
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 10 (2018) pp. 219-226

© MIR Labs, www.mirlabs.net/ijcisim/index.html

Dynamic Publishers, Inc., USA

Received: 30 Dec, 2017; Accepted: 7 August, 2018; Publish: 17 August, 2018

The Potential Application of Blind Write Protocol

Nanna Suryana1, Khairul Anshar2 and Noraswaliza Binti Abdullah3

Faculty of Information and Communication Technology,

Universiti Teknikal Malaysia Melaka, Melaka, Malaysia
1,3 {nsuryana, noraswaliza}@utem.edu.my

2 p031420004@student.utem.edu.my

Abstract: The current approach to handle interleaved write

operation and preserve consistency in relational database system

relies on locking protocol. The application system does not have

other option to deal with interleaved write operation. In other

hand, allowing more write operations to be interleaved will

increase the throughput of database but it can result to an

inconsistent database state. Since the application system has their

own consistency and availability requirement then this paper

proposes blind write protocol as a complement to the current

concurrency control.

Since blind write protocol will not lock any entity, then it should

use read commited isolation level, auto commit, and request one

read operation only to be used in consistency validation. Because,

in between two read operations there could be another

transaction perform blind write operation to the same entity.

These two read operations which access the same entity may

return different value

Keywords: Concurrency control, interleaved transaction, locking,

consistency, availability, blind write.

I. Introduction

Current implementation of concurrency control in Database

Management System [1] handles the interleaved operations

and temporary inconsistent at the database system level.

Eswaran et al. described in [2], when someone is transferring

money from one to another bank account, there will be a

window that one bank account has been deducted but the other

account not yet added because they are performed in one

transaction that execute all the operations one by one. If this

happens, then there should no other transaction access those 2

bank accounts to preserve the consistency. Therefore, Eswaran

et al. proposed Locking Protocol. When any transaction is

trying to lock an entity, which is already lock by other

transaction, then it should wait or preempt. All the locking and

waiting operations are handled in the database system level.

Stearns et al. propose another approach that utilizing a version

of entity and certification process [3]. Each version of entity is

unique and it is used to identified the temporary inconsistent

entity. In this approach, any transaction can access any entity

including the one in the temporary inconsistent state

(uncertified version) with the consequence that the transaction

may be restarted by the concurrency control. Once the

transaction can get the terminate request granted, the they

become certified version otherwise it must be restarted.

Kung et al. in [6] proposed an optimistic approach which

utilizing local copies to handle temporary inconsistent. In this

approach, all reads and writes will be performed in the local

copies during the read phase. To make them available to other

transaction (globally) then it requires the integrity validation

before going to write phase. If the transaction is fail while

performing the integrity validation, then it must be restarted.

These 3 concurrency controls above are handling the

temporary inconsistent state at the system level. Thus,

application system has no option to deal with temporary

inconsistent state. In other hand, each application has different

consistency and availability requirement. It is developed to

fulfill the business requirement which is transformed into read

and write operation. Therefore, the application system has the

knowledge on how to deal with the consistency.

Moreover, the main objective of the concurrency control is to

increase the throughput of database by allowing more

operations to be interleaved as many as possible and at the

same time deliver the consistency required by the applicaiton.

Hence, this paper proposes blind write protocol as a

complement of current concurrency control to be applied in

the database system. Our motivation is to give the application

system a new option to deal with interleaved write operation.

Terry Doug explained in [16], high availability is not

sufficient for most application system, but strong consistency

is not needed either. Vogels argued in [13], there is a range of

applications that can handle slightly stale data, and they are

served well under this model. In other hand, Bernstein argued

in [17] that the high availability increases the application

complexity to handle inconsistent data. Therefore, let the

application system decide. If application system wants to

preserve strong consistency, then they can use normal write

otherwise use the blind write protocol.

We found several discussions about blind write. On 1981,

Stearns et al. explained in [7] “We make the assumption,

called the no blind writes assumption, that a process does not

issue a write request on a particular entity without first issuing

a read request on that entity.” On 1994, Mendonca et al

explained in [9] “In this paper we present a new replica

control protocol that logically imposes a hierarchy onto the

mailto:noraswaliza%7D@utem.edu.my

Suryana et al.

220

set of copies and introduces the blind write as another

operation. During a blind write operation, copies are

modified regardless of their previous values; such situation

occurs, for instance, in initializations.” On 1997, Burger et all

explained in [11] “One of the significant differences between

our work and the works reviewed above is that we have

simulated a write as a blind write (a read is not performed

before the data item is written).”

There are also some discussions which aims to allow more

operation to be interleaved such as in [10] and [15]. They

discussed about Read Committed and Snapshot Isolation.

Kemme et al explained in [12] that snapshot isolation with

First Committer Wins (FCW) feature can prevent dirty read,

lost update, nonrepeatable read, and read skew but it still

allows write skew concurrency anomalies. It means, the

database management system which use the snapshot isolation

still relies on the locking protocol to preserve consistency or to

make interleaved transactions are serializable [12].

The latest discussion on the concurrency control is trying to

make the snapshot isolation able to prevent write skew

concurrency anomaly. In other word, it is trying to make the

interleaved transactions become serializable [14] [15] [20].

