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ABSTRACT 
 

Electromyography (EMG) pattern recognition has recently drawn the attention of the researchers to its 
potential as an efficient manner in rehabilitation studies. In this paper, two time-frequency methods, 
discrete wavelet transform (DWT) and spectrogram are employed to obtain the time and frequency 
information from the EMG signal. Seventeen hand and wrist movements are recognized from the EMG 
signals acquired from ten intact subjects and eleven amputee subjects in NinaPro database. The root mean 
square (RMS) feature is extracted from each reconstructed DWT coefficient. On the other hand, the average 
energy of spectrogram at each frequency bin is extracted. The principal component analysis (PCA) 
preprocessing is applied to reduce the dimensionality of feature vectors. Four different classifiers namely 
Support Vector Machines (SVM), Decision Tree (DT), Linear Discriminate Analysis (LDA) and Naïve 
Bayes (NB) are used for classification. By applying SVM, DWT achieves the highest mean classification 
accuracy of 95% (intact subjects) and 71.3% (amputees). To validate our experimental results, the 
performance of DWT and spectrogram features are compared to other conventional methods. The obtained 
results obviously evince the superiority of DWT in EMG pattern recognition. 

Keywords: Electromyography (EMG), Discrete wavelet transform (DWT), Spectrogram, Pattern 
recognition. 

 
1. INTRODUCTION  

Malaysia Social Security Organization 
(SOCSO) reported almost 25% of workers 
continued to have upper limb injuries that 
decreased their independence [1]. Majority of upper 
limb injuries are related to the hand, wrist and 
forearm [1], [2]. Workers with injured hand not 
only endure the pain, but also experience muscle 
weakness, muscle fatigue and muscle pain [3]. In 
addition, majority outcome of the surgery is 
unexpected and disappointed. Furthermore, upper 
limb is so dexterous and precious to a human. 
Without upper limb, human is not able to perform 
daily life actions including wrist and functional 
motions. Especially, an amputee, who lost his upper 
limb and the life has become challenge. 

In recent days, electromyography (EMG) 
has been widely used in clinical and rehabilitation 

areas. Most of the researchers made use of the 
surface electromyography (sEMG) to measure and 
record the electrical activity of muscle contraction 
for rehabilitation purpose [4]–[7]. For examples, 
the myoelectric prosthetic hand based EMG not 
only profits the amputee, but also benefits the stoke 
survivor and injured worker. However, researchers 
face difficulties in obtaining high accuracy in 
classifying EMG signal. The inconsistency of 
muscle fatigue and noises seriously falsified the 
pattern recognition [8]–[10]. Therefore, several pre-
processing is required to overcome the limitation.  

Previous studies focused on the time 
domain (TD) features in classification of EMG 
pattern due to its speed and simplicity [11], [12]. 
However, TD does not contain spectral information 
and it demands a high number of features in 
achieving high classification accuracy [13]. 
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Therefore, the time-frequency distribution, such as 
wavelet transform (WT) and the short time Fourier 
Transform (STFT) are introduced. STFT is a time-
frequency representation (TFR) which provides 
high frequency using fixed time-frequency 
resolution [13]. On the other hand, WT can be 
categorized into discrete and continuous and it is 
good in transforming the signal into a flexible time 
and frequency resolution [9]. Most studies to date 
indicated that discrete wavelet transform (DWT) 
has been successfully applied in biomedical 
application [14], [15]. In one study, WT and STFT 
have been compared and WT showed to be more 
useful since it provided a changeable resolution in 
the analysis of the EMG signal [16]. Moreover, K. 
Englehart et al. [17] compared the TD, STFT and 
WT and the authors found that WT offered a better 
performance in classifying EMG signals.    
However, only the comparison of four classes was 
done and the analysis of amputee subject did not 
include in the study. It is worthwhile to mention 
that a multifunctional myoelectric prosthetic hand, 
which including multiple number of hand 
movement is preferred in rehabilitation. In addition, 
it is noticed that the classification of EMG pattern 
recognition for amputee subject is still insufficient. 
To our knowledge, the performance comparison 
between DWT and spectrogram are remain unclear 
and insufficient in EMG pattern recognition, 
especially for large number of hand movement and 
amputee subject. 

