

 e-ISSN: 2289-8131 Vol. 10 No. 2-8 57

Application Specific Instruction Set Processor

(ASIP) Design in an 8-bit Softcore Microcontroller

Sani Irwan Md Salim, Yewguan Soo, Sharatul Izah Samsudin
Center for Telecommunication Research and Innovation(CeTRI), Faculty of Electronic and Computer Engineering,

Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

sani@utem.edu.my

Abstract—The microcontroller-based system is currently

having a tremendous boost in demand in line with the Industrial

Revolution 4.0. Although more applications seem to concentrate

on software algorithms and wireless connectivity, the hardware

side of the system is still occupied by microcontroller variants.

With huge alternatives being offered to setup a microcontroller

system, having a softcore microcontroller is extremely beneficial

especially when considering the rapid advancement in computer

technology. Although the 8-bit microcontroller has less

computational capability compare to other high-end

microcontroller families, it has an advantage in low code density

for I/O application and control. The purpose of this research is

to combine the best feature of the 8-bit architecture together

with efficient arithmetic operations in the implementation of

moving average filter. The modules’ integration is implemented

using ASIP design without occurring extra board space and is

developed using the Field Programmable Gate Array (FPGA) as

the single chip solutions. It was found that the revised

microcontroller architecture has produced a faster execution

time and similar maximum frequency when benchmarked with

its predecessor. The overall ASIP design procedures used in this

research provides flexibility for further development, either by

extending its module to incorporate more complex algorithms or

by upgrading current designs of its components.

Index Terms—ASIP; Softcore Microcontroller; Moving

Average Filter; FPGA.

I. INTRODUCTION

Various processor architectures have been developed

especially in the past decade that populated the embedded and

computing system market. The terms of these processors are

also evolving in order to differentiate its functionality and

potential in fulfilling broad system requirements. There are

microprocessors, digital signal processors, microcontrollers

and digital signal controllers that did not just offered different

capabilities but also implementing different optimization

techniques to suit specific design requirement [1-4].

Across the range of the embedded and computing systems,

the processors are classified to their bit architecture that

referred to its data bus width. Low-end processors are usually

quoted with 4/8-bit architectures while 16-bit architectures

are considered mid-range processors. Larger processors, for

instance, 32-bit architecture or bigger, are the top-of-the-

range processors. The selections of these processors are

dependent on several factors such as cost, workload capacity,

and energy consumption. The implementations of different

processing platforms are also reliant on the type of data

processing with regards to the tasks’ workload and context.

Cravotta [5] has published a useful processor architectural

mapping to clearly explain the topographical representation

of processor based on the processor’s bit width and also

classification

There is also the low code density issue which is often

associated with the 8-bit microcontroller. In general, code

density refers to the combined size of all the instructions

needed to perform a particular task. Low code density means

that the architecture required more basic instructions

repeatedly to execute a task. This assumption is correct only

if the 8-bit microcontroller is demanded to perform 32-bit

mathematic computations. For control applications, the 8-bit

microcontrollers do not suffer from the low-density code due

to the offloading techniques for the particular functions from

the main processor. Normally, the computationally intensive

tasks are offloaded to be performed by a specific hardware

module. Some devices also integrate wireless SoC to

send/receive signals over Bluetooth or Wi-Fi to eliminate the

need to include the code for that function which is a similar

concept to the IoT. Because of the limited space, the codes

need to be written efficiently and uses the smallest space

possible to keep a minimum processing cycle. This is also

where the assembly language is the best option for efficient

coding. Since 8-bit MCUs have very little overhead code,

total code density for control-type functions is higher than

equivalent functions implemented on 32-bit MCUs.

As part of the SoC platform, general purpose processor

usually has a high degree of flexibility, a friendly design

environment, and sufficient design references. This platform

is preferred when requirements for power, performance and

silicon area are not very critical. When these requirements are

strict, ASIP will become a necessity.

