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Abstract—The microcontroller-based system is currently 

having a tremendous boost in demand in line with the Industrial 

Revolution 4.0. Although more applications seem to concentrate 

on software algorithms and wireless connectivity, the hardware 

side of the system is still occupied by microcontroller variants. 

With huge alternatives being offered to setup a microcontroller 

system, having a softcore microcontroller is extremely beneficial 

especially when considering the rapid advancement in computer 

technology. Although the 8-bit microcontroller has less 

computational capability compare to other high-end 

microcontroller families, it has an advantage in low code density 

for I/O application and control. The purpose of this research is 

to combine the best feature of the 8-bit architecture together 

with efficient arithmetic operations in the implementation of 

moving average filter. The modules’ integration is implemented 

using ASIP design without occurring extra board space and is 

developed using the Field Programmable Gate Array (FPGA) as 

the single chip solutions. It was found that the revised 

microcontroller architecture has produced a faster execution 

time and similar maximum frequency when benchmarked with 

its predecessor. The overall ASIP design procedures used in this 

research provides flexibility for further development, either by 

extending its module to incorporate more complex algorithms or 

by upgrading current designs of its components.   

 

Index Terms—ASIP; Softcore Microcontroller; Moving 

Average Filter; FPGA. 

 

I. INTRODUCTION 

 

Various processor architectures have been developed 

especially in the past decade that populated the embedded and 

computing system market. The terms of these processors are 

also evolving in order to differentiate its functionality and 

potential in fulfilling broad system requirements. There are 

microprocessors, digital signal processors, microcontrollers 

and digital signal controllers that did not just offered different 

capabilities but also implementing different optimization 

techniques to suit specific design requirement [1-4]. 

Across the range of the embedded and computing systems, 

the processors are classified to their bit architecture that 

referred to its data bus width. Low-end processors are usually 

quoted with 4/8-bit architectures while 16-bit architectures 

are considered mid-range processors. Larger processors, for 

instance, 32-bit architecture or bigger, are the top-of-the-

range processors. The selections of these processors are 

dependent on several factors such as cost, workload capacity, 

and energy consumption. The implementations of different 

processing platforms are also reliant on the type of data 

processing with regards to the tasks’ workload and context. 

Cravotta [5] has published a useful processor architectural 

mapping to clearly explain the topographical representation 

of processor based on the processor’s bit width and also 

classification 

There is also the low code density issue which is often 

associated with the 8-bit microcontroller. In general, code 

density refers to the combined size of all the instructions 

needed to perform a particular task. Low code density means 

that the architecture required more basic instructions 

repeatedly to execute a task. This assumption is correct only 

if the 8-bit microcontroller is demanded to perform 32-bit 

mathematic computations. For control applications, the 8-bit 

microcontrollers do not suffer from the low-density code due 

to the offloading techniques for the particular functions from 

the main processor. Normally, the computationally intensive 

tasks are offloaded to be performed by a specific hardware 

module. Some devices also integrate wireless SoC to 

send/receive signals over Bluetooth or Wi-Fi to eliminate the 

need to include the code for that function which is a similar 

concept to the IoT. Because of the limited space, the codes 

need to be written efficiently and uses the smallest space 

possible to keep a minimum processing cycle. This is also 

where the assembly language is the best option for efficient 

coding. Since 8-bit MCUs have very little overhead code, 

total code density for control-type functions is higher than 

equivalent functions implemented on 32-bit MCUs. 

As part of the SoC platform, general purpose processor 

usually has a high degree of flexibility, a friendly design 

environment, and sufficient design references. This platform 

is preferred when requirements for power, performance and 

silicon area are not very critical. When these requirements are 

strict, ASIP will become a necessity. 

Essentially, ASIP is an architecture that includes two parts 

which are a minimum Instruction Set Architecture (ISA) and 

a configurable logic which can be used to design a customized 

instruction set. Thus, it provides relatively high flexibility 

compared to ASIC and better performance compared to 

FPGA. The main advantage of the ASIP is the instruction set 

can be built to meet the system’s specific requirement my 

configuring the ISA. 

