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Solid-liquid (S-L) interfaces is widely used in lubrication and coating systems, in which 
the heat transport is the main problem for the system. In the recent years, lubrication 
and coating systems have been investigated up to the molecular scale to solve the 
problem of heat transport due to wear and friction. In molecular scale, the 
characteristics of heat transport are different from the conventional one. Therefore, 
the purpose of this study is to specifically investigate the characteristics of heat 
transport in the molecular scale at the S-L interfaces. The prime concern in this 
numerical investigation is the surface structure of solid and the type of liquid 
molecules. The characteristics of heat transport at the S-L interfaces are evaluated 
based on the temperature jump (TJ) and thermal boundary resistance (TBR) at the 
interfaces. It is found that the different TJs and TBRs can be observed for variation of 
the surface structures and the length of liquid molecules. The obtained results show 
that the surface structures and length of liquid molecules significantly affect the 
characteristics of heat transport at S-L interfaces. 
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1. Introduction 

 
Solid-liquid (S-L) interfaces have been widely utilized for tribology applications that are related 

to lubrication and coating systems [1–5]. Examples of these applications are characterization of 
thermal interface materials, production of magnetic hard disc and journal bearing design. In the 
past, there are abundant of literatures that focus on the lubrication and coating systems to address 
the problem of wear and friction at the contacting surfaces, such as self-lubrication [6,7], hard-wear 
resistance coating [2,8], and nano-lubricant [3]. However, in recent years, due to the development 
of nanotechnology, most of the lubrication and coating systems are investigated at the molecular-
scale. Based on the previous studies [9–16], it was reported that the systems that are in the 
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molecular-scale have anomalous characteristics that could not be easily determined or predicted 
based on the conventional macroscopic concepts. In order to address such problems, molecular 
dynamics (MD) simulation can be utilized as the alternative tool to reproduce the molecular-scale 
phenomena for details analysis.  

The system that are in molecular-scale especially for lubrication and coating systems, often 
needs to deal with heat generation and dissipation at interfaces. This heat generation can lead to 
failure if the heat dissipation technique is not adequately controlled in the system. In the 
lubrication and coating systems, the heat dissipation at the S-L interfaces can be properly explained 
by understanding the characteristics of heat transport at interfaces. As such, these characteristics 
of heat transport at S-L interfaces are critical in order to optimize the performance of a system.  

In the past, there are a number of investigations that focus on the characteristics of heat 
transport at S-L interfaces such as the influences of molecular interactions between solid and liquid 
[14,17–21] and surface roughness [22,23]. However, to this date, there is very limited signifcant 
study on the effect of surface structure of solid walls and the types of liquid molecules on the heat 
transport characteristics. Hence, this paper presents the characteristics of heat transport at S-L 
interfaces with the focus on the surface structure of solid and types of liquid molecules. 

 
2. Simulation Details 

2.1 Simulation System 

 

  
Fig. 1. Simulation system of the liquid sandwiched between two parallel solid walls 

 

 
Fig. 2. Surface structure of (100), (110) and (111) lattices 
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Figure 1 shows the simulation system, which consists of liquid that is sandwiched between two 
parallel solid walls. The solid wall is a face-centered cubic (FCC) lattice with the surfaces of (100), 
(110) and (111) in contact with the liquid. The surface structure of the (100), (110) and (111) lattices 
is shown in Fig. 2. An identical surface is utilized on both (left and right) sides of the simulation 
system. The contact surfaces of solid and liquid on the left and right sides of the simulation system 
are referred here as S-L interfaces 
 

2.2 Potential Functions 

 
The liquid consists of liquid alkanes that namely are methane (CH4) and butane (C4H10). In this 

study the liquid alkanes is modelled using united atom (UA) model. In the UA model, the hydrogen 
atom is grouped in a single interaction site located at the carbon atom that represented as 
pseudoatom. The pseudoatom connected to another pseudoatom to represent linear alkane 
molecules [24–26]. The UA NERD potentials is utilized in the present system to modelled C4H10 
liquid. The UA NERD potentials consists of bond bending, bond stretching, torsion and non-bonded 
interaction where the details of the potential functions and parameters are found elsewhere [26–
28]. For the CH4 liquid, it was modelled by Transferable Potential for Phase Equilibria (TraPPE) force 
field, where the UA was utilized to model the CH4 molecules as a pseudoatom. The parameters for 
the interaction between each pseudoatom is described by using the Lennard Jones 12-6 (LJ) 
potentials [29]. The LJ potential is given as follows 
 