Essentially, ASIP is an architecture that includes two parts

which are a minimum Instruction Set Architecture (ISA) and

a configurable logic which can be used to design a customized

instruction set. Thus, it provides relatively high flexibility

compared to ASIC and better performance compared to

FPGA. The main advantage of the ASIP is the instruction set

can be built to meet the system’s specific requirement my

configuring the ISA.

II. UTEMRISC SOFTCORE MICROCONTROLLER

A soft-core is a processor, a microcontroller or a digital

signal processor, which is integrated as a virtual unit in an

FPGA or ASIC design. The soft-core processor is a

terminology that reflects the reprogrammable nature of the

processor architecture. Usually implemented in the

programmable platform, the soft-core processor is described

using hardware description language and implemented using

logic synthesis. Soft cores are used in the FPGAs to perform

complicated tasks, but at the same time do not place too high

demands on speed. On the contrary, the hard-core processor

Journal of Telecommunication, Electronic and Computer Engineering

58 e-ISSN: 2289-8131 Vol. 10 No. 2-8

is defined as processor core that is physically implemented as

a structure in the silicon. The hard-core processor in ASIC is

also initiated from a soft-core processor in FPGA platform,

but during the conversion is from FPGA to ASIC, the core

processor is placed as the real hard-core on the chip. The

obvious limitation of the soft-core processor when compared

to the hard-core processor is the processing speed. Hard-core

provide better processing speed due to its cell optimization in

the silicon. However, for design flexibility and multi-core

processor setup, the soft-core processor is the way to go. Soft-

core processors can be easily modified and customized to

specific requirements and to include more features. Its core

also could be synthesized in the manifold to generate a multi-

core processor. Small soft-cores for example, can be placed

and used in parallel in the FPGA which would increase the

data transfer capacity in certain applications.

UTeMRISC0 is a soft-core processor that is essentially

based on the PIC architecture, that is also the fundamental

architecture of several other soft-core processors previously

mentioned in this thesis. The UTeMRISC0 soft-core

processor was first introduced in [6] as a part of the

experimental setup to maximise the capability in delivering

highest performance achievable by a processor core

compared to their physical IC counterpart. Figure 1 shows the

insignia of the UTeMRISC softcore families.

Figure 1: Insignia of UTeMRISC processor

Further research has been done by Salim, et al. [7] to

improve the architecture of the UTeMRISC0 by eliminating

several features that detrimental to the overall performance.

For instance, the memory bank structure, which is inherited

from the original PIC architecture and maintained in the other

PIC-based soft-core processor, is removed. This will omit the

need to change memory banks to access a certain range of

memory address in the programming code. In place, a new

single bank memory structure is introduced with an algorithm

is developed to determine the final memory address in the

memory space [8-12].

III. METHODOLOGY

A. ASIP Design

Details on the ASIP design methodology has been explored

by Liu [13] that includes the element of hardware/software

co-design. This element has been neglected or hidden in the

other ASIP methodologies due to its complexity in

determining the correct stages when the hardware and

software parts are designed concurrently. the relation

between hardware and software design stages and how it

interacted or correlated with each other [13]. In the code

synthesis, the instruction set specification is laid out during

the instruction set extension should be mirrored to the actual

processor architecture, specifically involving the instruction

set architecture. To reflect the major changes made to the

architecture, the soft-core processor is renamed as

UTeMRISC01.

1) Application Design and Constraints

The main function of the moving average filter is to

determine the windows for buffering and then performing the

summation and division. As the summation module is already

available in the UTeMRISC01 architecture, that left the

division arithmetic that needs to be configured. Creating a

general-purpose divider module would be a challenging task

and involved another specific algorithm such as Booth’s

algorithm. Inserting this module also would unnecessarily

increase the resource utilization that in the end would enlarge

the whole processor architecture size. To keep it simple, the

division part is limited to perform power of two division.