In this study, the performance of DWT and 
spectrogram of intact and amputee subjects in EMG 
pattern recognition are investigated. In the first 
step, DWT and spectrogram are employed to 
transform the EMG signal into time frequency 
distribution. Then, the features are extracted from 
spectrogram and DWT coefficients. However, the 
extracting features lead to a high dimensional 
feature vector. To reduce the dimensionality, the 
principal component analysis (PCA) has been 
applied.  In the second step, the machine learning 
techniques such as Naïve Bayes (NB), Support 
Vector Machines (SVM), Linear Discriminate 
Analysis (LDA) and Decision Tree (DT) are used 
to classify the hand movement types. After that, the 
performance of classifier is evaluated using 
statistical analysis. Finally, the performance of 
DWT and spectrogram are compared with other 
conventional methods. Through the analysis, it can 
be inferred that DWT is a useful tool in EMG 
pattern recognition.    

 
2. MATERIALS AND METHODS 

2.1 Materials  
The NinaPro database, which consists of a 

huge number of  EMG dataset for multiple hand 
movements is used in this work [18], [19]. NinaPro 
database is a publicly accessible EMG database that 
has previously been employed for EMG pattern 
recognition studies [20], [21]. The NinaPro 
Database 3 (DB3) and 4 (DB4) contain EMG 
signals recording from 11 amputees and 10 intact 
subjects, respectively. In DB3 and DB4, the 
exercise B including 8 isometric and isotonic hand 
configurations and 9 basic movement of wrist are 
used in this work. Table 1 outlines the hand 
movement tasks of exercise B. In the experiment, 
each movement was repeated for six times with 3 
seconds resting state in between. There are 12 
electrodes were used and sampled at the rate of 
2000 Hz with the resolution of 16 bits. The 
placement of electrode was described as follow: 
Electrode 1 to 8 were equally placed around the 
forearm at the height of the radio-humeral joint. 
Electrode 9 and 10 were placed on the main activity 
spot of flexor digitorum superficialis and extensor 
digitorum superficialis. Finally, electrode 11 and 12 
were fixed at the main activity spot of biceps 
brachii and triceps brachii. The acquired EMG 
signals were then filtered by a Hampel filter to 
prevent the 50 Hz power line interference. Note that 
all resting states are removed before further 
processing.     

 
Table 1: List of hand movement task [18]. 

Index Hand Movement 
1 Thumb up 
2 Extension of index, middle and flexion of 

others 
3 Flexion of ring, little and extension of 

others 
4 Thumb opposing base of little finger 
5 Abduction of all fingers 
6 Fingers flex together in fist 
7 Pointing index 
8 Adduction of extend fingers 
9 Wrist supination (axis: middle finger) 
10 Wrist pronation (axis: middle finger) 
11 Wrist supination (axis: little finger) 
12 Wrist pronation (axis: little finger) 
13 Wrist flexion 
14 Wrist extension 
15 Wrist radial deviation 
16 Wrist ulnar deviation 
17 Wrist extension with closed hand 

 
Figure 1 presents the flow diagram of the 
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proposed hand movement recognition system. In 
the first step, EMG data are collected from NinaPro 
Database. Then, spectrogram and DWT are used for 
signal processing. Next, features are extracted from 
spectrogram and DWT coefficients. The PCA is 
applied for features reduction before classification.  
In the final stage, four classifiers are employed to 
evaluate the performance of extracting features for 
discriminating the hand movement types. 

 
Figure 1: Proposed hand movement recognition 
architecture. 
 
2.2 Feature Extraction using Spectrogram 

In general, EMG signal is presented in 
time domain (TD) and it can be transformed into 
frequency domain (FD) using Fast Fourier 
Transform (FFT) [22], [23].  However, TD and FD 
present in limited precision with regular window 
size [24]. To overcome this limitation, spectrogram 
is introduced to  transform the EMG signal in time-
frequency representation (TFR) [25]. Spectrogram 
is the most fundamental of the signal processing 
tool in noise and artifact reduction [26]. In each 
channel, spectrogram is applied using 256-point 
FFT with Hanning window size of 128 ms (256 
samples) and 50% overlap (128 samples). 
Spectrogram can be expressed in the equation as: 

2

2( , ) ( ) ( ) j fS t f x w t e d   






   (1) 

where x(τ) is the input signal and w(τ-t) is referred 
to the Hanning window function. 