 

II. UTEMRISC SOFTCORE MICROCONTROLLER 

 

A soft-core is a processor, a microcontroller or a digital 

signal processor, which is integrated as a virtual unit in an 

FPGA or ASIC design. The soft-core processor is a 

terminology that reflects the reprogrammable nature of the 

processor architecture. Usually implemented in the 

programmable platform, the soft-core processor is described 

using hardware description language and implemented using 

logic synthesis. Soft cores are used in the FPGAs to perform 

complicated tasks, but at the same time do not place too high 

demands on speed. On the contrary, the hard-core processor 
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is defined as processor core that is physically implemented as 

a structure in the silicon. The hard-core processor in ASIC is 

also initiated from a soft-core processor in FPGA platform, 

but during the conversion is from FPGA to ASIC, the core 

processor is placed as the real hard-core on the chip.  The 

obvious limitation of the soft-core processor when compared 

to the hard-core processor is the processing speed. Hard-core 

provide better processing speed due to its cell optimization in 

the silicon. However, for design flexibility and multi-core 

processor setup, the soft-core processor is the way to go. Soft-

core processors can be easily modified and customized to 

specific requirements and to include more features. Its core 

also could be synthesized in the manifold to generate a multi-

core processor. Small soft-cores for example, can be placed 

and used in parallel in the FPGA which would increase the 

data transfer capacity in certain applications. 

UTeMRISC0 is a soft-core processor that is essentially 

based on the PIC architecture, that is also the fundamental 

architecture of several other soft-core processors previously 

mentioned in this thesis. The UTeMRISC0 soft-core 

processor was first introduced in [6] as a part of the 

experimental setup to maximise the capability in delivering 

highest performance achievable by a processor core 

compared to their physical IC counterpart. Figure 1 shows the 

insignia of the UTeMRISC softcore families. 

 

 
Figure 1: Insignia of UTeMRISC processor 

 

Further research has been done by Salim, et al. [7] to 

improve the architecture of the UTeMRISC0 by eliminating 

several features that detrimental to the overall performance. 

For instance, the memory bank structure, which is inherited 

from the original PIC architecture and maintained in the other 

PIC-based soft-core processor, is removed. This will omit the 

need to change memory banks to access a certain range of 

memory address in the programming code. In place, a new 

single bank memory structure is introduced with an algorithm 

is developed to determine the final memory address in the 

memory space [8-12].  

 

III. METHODOLOGY 

 
A. ASIP Design 

Details on the ASIP design methodology has been explored 

by Liu [13] that includes the element of hardware/software 

co-design. This element has been neglected or hidden in the 

other ASIP methodologies due to its complexity in 

determining the correct stages when the hardware and 

software parts are designed concurrently. the relation 

between hardware and software design stages and how it 

interacted or correlated with each other [13]. In the code 

synthesis, the instruction set specification is laid out during 

the instruction set extension should be mirrored to the actual 

processor architecture, specifically involving the instruction 

set architecture. To reflect the major changes made to the 

architecture, the soft-core processor is renamed as 

UTeMRISC01. 

  

1) Application Design and Constraints 

The main function of the moving average filter is to 

determine the windows for buffering and then performing the 

summation and division. As the summation module is already 

available in the UTeMRISC01 architecture, that left the 

division arithmetic that needs to be configured. Creating a 

general-purpose divider module would be a challenging task 

and involved another specific algorithm such as Booth’s 

algorithm. Inserting this module also would unnecessarily 

increase the resource utilization that in the end would enlarge 

the whole processor architecture size. To keep it simple, the 

division part is limited to perform power of two division. 

Effectively, the division by two required the bits to be shifted 

one place to the right. Normal PIC instruction has the shift 

instruction in place. However, as the windows buffer getting 

larger, several bit shift operations are needed to complete the 

division process. This would affect tremendously the overall 

instruction cycles. A common solution, which is widely 

applicable in the higher-end DSC architecture is by 

employing barrel shifter. In this case, the shift operation could 

be executed in a single instruction cycle within the destination 

register. 