Effectively, the division by two required the bits to be shifted

one place to the right. Normal PIC instruction has the shift

instruction in place. However, as the windows buffer getting

larger, several bit shift operations are needed to complete the

division process. This would affect tremendously the overall

instruction cycles. A common solution, which is widely

applicable in the higher-end DSC architecture is by

employing barrel shifter. In this case, the shift operation could

be executed in a single instruction cycle within the destination

register.

2) Processor Architecture Exploration

As the single-bit shift operation is already available in the

UTeMRISC0, the ISA now needs to include the operand that

indicates more than single bit shifting to be executed by the

ALU module. The bit shift operation in the ALU module is

modified to instantly perform the bit shifting as per the

operand’s input and executed in one clock cycle.

3) Instruction Set Generation.

Two new instructions called ‘bsrf’ and ‘bslf’ are created

that stands for ‘barrel shift right (f)’ and ‘barrel shift left (f)’

respectively. The instruction’s operand consisted of the

address of the target register and the 3 bits that indicates how

many times the data would be shifted. A new opcode is also

assigned to this instruction.

Table 1

New Instruction for Moving Average Program

CPU Sim
Format 16-bit Opcode

Opcode Mnemonics

0B bsr f 6 7 3 0010_11ff_ffff_fbbb

0B bsl f 6 7 3 0010_11ff_ffff_fbbb

4) Code Synthesis.

The new instruction the is simulated using the CPUSim

software with the UTeMRISC01 architecture is loaded as the

main processor execution. The new instruction’s micro-

operation is defined in this process to iterate the sequence of

the instruction execution. Figure 2 and 3 show the machine

instruction edit done in the CPUSim software.

5) Hardware Synthesis.

The findings from the code synthesis stage are brought

forward to the FPGA implementation by replicating the

instruction execution sequence, this time in Verilog code. The

instruction’s opcode and ISA are updated in the instruction

decoder and ALU module. Once the architecture is

successfully synthesized and implemented, the performance

parameters are observed and measured using the logic

analyzer.

Application Specific Instruction Set Processor (ASIP) Design in an 8-bit Softcore Microcontroller

 e-ISSN: 2289-8131 Vol. 10 No. 2-8 59

Figure 2: Machine Instruction Edit for ‘bsr’ in CPUSim

Figure 3: Machine Instruction Edit for ‘bsl’ in CPUSim

B. Related Tools

The ASIP design is implemented in Xilinx ML605 FPGA

board, and the retargetable assembler is developed from the

ground up using the Visual Basic software by Microsoft. The

complete workflow of ASIP design starts from the initial

design phase, behavioral simulations, instruction set

simulations, logic synthesis, design implementation,

hardware configuration and data collections.

During the early phases of the design, the new instruction

is tested and simulated using the CPUSim software. CPU Sim

is a Java application that allows users to design simple

computer CPUs at the microcode level and to run the

machine-language or the assembly-language programs on

those CPUs through simulation [14]. It is a very useful tool to

simulate a variety of architectures, especially the RISC-like

and the accumulator-based architecture that is adopted in this

research. Using this software, the current instruction can be

modified, and new instruction can be loaded to the existing

instruction set. Furthermore, the CPUSim software also

assisted in reconfiguring the instruction set architecture (ISA)

by providing the ISA structures with the related opcode and

operand configurations. This configuration then will be the

reference point in designing the retargetable assembler and

the hardware module of the ISA itself in HDL.

The tools used in the ASIP hardware implementation are

exclusively done on Xilinx environment, including its

Integrated Synthesis Environment (ISE) Design Suite. The

Xilinx ISE Design Suite is responsible for the bulk of the

work by providing the tools to develop HDL modules in the

processor architecture. The behavioral simulations are

completed by using the ISE simulators, also known as ISim,

which its main purpose is to perform functional and timing

simulations for Verilog designs. Xilinx ISE will perform the

logic synthesis and design implementation to generate the bit

file. Using a software called iMPACT (integrated with the

Xilinx ISE), the bit file is configured and loaded to the FPGA

board, in this case, ML605 FPGA board).