Spectrogram represents the signal in the 
time-frequency plane and it illustrates the energy 
distribution for each frequency component. Figure 
2 demonstrates the contour plot of a spectrogram. 
The red areas exhibit higher amplitude. In turn, the 
blue areas display lower amplitude. For each 
spectrogram, the average energy of each frequency 
bin is extracted. A previous study reported the 
efficient frequency component of EMG signal was 
ranging from 6 to 500 Hz [23]. In this study, the 
average energy with the range of 1 to 500 Hz is 

used. The average energy can be represented as: 

0

1
( , )

T

f

t

E S t f dt
T 

   (2) 

where Ef is the average energy at fth frequency bin. 
In total, 65 features are extracted from each 
spectrogram form each channel. 

Figure 2: Spectrogram of the EMG signal in a 2000-
point window acquired from a hand motion from one 
subject. 
 
2.3 Feature Extraction using DWT 

The discrete wavelet transform (DWT) 
exhibits the time and frequency information of the 
signal at the same time [27]. Hence, DWT presents 
the EMG signal in time scale representation. 
Commonly, DWT decomposes a series of time 
domain signal into multiresolution coefficients 
[14]. More specifically, DWT offers good 
frequency resolution at low frequency component, 
whereas the high frequency component can be 
considered as noise [14], [28]. Discrete wavelet 
transform can be expressed as: 

1
( , )

t b
a b

aa
         

  
 (3) 

where ψ(t) is the mother wavelet function, a is the 
scale parameter and b is the time localization. In 
wavelet decomposition, the signal is filtered by the 
high-pass filter h(n) and low-pass filter g(n). This 
process is repeated dependent on the decomposition 
level [9], [29]. The first level of the decomposition 
can be generated as: 

( ) ( ) (2 )high
n

y k x n h k n    (4) 
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( ) ( ) (2 )low
n

y k x n g k n    (5) 

where x(n) is the original signal, yhigh(k) and ylow(k) 
represent the detail, D1 and approximation, A1, 
respectively [28]. The detail, D represents the EMG 
signal at high frequency. In contrast, the 
approximation, A is the low frequency component 
[30].   

Selection of the mother wavelet is the 
most critical part in wavelet transform. In the 
previous research, the best mother wavelet to 
analyze the EMG signal was coming from 
Daubechies family, which were Db4, Db7 and 
Db44 at the fourth decomposition level [9], [14], 
[27], [31], [32]. In this work, the Db4 at fourth 
decomposition level is used. Figure 3 demonstrates 
the wavelet decomposition at fourth decomposition 
level. As can be seen, the EMG signal is 
decomposed into four detail and approximation 
components. 

In the previous research, the wavelet 
reconstruction has shown its potential in 
discriminating EMG signals [14], [32]. To obtain a 
more reliable and effective EMG signal part, these 
detail and approximation records are reconstructed 
using inverse discrete wavelet transform as shown 
in Figure 4. For example, the reconstructed 
approximation, rA2 can be achieved by performing 
the inverse wavelet transform on second level 
approximation, A2. The same procedure is 
employed to obtain the reconstructed detail (rD1-
rD4) and approximation (rA1-rA4) at each 
decomposition level.  

 

 
Figure 3: Wavelet decomposition configuration. 

 
The feature extraction method is used to 

extract useful information from each reconstructed 

wavelet coefficient. According to literature, root 
mean square (RMS) feature not only offered high 
classification accuracy but also provided 
information related to the muscle contraction and 
force [14], [28], [32]. Therefore, in this paper, the 
RMS feature is used for performance evaluation. 
Mathematically, RMS can be expressed as: 

,
1

1 N
n

m m k
n

RMS D
N 

   (6) 

where D is wavelet coefficients, m is the number of 
decomposition level, N is sample length and k 
represents the discrete wavelet node. After feature 
extraction, a total number of 8 features are obtained 
from each channel.   

 

 
Figure 4: Wavelet reconstruction of detail (rD1-rD4) and 
approximation (rA1-rA4) coefficients using an EMG 
signal in a 2000-point window acquired from a hand 
motion from one subject. 
 