 

2) Processor Architecture Exploration 

As the single-bit shift operation is already available in the 

UTeMRISC0, the ISA now needs to include the operand that 

indicates more than single bit shifting to be executed by the 

ALU module. The bit shift operation in the ALU module is 

modified to instantly perform the bit shifting as per the 

operand’s input and executed in one clock cycle. 

 

3) Instruction Set Generation.  

Two new instructions called ‘bsrf’ and ‘bslf’ are created 

that stands for ‘barrel shift right (f)’ and ‘barrel shift left (f)’ 

respectively. The instruction’s operand consisted of the 

address of the target register and the 3 bits that indicates how 

many times the data would be shifted. A new opcode is also 

assigned to this instruction. 

 
Table 1 

New Instruction for Moving Average Program 
 

CPU Sim 
Format 16-bit Opcode 

Opcode Mnemonics 

0B bsr f 6 7 3 0010_11ff_ffff_fbbb 

0B bsl f 6 7 3 0010_11ff_ffff_fbbb 

 

4) Code Synthesis.  

The new instruction the is simulated using the CPUSim 

software with the UTeMRISC01 architecture is loaded as the 

main processor execution. The new instruction’s micro-

operation is defined in this process to iterate the sequence of 

the instruction execution. Figure 2 and 3 show the machine 

instruction edit done in the CPUSim software. 
 

5) Hardware Synthesis.  

The findings from the code synthesis stage are brought 

forward to the FPGA implementation by replicating the 

instruction execution sequence, this time in Verilog code. The 

instruction’s opcode and ISA are updated in the instruction 

decoder and ALU module. Once the architecture is 

successfully synthesized and implemented, the performance 

parameters are observed and measured using the logic 

analyzer. 
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Figure 2: Machine Instruction Edit for ‘bsr’ in CPUSim 

 

 
 

Figure 3: Machine Instruction Edit for ‘bsl’ in CPUSim 

   

B. Related Tools 

The ASIP design is implemented in Xilinx ML605 FPGA 

board, and the retargetable assembler is developed from the 

ground up using the Visual Basic software by Microsoft. The 

complete workflow of ASIP design starts from the initial 

design phase, behavioral simulations, instruction set 

simulations, logic synthesis, design implementation, 

hardware configuration and data collections. 

During the early phases of the design, the new instruction 

is tested and simulated using the CPUSim software. CPU Sim 

is a Java application that allows users to design simple 

computer CPUs at the microcode level and to run the 

machine-language or the assembly-language programs on 

those CPUs through simulation [14]. It is a very useful tool to 

simulate a variety of architectures, especially the RISC-like 

and the accumulator-based architecture that is adopted in this 

research. Using this software, the current instruction can be 

modified, and new instruction can be loaded to the existing 

instruction set. Furthermore, the CPUSim software also 

assisted in reconfiguring the instruction set architecture (ISA) 

by providing the ISA structures with the related opcode and 

operand configurations. This configuration then will be the 

reference point in designing the retargetable assembler and 

the hardware module of the ISA itself in HDL. 

The tools used in the ASIP hardware implementation are 

exclusively done on Xilinx environment, including its 

Integrated Synthesis Environment (ISE) Design Suite. The 

Xilinx ISE Design Suite is responsible for the bulk of the 

work by providing the tools to develop HDL modules in the 

processor architecture. The behavioral simulations are 

completed by using the ISE simulators, also known as ISim, 

which its main purpose is to perform functional and timing 

simulations for Verilog designs. Xilinx ISE will perform the 

logic synthesis and design implementation to generate the bit 

file. Using a software called iMPACT (integrated with the 

Xilinx ISE), the bit file is configured and loaded to the FPGA 

board, in this case, ML605 FPGA board). 

 

C. Moving Average Filter 

In digital signal processing, the moving average is the most 

common filter largely contributed by its simplicity and easy 

to understand. Its main task is to reduce random noise while 

retaining a sharp step response. For time domain encoded 

signals, the moving average is the easiest digital filter to use.  