C. Moving Average Filter

In digital signal processing, the moving average is the most

common filter largely contributed by its simplicity and easy

to understand. Its main task is to reduce random noise while

retaining a sharp step response. For time domain encoded

signals, the moving average is the easiest digital filter to use.

Fundamentally, the moving average filter operates by

averaging a number of points from the input signal to produce

each point in the output signal. Figure 4 shows the flowchart

of the moving average filter program. The equation for

moving average is shown in Equation (1). In this equation,

𝑥[] is the input signal, 𝑦[] is the output signal, and M is the

number of points used in the moving average. This equation

only uses points on one side of the output sample being

calculated. Programming is slightly easier with the points on

only one side; however, this produces a relative shift between

the input and output signal.

𝑦[𝑖] =
1

𝑀
∑ 𝑥[𝑖 + 𝑗]

𝑀−1

𝑗=0

 (1)

Start

Load input data

to array X[]

Clear accumulator

in array Y[I]

Set J for each point

moving average,M

Set I[] for each point

of output signal

Summation

Y[I] = Y[I] + X[I+J]

Next J?

Average calculation

Y[I] = Y[I] / point moving average

Next J?

End

Y

N

Y

N

Figure 4: Flowchart of the moving average filter

IV. RESULTS AND DISCUSSION

Moving average filter algorithm required more arithmetic

calculation compare to the available instruction in the base

processor. Although the base processor is capable of

performing operations such as data shifting and division, the

lack of dedicated instructions means that those calculations

would take several clock cycles to be completed. The

operations can only be made using several basic instructions,

and additional loops are required to finish the function. In

Journal of Telecommunication, Electronic and Computer Engineering

60 e-ISSN: 2289-8131 Vol. 10 No. 2-8

moving average filter algorithm, new instructions for a faster

bit-shifting is created. In term of the processor hardware,

barrel shifter module is also created in the architecture to

accommodate better division operation, which includes

dividing the data set by 2n.

A. Execution Times

During the architecture implementation for both

processors, the execution times are decreasing

correspondingly with the increase of the oscillator clock

frequency. There is marked improvement in the execution

time as the moving average filter finished faster in the

UTeMRISC01 processor compare to the UTeMRISC0

processor. Figure 5 shows the execution times for both

architecture, with UTeMRISC01’s times are 18.6% average

faster than the UTeMRISC0’s times. This is mainly

contributed to the reduction of instruction cycle in the

UTeMRISC0 which uses specialized single-cycle bit-shifter.

In comparison, the UTeMRISC0 processor needs to perform

several loops of single-bit-shifting to achieve the same

results.

Figure 5: Execution Time for Moving Average Filter

B. Maximum Allowable frequency

Figure 6 shows the maximum allowable operating

frequency observed for both processor architecture. The

UTeMRISC0’s maximum frequency recorded as high as

127.959 MHz, 2% higher than the maximum frequency for

the UTeMRISC01 architecture. Further analysis in the slack

time also revealed the all timing requirements are met hence

the minor increase in the maximum frequency of the

UTeMRISC0 is due to the lesser critical path delay when

executing the basic instructions. However, the difference is

so small that the UTeMRISC01 could achieve or surpass the

maximum frequency with further ALU design optimization.

Figure 6: Maximum Operating Frequency of Moving Average Filter

However, as more module and complex calculations are

introduced to the system, the maximum frequency for the

UTeMRISC01 is slightly lower than the normally-operated

UTeMRISC0. The additional shifting operation has caused

the critical path to increase, and it is affecting the outcome of

the maximum frequency. During this stage, all timing

constraints are met without any violations recorded.