2.4 Principal Component Analysis 

Principal component analysis (PCA) is a 
widely used technique for feature and 
dimensionality reduction [33], [34]. Feature 
reduction is an indispensable step to reduce the 
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high dimension of feature vector before training a 
machine learning model [35]. PCA constructs the 
feature vector into smaller number of principal 
components (PCs) by computing the orthogonal 
linear transform with correlated variables [23], 
[35].  

After the features extracted from 
spectrogram and DWT, PCA is applied to each 
channel to reduce the dimension of the high 
dimensional feature vectors. Let the number of 
feature vector to be g and the dimension of feature 
vector was (g x d). First, the mean of the feature 
vectors is calculated and subtracted from the feature 
vectors [23]. Next, the eigenvalues and 
eigenvectors of the covariance matrix are computed 
using singular vector decomposition [36]. Finally, 
the PCs are constructed. In this work, first three 
PCs are employed, and the remaining are ignored 
due to less influential on feature data. The first 
three principal components can be defined as: 

 1 2 3'X X PC PC PC   (7) 

where Xʹ is the output of g by 3 matrixes. By 
applying feature reduction, the feature number of 
DWT and spectrogram become 36 (3 features or 
PCs   12 channels).   
 
2.5 Classification 

In recent days, machine learning is widely 
used in EMG prosthetic and assistive robot system 
for rehabilitation and clinical application. The 
extracted features after PCA preprocessing are 
classified into different classes. In this work, six-
fold cross validation method is employed since 
there are six repetitions for each movement. The 
data are randomly separated into six equal parts and 
each part is used for testing in succession. At the 
same time, the remainders are used for training.  

Four classifiers, SVM, DT, LDA and NB 
are implemented in the EMG recognition system. 
All analysis was done in the Matlab 9.2. Linear 
discriminate analysis (LDA) is a commonly used 
classifier in EMG pattern recognition. LDA is a 
statistical classification method which is not only 
covers the boundary points but also the different 
data points lie on the hyperplane [37]. In addition, 
LDA calculates the parameters of discriminate 
function from the training features to evaluate the 
boundary space in hyperplanes among multiple 
classes [38]. In LDA, it is assumed that the feature 
vector variables to be a multivariate normally 

distributed [39].   
Naïve Bayes (NB) is a machine learning 

method that predicts the density of the data set. NB 
is a truly qualified classifier due to its good 
behavior in the classification task [40], [41]. 
Additionally, NB made use of Bayes theorem to 
estimate the probability of  data by assuming all 
features are independent [42]. Moreover, NB 
identifies the most probable class by evaluating the 
probability of new features. However, NB is very 
sensitive to the appearance of noise and redundant 
[40]. In this analysis, the Gaussian distribution is 
applied in NB for kernel smoothing density 
prediction. 

Support vector machines (SVM) is a well-
stablish machine learning method in classifying 
neuromuscular disease and pattern recognition 
application [36]. Previous studies indicated SVM 
showed a promising result in differentiating 
multiple hand motions [4], [30], [43]. Generally, 
SVM searches for a hyperplane to partition the data 
into member of two classes. Then, the optimal 
hyperplane maximizes the distance between two 
parallel line (margin) [23]. Moreover, SVM has 
shown its superiority, especially for non-linear and 
high dimensional pattern recognition [44]. 
Nevertheless, the major drawbacks of the SVM are 
high computational time and selection of kernel 
function [30], [36]. The performance of SVM is 
mostly based on the kernel function. According to 
literature, the radial basis function (RBF) is widely 
used due to its potential in discriminating the 
features that are not linearly separable [23], [42]. In 
this work, the Error Correcting Output Coding 
(ECOC) with the RBF kernel function is employed 
to classify the hand movement types in SVM 
model. ECOC applied SVM using redundant bits to 
encode each hand movement and solve the 
multiclass problem [45]. 

Decision tree (DT) is a well-known 
knowledge based classification technique [46]. DT 
applies the partitioning if-then rule which 
comprised of splitting characteristic to create nodes 
in the classification process [29]. In DT, the tree is 
developed together with the root and further 
divided the branches connected the nodes from the 
root until the leaves are reached [29], [46], [47]. 
Each node is linked to one of the attributes 
(properties). After test and error, the maximum 
number of splits is set at 100 to ensure the quality 
of splitting function. The best level of split is 
evaluated before performance evaluation. 
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3. RESULT AND DISCUSSION 

In this section, the experimental results are 
clearly presented. For the first part of the 
experiment, the performance of DWT and 
spectrogram of intact and amputee subjects are 
evaluated and compared. Table 2 and 3 summarize 
the classification accuracy for all ten intact subjects. 
By using spectrogram feature set and SVM, 
majority of the subject achieves classification 
accuracy of above 90% except for subject 2 and 3. 
In contrast, high classification accuracy above 90% 
is obtained for nine subjects with DWT feature set. 