Fundamentally, the moving average filter operates by 

averaging a number of points from the input signal to produce 

each point in the output signal. Figure 4 shows the flowchart 

of the moving average filter program. The equation for 

moving average is shown in Equation (1). In this equation, 

𝑥[ ] is the input signal, 𝑦[ ] is the output signal, and M is the 

number of points used in the moving average. This equation 

only uses points on one side of the output sample being 

calculated. Programming is slightly easier with the points on 

only one side; however, this produces a relative shift between 

the input and output signal. 

 

𝑦[𝑖] =
1

𝑀
∑ 𝑥[𝑖 + 𝑗]

𝑀−1

𝑗=0

 (1) 

  

Start

Load input data 

to array X[]

Clear accumulator

in array Y[I]

Set J for each point 

moving average,M

Set I[] for each point 

of output signal

Summation

Y[I] = Y[I] + X[I+J]

Next J?

Average calculation

Y[I] = Y[I] / point moving average

Next J?

End

Y

N

Y

N

 
 

Figure 4: Flowchart of the moving average filter 

 

IV. RESULTS AND DISCUSSION 

 

Moving average filter algorithm required more arithmetic 

calculation compare to the available instruction in the base 

processor. Although the base processor is capable of 

performing operations such as data shifting and division, the 

lack of dedicated instructions means that those calculations 

would take several clock cycles to be completed. The 

operations can only be made using several basic instructions, 

and additional loops are required to finish the function. In 
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moving average filter algorithm, new instructions for a faster 

bit-shifting is created. In term of the processor hardware, 

barrel shifter module is also created in the architecture to 

accommodate better division operation, which includes 

dividing the data set by 2n. 

 

A. Execution Times 

During the architecture implementation for both 

processors, the execution times are decreasing 

correspondingly with the increase of the oscillator clock 

frequency. There is marked improvement in the execution 

time as the moving average filter finished faster in the 

UTeMRISC01 processor compare to the UTeMRISC0 

processor. Figure 5 shows the execution times for both 

architecture, with UTeMRISC01’s times are 18.6% average 

faster than the UTeMRISC0’s times. This is mainly 

contributed to the reduction of instruction cycle in the 

UTeMRISC0 which uses specialized single-cycle bit-shifter. 

In comparison, the UTeMRISC0 processor needs to perform 

several loops of single-bit-shifting to achieve the same 

results. 

 

 
 

Figure 5: Execution Time for Moving Average Filter 

 

B. Maximum Allowable frequency 

Figure 6 shows the maximum allowable operating 

frequency observed for both processor architecture. The 

UTeMRISC0’s maximum frequency recorded as high as 

127.959 MHz, 2% higher than the maximum frequency for 

the UTeMRISC01 architecture. Further analysis in the slack 

time also revealed the all timing requirements are met hence 

the minor increase in the maximum frequency of the 

UTeMRISC0 is due to the lesser critical path delay when 

executing the basic instructions. However, the difference is 

so small that the UTeMRISC01 could achieve or surpass the 

maximum frequency with further ALU design optimization.   

 

 
 

Figure 6: Maximum Operating Frequency of Moving Average Filter 

However, as more module and complex calculations are 

introduced to the system, the maximum frequency for the 

UTeMRISC01 is slightly lower than the normally-operated 

UTeMRISC0. The additional shifting operation has caused 

the critical path to increase, and it is affecting the outcome of 

the maximum frequency. During this stage, all timing 

constraints are met without any violations recorded. 

 

V. CONCLUSION 

 

The impact of having a customized instruction set of 

specific applications has been demonstrated in this thesis with 

regards to the moving average filter implementation. Even 

though the instruction set modification is generally 

overlooked to avoid compatibility problem on the customer 

side, there are also performance parameters that can be gained 

by streamlining the instructions geared towards a specific 

application. This paper has successfully demonstrated the 

effectiveness of having an extended instruction set 

architecture that leads to better optimization of instruction 

program while at the same time improve the program 

execution period. 
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