raw data retrieval can be any

hardware, software, or their combination. In similar manner, Indulska

(2003) has classified sensors into three groups – Physical sensors, Virtual

sensors and Logical sensors. Physical sensors refer to the hardware sensors,

while Virtual sensors source context data from software application or

services. Logical sensors make use of couple of information sources, and

combine physical and virtual sensors with additional information from

various other sources. The implementation of the sensing subsystem

includes the development of an API that captures abstracted sensory

information that is registered and reported to the CASP.

A CONTEXT AWARE MIDDLEWARE FRAMEWORK FOR USER CENTERED

SERVICES 7

5.3. CONTEXT MODELLING AND STORAGE

The thinking subsystem is made up of an ontology engine that attempts to

map sensory information in the real world to object instances in a virtual

world that computer systems can interact with. It resolves ownerships and

relationships of the sensed information to create a knowledge model of the

information in ontology. In addition, the thinking subsystem exposes the

query capability for the knowledge model via the Context Query API. The

API allows the Service Manager to resolve contexts that are subscribed by a

user for a specified service. Here, the Ontology Manager is designed in a

manner that ontologies specified by OWL standards could be extended to

support different solution domains.

5.4. CONTEXT SERVICE CREATION AND EXECUTION

The acting subsystem consists of the Service Execution Engine, its service

creation API and the services itself. Each of these services is provided with

knowledge acquisition capability via the Context Query API. Each service

conforms to a service wrapper framework requirement that requires it to

define the context which would consequently trigger a response. The service

wrapper framework is made up of rules that specifies context. Each context

is represented by one or more conditions, whereby, if these conditions are

met, in would be said to be in the said context. When the context situation is

met consequently, an action defined by the service via the service wrapper

will be triggered.

6. Conclusion and Future Work

From the implementation of the framework discussed, the authors have

demonstrated a system that provides the necessary mechanisms to facilitate

easy creation of user centered solutions. However, it is envisaged that

services in the future will be automatically subscribed by a user when a user

is in a certain context. As such, more work needs to be done to provide an

exchangeable dialect which depicts an individual’s preferences to the many

actions that can be performed automatically by a solution. This would form

an extensible preference profile that would form the basis for individuals to

manage the level of service automation and profile access.

8 S. HOH, A. DEVARAJU AND C. WONG

References

Arbanowski, S.: 2003, I-centric Communications, Technical University of Berlin, Berlin.

Baldauf, M., Dustdar, S., and Rosenberg, F.: 2007, A Survey on Context-Aware Systems,

International Journal of Ad Hoc and Ubiquitous Computing 2(4), pp 263-277.

Chen, G., and Kotz, D.: 2000, A Survey of Context-Aware Mobile Computing Research

(Technical Report: TR2000-381), Dartmouth College, Hanover, NH, USA.

Chen, H.L.: 2004, An Intelligent Broker Architecture for Pervasive Context-Aware Systems,

University of Maryland Baltimore County, Baltimore.

Davidyuk, O., Riekki, J., Rautio, V.-M., and Sun, J.: 2004, Context-Aware Middleware for

Mobile Multimedia Applications, Third International Conference on Mobile and

Ubiquitous Multimedia, ACM, College Park, Maryland, USA.

Devaraju, A., and Hoh, S.: 2007, A Context Gathering Framework for Context-Aware Mobile

Solutions, Mobility Conference.

Dey, A.K.: 2000, Providing Architectural Support for Building Context-Aware Applications,

Georgia Institute of Technology, Georgia.

Dey, A.K., and Abowd, G.D.: 1999, Towards a Better Understanding of Context and Context

Awareness, Technical Report GIT-GVU-99-22, Georgia Institute of Technology.

Henricksen, K., and Robinson, R.: 2006, A Survey of Middleware for Sensor Networks:

State-of-the-Art and Future Directions, Proceedings of the International Workshop on

Middleware for Sensor Networks ACM Press, Melbourne, Australia, pp. 60-65.

Indulska, J., and Sutton, P.: 2003, Location Management in Pervasive Systems, Proceeding of

the Australasian Information Security Workshop (CRPITS '03), pp. 143-151.

Loke, S.: 2007, Context-aware Pervasive Systems: Architectures for a New Breed of

Applications Auerbach Publications, New York.

Montabert, C.: 2006, Supporting Requirements Reuse in a User-centric Design Framework

through Task Modeling and Critical Parameters, Virginia Polytechnic Institute and State

University, Blacksburg, Virginia.

Nihei, K.: 2004, Context Sharing Platform, Journal of Advanced Technology (Special Issue:

Advanced Technologies and Solutions toward Ubiquitous Network Society).

Shchzad, A., Ngo, H.Q., Lee, S.Y., and Lee, Y.-K.: 2005, A Comprehensive Middleware

Architecture for Context-aware Ubiquitous Computing Systems, 4th Annual ACIS

International Conference on Computer and Information Science, pp 251-256.

Singh, A., and Conway, M.: 2006, Survey of Context aware Frameworks – Analysis and

Criticism, University of North Carolina, Chapel Hill.

Sutcliffe, A.: 2002, The Domain Theory: Patterns for Knowledge and Software Reuse

Lawrence Erlbaum Associates, Mahwah, NJ.