Across all ten intact subjects, Friedman 
test is applied to measure the performance of four 
different classifiers. The results show that there is a 
statistical significant difference in the classification 
accuracy of SVM versus DT (p < 0.05), SVM 
versus NB (p < 0.05), DT versus LDA (p < 0.05) 
and DT versus NB (p < 0.05) in both DWT and 
spectrogram feature sets. However, no statistical 
significant can be found when SVM versus LDA (p 
= 0.7290) and NB versus LDA (p = 0.5271) for 
DWT and spectrogram feature set, respectively. 
 

Table 2: Classification accuracy of four different 
classifiers of intact subjects for DWT feature set.  

Subject    
Classifiers 

DT (%) NB (%) SVM (%) LDA (%) 
1 77.45 87.25 97.06 98.04 
2 60.78 90.20 96.08 97.06 
3 72.55 89.22 89.22 89.22 
4 73.53 84.31 96.08 93.14 
5 69.61 89.22 94.12 93.14 
6 75.49 87.25 97.06 95.10 
7 79.41 92.16 94.12 97.06 
8 64.71 79.41 94.12 91.18 
9 74.51 92.16 99.02 96.08 
10 73.53 91.18 93.14 95.10 
Mean 72.16 88.24 95.00 94.51 
STD 5.702 3.949 2.713 2.819 

 
Table 3: Classification accuracy of four different 
classifiers of intact subjects for spectrogram feature set. 

Subject 
Classifiers 

DT (%) NB (%) SVM (%) LDA (%) 
1 66.67 87.25 92.16 91.18 
2 63.73 83.33 89.22 80.39 
3 74.51 82.35 87.25 77.45 
4 74.51 88.24 92.16 84.31 
5 76.47 81.37 90.20 86.27 
6 78.43 79.41 91.18 84.31 
7 80.39 88.23 94.12 87.25 
8 71.57 84.31 90.20 81.37 
9 66.67 84.31 91.18 93.14 
10 73.53 83.33 90.20 80.39 
Mean 72.65 84.22 90.78 84.61 

STD 5.458 2.939 1.860 4.979 

 

 

 

Figure 5 illustrates the mean classification 
accuracy of DWT and spectrogram across ten intact 
subjects. One can see that all classifiers 
successfully discriminate the hand movements with 
accuracy of above 80% except DT.  As can be seen 
in Figure 5, as well as Table 2 and 3, DWT feature 
set achieves high mean classification accuracy of 
95% (SVM), 94.51% (LDA), 88.24% (NB) and 
72.16% (DT). For instance, DWT shows an 
increment of 4.22% (SVM), 9.9% (LDA) and 
4.02% (NB) mean classification accuracy compared 
to spectrogram. From the Figure 5, DT shows the 
lowest mean classification accuracy as compared to 
other classifiers. The best classification accuracy of 
DT is 72.65% achieved using spectrogram feature 
set. 
 

 
Figure 5: Mean classification accuracy of spectrogram 
and DWT feature sets across ten intact subjects. 
 

The classification accuracy of eleven amputees 
were shown in Table 4 and 5. It is observed that 
amputee 1, 8, 9 and 11 are able to obtain a high 
classification accuracy of above 80% when DWT 
and SVM are used. Unfortunately, amputee subject 
7 has a very low accuracy in both spectrogram and 
DWT feature sets. This may be due to amputee 
subject 7 has lost his entire forearm in the accident 
and he has no experience of using prosthesis. 

For instance, the results of Friedman test indicate 
there is no statistical significant difference in the 
classification performance of SVM versus LDA (p 
= 0.0578) and SVM versus NB (p = 0.1317) for 
DWT and spectrogram feature sets, respectively. In 
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contrast, the remaining tests show the statistical 
difference (p < 0.05) in both DWT and spectrogram 
feature sets.      