V. CONCLUSION

The impact of having a customized instruction set of

specific applications has been demonstrated in this thesis with

regards to the moving average filter implementation. Even

though the instruction set modification is generally

overlooked to avoid compatibility problem on the customer

side, there are also performance parameters that can be gained

by streamlining the instructions geared towards a specific

application. This paper has successfully demonstrated the

effectiveness of having an extended instruction set

architecture that leads to better optimization of instruction

program while at the same time improve the program

execution period.

ACKNOWLEDGMENT

The author would like to thank Universiti Teknikal

Malaysia Melaka and Ministry of Higher Education Malaysia

for the financial support through the research grant number

PJP / 2016 / FKEKK-CETRI / S01496.

REFERENCES

[1] A. Baysal and S. Sahin, "Roadrunner: A small and fast bitslice block

cipher for low cost 8-bit processors," IACR Cryptology ePrint Archive
2015.

[2] J. Donovan. (2014, 2 July). Is There a Future for 8-Bit MCUs?

Available: http://www.digikey.com/en/articles/techzone/2014/feb/is-
there-a-future-for-8-bit-mcus

[3] J. Ganssle. (2012, 2 July). Is 8-bits dying? Available:

http://www.embedded.com/electronics-blogs/break-
points/4389890/Is-8-bits-dying-

[4] R. Cravotta. (2007, 20 July). Putting the Squeeze on 16-bit Processors.

Available: http://www.edn.com/design/systems-
design/4314333/Putting-the-squeeze-on-16-bit-processors

[5] R. Cravotta. (2012, 11 July). One Processor to Rule Them All?
Available: http://www.edn.com/design/systems-design/4398890/One-

processor-to-rule-them-all

[6] L. E. Yong and A. J. Salim, "Implementation of an 8-bit RISC

Microcontroller Chip," in 4th International Symposium on Broadband

Communication, 2010, pp. 1-4.

[7] A. J. Salim, S. I. M. Salim, N. R. Samsudin, and Y. Soo, "Instruction
Set Extension Through Partial Customization of Low-End RISC

Processor," Australian Journal of Basic and Applied Sciences, vol. 7,

pp. 678-687, 2013.
[8] A. J. Salim, S. I. Salim, N. R. Samsudin, and Y. Soo, "Educational

development tools for software and hardware processor design," in

Proceedings - 8th EUROSIM Congress on Modelling and Simulation,
EUROSIM 2013, 2015, pp. 622-627.

[9] A. J. Salim, S. I. M. Salim, N. R. Samsudin, and Y. Soo, "Customized

instruction set simulation for soft-core RISC processor," in IEEE
Control and System Graduate Research Colloquium (ICSGRC), 2012,

pp. 38-42.

[10] A. J. Salim, S. I. M. Salim, N. R. Samsudin, and Y. Soo, "Conversion
of an 8-bit to a 16-bit Soft-core RISC Processor," International Journal

of Electronics Communication and Computer Technology, vol. 3, pp.

393-397, 2013.
[11] A. J. Salim, N. R. Samsudin, S. I. M. Salim, and S. Yewguan,

"Modification of Instruction Set Architecture in a UTeMRISCII

Processor," International Journal of Computer Trends and Technology
(IJCTT), vol. 4, pp. 1196-1201, 2013.

[12] A. J. Salim, N. R. Samsudin, S. I. M. Salim, and S. Yewguan,

"Multiply-accumulate instruction set extension in a soft-core RISC

Application Specific Instruction Set Processor (ASIP) Design in an 8-bit Softcore Microcontroller

 e-ISSN: 2289-8131 Vol. 10 No. 2-8 61

Processor," in 10th IEEE International Conference on Semiconductor
Electronics (ICSE), 2012, pp. 512-516.

[13] D. Liu, Embedded DSP Processor Design, : Application Specific

Instruction Set Processors: Morgan Kaufmann, 2008.

[14] D. Skrien, "CPU Sim 3.1: A Tool for Simulating Computer
Architectures for Computer Organization Classes," Journal on

Educational Resources in Computing (JERIC), vol. 1, pp. 46-59, 2001.