σ σ
ε

    
 = −           

12 6

( ) 4 ij ijLJ

ij ij

ij ij

U r
r r

         (1) 

 
The rij is the distance between atoms i and j. The energy parameters are εij = 2.0433 × 10-21 and 

σij = 3.73 Å. The solid walls is describe by Morse potentials, the same potentials have been utilized 
in ref [30]. The Morse potentials is given as follow 

 
α α− − − −
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ij
r D e e          (2) 

 
The D = 7.6148 × 10−20 J, r0 = 3.0242 Å and α = 1.5830 Å−1 [31]. rij is the distance between atoms i 
and j. The interaction between solid atom and liquid molecules was modelled by the LJ potentials 
and the parameters for the interaction were calculated based on the Lorentz-Bertholet (LB) 
combining rules. The LB combining is given as follow 
 

ε ε ε=
sl ss ll , and 

σ σ
σ

+
=

2
ss ll

sl .         (3) 

The s and l belong to solid and liquid respectively. The parameters of ε and σ for solid atom is 
given as 2.7109 × 10-22 J and 3.70 Å, respectively [32]. The interaction parameters were truncated 
beyond the cut-off radius of 12.0 Å. The size of the simulation systems were approximately 
40 × 40 × 120 Å for the Lx, Ly and Lz, respectively. Periodic boundary condition was used on the x- 
and y-directions of the simulation system. The outermost layer of solid atoms was set to be fixed on 
its position as to ensure that the system is not fluctuating or drifting during simulation. 
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2.3 Simulation method 

 
The reversible Reference System Propagator Algorithm (r-RESPA) method with multiple time 

step was utilized for the time integration. One femto second (fs) and 0.2 fs time integration was 
utilized for intermolecular motions and intramolecular motions respectively. 

Initially the temperature of the simulations system was raised to the targeted temperature, at 
the 0.7 of the critical temperature (TC) for the liquid using velocity scaling method. Then, the 
simulation system was equilibrated for 1 to 4 million time steps until a uniform temperature is 
acquired at the targeted temperature. After that, by using velocity scaling method, a high 
temperature was applied to two parallel solid walls and the low temperature was applied at the 
center of the liquid as shown in Fig. 1. The heat flux applied across the simulation system is 
approximately 200 MW/m2 regardless the types of liquid alkanes and crystal planes. The simulation 
system was then run for 3 to 5 million time steps until steady state is acquire. After steady state is 
acquired, then the data acquisition step is run for 10 to 20 million time steps. The variation in the 
time step depend on the size of the liquid molecules, where longer molecular length of liquid 
required more time step to have the obtained data to be converged. 

The thermal conductivities of present simulation system have been validated by the author’s 
previous study [26]. The deviation between the experimental data and simulated one was 
approximately 20% for CH4 liquid and 10% for C4H10 liquid. 
 
3. Results and Discussions 

3.1 Temperature Distributions 

 

In order to calculate the temperature distributions of the simulation system, it is first divided 
into a number of slabs. The definition of the slabs to calculated the temperature distributions is 
found elsewhere [27,33]. 

In the present simulation system, the temperature is calculated from the random velocity of 
each molecule. In this study the temperature distributions is divided into x-, y- and z-components 
since the random velocity of molecules consisted of x-, y- and z-directions. Figure 3 shows the 
temperature distributions in x-, y- and z-components for liquid CH4 facing (110) lattice. The x-, y- 
and z- components of temperature is refer here as Tx, Ty and Tz, respectively. The similar profile of 
temperature distributions is observed for all cases of FCC lattices and liquid C4H10. It is found that 
near the S-L interfaces the distributions of thermal energy is different between the Tx, Ty and Tz. 
This can be considered as the nonequilibrium thermal energy which was also observed in previous 
study for shearing system [27]. This indicate that different component will generate different 
thermal energy transfer across the S-L interfaces.  

In order to further understand the characteristics of thermal energy transfer across the S-L 
interfaces the temperature jump at the S-L interfaces is measured. The same evaluation of 
temperature jump as in ref [27] was utilized in the present study. Table 1 tabulated the value of 
temperature jump for CH4 liquid and C4H10 liquid in contact with (100), (110) and (111) lattices. 

It is found that small temperature jump is observed for Tz regardless of the types of FCC lattices 
and types of liquid alkanes. For the cases of (100) and (111) crystal planes the value of Tx and Ty is 
almost similar, and Tz is the smallest among the components of temperature. However, for the case 
of (110) crystal plane the Tx, Ty and Tz is in the decreasing order, where Tx is the highest follow by 
Ty and the smallest is Tz. Based on temperature jump and surface structure of FCC lattices shown in 
Fig. 2, it is understood that different surface structure will generate different characteristics of 
temperature jump. It is found that the temperature jump for C4H10 is slightly higher than CH4 liquid, 
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this indicate the different size of liquid molecules will generate different thermal energy transfer 
which was also observed in previous study [26].  