 
 
 
 

Table 4: Classification accuracy of four different 
classifiers of amputee subjects for DWT feature set.  

Amputee 
Classifiers 

DT (%) NB (%) SVM (%) LDA (%) 
1 64.71 80.39 84.31 80.39 
2 38.24 58.82 74.51 70.59 
3 33.33 58.82 70.59 69.61 
4 38.24 57.84 71.57 73.53 
5 35.29 49.02 56.86 50.98 
6 62.75 71.57 75.49 73.53 
7 22.55 29.41 40.20 30.39 
8 67.65 79.41 88.24 80.39 
9 65.69 88.24 90.20 87.25 
10 27.45 45.10 44.12 51.96 
11 60.78 81.37 88.24 88.24 
Mean 46.97 63.64 71.30 68.81 
STD 17.56 18.18 17.41 17.31 

 

Table 5: Classification accuracy of four different 
classifiers of amputee subjects for spectrogram feature 
set. 

Amputee 
Classifiers 

DT (%) NB (%) SVM (%) LDA (%) 
1 57.84 76.47 80.39 68.63 
2 40.20 61.76 65.69 63.73 
3 34.31 57.84 57.84 51.96 
4 31.37 62.75 64.71 68.63 
5 47.06 47.06 54.90 43.14 
6 52.94 64.71 59.80 61.76 
7 17.65 26.47 25.49 25.49 
8 71.57 75.49 77.45 67.65 
9 68.63 84.31 85.29 73.53 
10 29.41 34.31 39.22 31.37 
11 60.78 84.31 82.35 70.59 
Mean 46.52 61.41 63.01 56.95 
STD 17.67 18.51 18.43 16.91 

 
From Figure 5 and 6, it shows that the 

hand movement types of intact subjects are well 
classified compared to amputee subjects. The 
highest mean classification accuracy obtained by 
intact and amputee subjects are 95% (DWT+SVM) 
and 71.30% (DWT+SVM), respectively. As can be 
seen, the optimal performances are fall in the 
combination of DWT and SVM model. Evidently, 
DWT is proved to be an effective and reliable time-
frequency method in the classification of EMG 
signals. It is believed that DWT is more useful in 
discriminating the hand movements instead of 
using spectrogram.   

In addition, the performances of the best 
intact and amputee subjects are also investigated. It 
has been found that intact subject 9 achieves the 
best accuracy of 99.02% (DWT+SVM). By 
contrast, the optimal accuracy of 90.2% 
(DWT+SVM) is obtained by amputee subject 9. 
Note that amputee subject 9 has the experience of 
using myoelectric prosthesis. These results indicate 
the performance of EMG pattern recognition 
system can be improved if a proper training of 
prosthesis use is provided. In addition, the 
performance of intact subjects is more consistent 
and stable due to a smaller standard deviation 
value. Unlike intact subject, the performance of 
amputee subjects is not consistent since most of 
them do not share the same clinical characteristic. 
 

 
Figure 6: Mean classification accuracy of spectrogram 
and DWT feature sets across eleven amputee subjects. 
 

In the second part of the experiment, 
specificity and F-measure are calculated to evaluate 
the performance of classifiers [29], [48]. To analyze 
the specificity and F-measure, the number of true 
positive (TP), true negative (TN), false positive 
(FP) and false negative (FN) from the confusion 
matrix are first identified. TP is the number of 
classes that are correctly predicted. TN is the 
number of classes that did not belong to the true 
class and they have been correctly predicted. FP is 
the number of classes that did not belong to the true 
class and they have been wrongly predicted. FN is 
the number of classes that are wrongly predicted. 
The specificity can be expressed as: 

TN
Specificity

TN FP



 (8) 

The F-measure can be calculated as: 
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2

2

TP
F measure

TP FN FP
 

 
 (9) 

The specificity and F-measure are 
calculated as shown in Table 6 and 7. The results 
illustrate SVM outperforms other classifiers in both 
DWT and spectrogram feature sets. In terms of 
specificity, SVM obtains the highest specificity 
value, 0.9969 (DWT) and 0.9942 (spectrogram). 
Moreover, F-measure value indicates SVM is more 
appropriate for the classification of EMG signals. 
By contrast, DT is found to be a classifier with 
higher misclassification rate due to low specificity 
and F-measure values. It is clear evinced that DT 
has the worst performance. This might be due to the 
sensitivity of DT to a greater number of classes. 
Thus, DT does not classify the hand movements 
very well. On the other hand, it is worth noting the 
value of specificity is higher even for the amputee 
subjects. This would be a smaller number of FN 
obtained by each classifier. Overall, SVM is found 
to be the best classifier in this study. SVM not only 
good in classifying the hand movement types of 
intact subjects but also offers optimal performance 
in amputee subjects. 

Table 6: Performance comparison of four classifiers for 
intact subjects. 

Classifier 

Statistical parameters 
DWT feature sets Spectrogram feature 

sets 
Specificity F-

measure 
Specificity F-

measure 
DT 0.9826 0.7208 0.9829 0.7268 
NB 0.9926 0.8826 0.9901 0.8431 
SVM 0.9969 0.9498 0.9942 0.9078 
LDA 0.9966 0.9452 0.9904 0.8473 

 
Table 7: Performance comparison of four classifiers for 
amputee subjects. 

Classifier 

Statistical parameters 
DWT feature sets Spectrogram feature 

sets 
Specificity F-

measure 
Specificity F-

measure 
DT 0.9669 0.4693 0.9666 0.4643 
NB 0.9773 0.6382 0.9759 0.6159 
SVM 0.9821 0.7125 0.9769 0.6307 
LDA 0.9805 0.6888 0.9731 0.5709 

 
In the final part of the experiment, the 

performance comparison of proposed recognition 
system with other conventional methods are 
presented. It is not desirable, however, to validate 
our results, the performance of DWT and 

spectrogram feature sets are compared with other 
conventional methods. According to the previous 
work in NinaPro project, marginal DWT (mDWT), 
root mean square (RMS) and Hudgins’s time 
domain (TD) features have been applied in the 
classification process [18], [19]. The question is, is 
that RMS extracted from DWT coefficients 
perform better than RMS, TD and mDWT feature 
sets? However, it is very challenging for the 
comparison due to different number of hand 
movement types. Thus, we conduct the 
classification procedure based on [18], [49] to 
ensure a fair comparison.  For mDWT, the mother 
wavelet of Db7 at third decomposition level is 
employed. On one side, TD feature sets including 
mean absolute value (MAV), wavelength (WL), 
slope sign change (SSC) and zero crossing (ZC) are 
extracted [50]. For performance evaluation, only 
SVM is used since it offers the greatest 
discriminate power in classifying EMG patterns. 

 Figure 7 illustrates the mean classification 
accuracy of SVM for five different feature sets. 
Obviously, DWT feature set outperforms other 
methods in differentiating hand movement types. 
For intact subject, mDWT achieves a high accuracy 
of 94.31%, which is 0.69% lower than DWT 
feature set. The results indicate the performance of 
DWT feature set and mDWT are similar 
(p=0.5271). For amputee subject, the worst 
accuracy can be found in spectrogram feature set. 
Indeed, spectrogram feature set gives a high 
accuracy across intact subject. However, it does not 
recognize the hand movement performed by 
amputees very well. In turn, DWT feature set yields 
a satisfactory accuracy, 71.3%, followed by TD, 
71.06%. The finding of current work shows that 
DWT feature set guarantees a higher classification 
performance and it is more appropriate to be used 
in the rehabilitation and engineering studies.   
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Figure 7: Mean classification accuracy of SVM for five 
different feature sets. 
 
4. CONCLUSION 

In the current study, the performance of 
discrete wavelet transform, and spectrogram were 
compared. The features were extracted from the 
wavelet and spectrogram coefficients. The PCA 
was then applied to reduce the high dimension 
feature vectors into principal components and the 
first three PCs were fed into the classifiers for 
classification. By applying SVM, DWT feature set 
obtained the highest classification accuracy of 95% 
and 71.3% for intact and amputee subjects, 
respectively. Evidently, DWT achieved high 
classification accuracy and it is also showed an 
increment in specificity and F-measure value. The 
results showed that DWT not only outperformed 
spectrogram in classifying large number of hand 
movements, but also worked better on amputee 
subjects. Moreover, it has been found that DWT 
feature set guaranteed a better performance 
compared to other conventional methods. 
Therefore, it can be mentioned that DWT is more 
useful in the rehabilitation and engineering 
application. 
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