 

 
Fig. 3. Temperature distribution of Liquid CH4 confined between the two parallel 
solid walls 

 
Table 1 

The temperature jump in Tx, Ty and Tz for CH4 liquid and C4H10 liquid 

Crystal 
plane 

CH4 (Methane) C4H10 (Butane) 
Temperature Jump (K) Temperature Jump (K) 

average Tx Ty Tz average Tx Ty Tz 

100 22.9 25.2 25.1 18.5 23.0 23.8 23.8 21.4 
110 17.2 18.5 17.2 16.0 22.1 22.9 21.8 21.7 
111 19.5 21.2 20.9 16.3 21.0 21.3 21.6 20.0 

 

 

3.2 Thermal Boundary Resistance 

 
Thermal boundary resistance (TBR) is the measurement of thermal energy resistance at the S-L 

interfaces. It is given as follows: 
 

∆
=

T
TBR

J
            (4) 

 
The ΔT represent the temperature jump and J is the heat flux applied throughout the simulation 
system. Since the temperature is divided in three components, the TBR is also divided into three x-, 
y- and z-components. The TBR in each component is calculated as follow; the average temperature 
jump is divided by the amount of heat flux measure in each x-, y- and z-components.  

Table 2 shows the TBR for CH4 liquid and C4H10 liquid facing the (100), (110) and (111) lattices. 
Based on the value of TBR it is found that the TBR is in the order of (110), (111) and (100) lattices 
start from the lowest to the highest, regardless the types of liquid alkanes. In general, although the 
TBR in each component is not directly calculated from the components of temperature jump, the 
same trends is observed in the temperature jump of the Tx, Ty and Tz for the cases of (100), (110) 
and (111) lattices. Based on the observation, it suggests that the TBR is correlated with 
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temperature jump. For the cases of (100) and (111) lattices, the x- and y-components of TBR is 
larger than z-component, for both types of liquid alkanes. This indicate that z-component is the 
main contributor to the heat transport at the S-L interfaces and x, and y-components of TBR 
contribute less to the heat transport at the interfaces. It is found that different characteristics is 
observed for y-component of TBR for the case of (110) lattice, where the TBR is the lowest as 
compared to (100) and (111) lattice, regardless the types of liquid molecules. This indicate that y-
component for the case of (110) lattice has larger contribution of heat transport at the S-L 
interfaces as compared to (100) and (111) lattice. As shown in Fig. 2, there is lattice corrugation 
along the x-axis of (110) lattice. The lattice corrugation enhances the heat transport at the S-L 
interfaces thus the heat transport from y-component is increased as observed in the y-component 
of TBR shown in table 2.  

It is observed table 2 that the total value of TBR is larger for C4H10 liquid as compared to CH4 
liquid. This indicate that different type of liquid molecules will generate different heat transport at 
the S-L interfaces although both molecules of CH4 and C4H10 liquids consisted of the same atoms 
which is hydrogen and carbon.  
 

Table 2 

Thermal boundary resistance (TBR) in x, y and z-component for CH4 and C4H10 

Crystal 
plane 

CH4 (Methane) C4H10 (Butane) 

TBR (m2K/W X 10-6) TBR (m2K/W X 10-6) 

Total x y z Total x y z 
100 0.1215 1.9980 1.7600 0.1396 0.1222 1.8260 1.9590 0.1403 
110 0.0907 1.8780 0.3898 0.1262 0.1131 1.8090 0.6401 0.1486 
111 0.1031 2.569 2.029 0.1134 0.1112 2.6330 1.9940 0.1232 

 
 

4. Conclusions 

 
The characteristics of heat transport at the S-L interfaces was investigated using molecular 

dynamics simulations. It is found that the temperature jump existed at the S-L interfaces. This 
different temperature jump is observed for different surface structure of face-centered cubic (FCC) 
lattices and different types of liquid molecules. The thermal boundary resistance (TBR) is correlated 
with the temperature jump where large temperature jump exhibits a large TBR. It is also observed 
that there is variation of temperature jump and TBR depending on the different types of liquid 
molecules. Lastly, from the results, it is suggested that the characteristics of heat transport across 
the S-L interfaces is significantly influenced by the surface structure of the FCC lattice and the types 
of liquid molecules. 
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