The discussion on making the interleaved transactions in the

Read Committed Isolation become serializable is started in

[18]. Their approaches are to abort one of the interleaved

transaction to make the Read Committed and Snapshot

Isolation becomes serializable if conflict pattern called

dangerous structure appears [19].

In the locking protocol, the serializable is achieved by making

one transaction wait until the required locked entity is released.

The concurrency control will not abort any transaction until

the deadlock or timeout occurs. In other hand, serializable

snapshot isolation will abort one of the conflict transactions

even it is not required by the application system requirement.

Both approches above have same objective that is preserving

consistency at any cost and trade off which applied at the

database management system level. Hence, application system

does not have other option to deal with interleaved write

operation. While, this blind write protocol, which will not lock

any entity when performing write operation, is proposed to

allow more write operations to be interleaved. With the blind

write protocol, the application system has another option other

than waiting, preempting, or abortion when dealing with

interleaved write operations.

The key point here is that the application systems must have

more than one option to deal with interleaved write operation.

This gives a freedom to the application systems in order to deal

with interleaved write operations. As a result, preserving

consistency becomes application system responsibility.

To understand more on blind write protocol, we start the

discussion by reviewing the concurrency anomaly in Section 2.

Then, we describe about blind write protocol and its

implementation in next section. The last section concludes the

topic.

II. Concurrency Control and Anomaly

The discussion on the concurrency control aims to preserve the

consistency by solving the concurrency control anomaly. The

more transactions are being processed will increase the

throughput of accesses to the database [6], but it can result an

inconsistent database state [5]. Therefore, database system

requires a concurrency control to handle two or more

transactions that access same entity. In the absence of

concurrency control, any two or more transactions will have

concurrency anomalies. Bernstein et al. in [8] described about

two concurrency anomalies, i.e. Lost Update Anomaly and

Inconsistent Retrieval.

A. Lost Update Anomaly

This anomaly happens when two transactions perform write

operation to the same entity at same time. To describe it, let

say there are two transactions, T1 and T2, are executed at the

same time as shown at Figure 1. Both transactions are based on

the initial state of e1=10.

Seq. Initial State e1 = 10;

 T1 T2

1

2

3

4

begin

e1  e1 + 10;

Temporary Inconsistent

State e1= 20;

commit;

end;

begin

e1  e1 + 30;

Temporary Inconsistent

State e1= 40;

commit;

end;

 Final State can either e1 = 20 or e1 = 40

Figure 1. Lost Update Anomaly

On Figure 1, the operations are performed from the top to the

bottom indicated by sequence number. We use  notation as

assigning a value from the right to item on the left. In the

absence of concurrency control, the final state can either e1=20

or e1=40. This result is known as lost update anomaly.

Therefore, in order to preserve consistency then the DBMS

requires a concurrency control to handle these 2 interleaved

write operations coming from different transaction. The

locking protocol will make either T2 wait until T1 is completed

or vice versa. Thus, the final state will be consistent i.e. e1 is

equal to 50.

B. Inconsistent Retrieval Anomaly

To illustrate this anomaly, let say there are two interleaved

transactions T1 and T2 are executed at the same time as shown

on Figure 2. At the time T2 displays/ prints the value of x then

it still shows the initial value of e1, i.e. 10, which is different

with T1.

Seq. Initial State e1 = 10;

 T1 T2

1

2

3

4

begin

e1  e1+10;

Temporary Inconsistent

State e1= 20;

commit;

end;

Begin

x  e1;

print x: 10

end;

 Final State is e1 = 20

Figure 2. Inconsistent Retrieval Anomaly

At the end of these two transactions, the final state is still

correct, i.e. e1=20. But, if T2 or any others transaction use the

value of x, then application system may experience the lost

update anomaly.

C. Write Skew Anomaly

To illustrate this anomaly, let say there are two interleaved

The Potential Application of Blind Write Protocol

221

transactions T1 and T2 are executed at the same time as shown

on Figure 3. The initial balance of e1 is 100 and e2 is 50. The

application has requirement or constraint that the e1+e2 should

always be greater or equal to 0. If T1 is withdrawing money

from e1 with amount is 100 and T2 is withdrawing money from

e2 with amount 60, then total amount is greater then e1+e2.

Since both transaction will pass the validation in the Seq. no 3

as shown in Figure 3, then final state e1+e2 will be less than 0.

This condition against the requirement or constraint.

Seq. Initial State e1 = 100; e2 = 50; e1+e2=150; Constraint:

e1+e2 >= 0.

 T1 T2

1

2

3

4

5

6

7

begin

x_withdraw  100;

if (e1+e2>=x_withdraw) then

 e1  e1 - x_withdraw;

Temporary Inconsistent

State e1= 0;

 commit;

end if;

end;

begin

x_withdraw  60;

İf (e1+e2>=x_withdraw) then

 e2  e2 - x_withdraw;

Temporary Inconsistent

State e2= -10;

 commit;

end if;

end;

 Final State e1 + e2 = -10, it is contradictory with the above

constraint.

Figure 3. Write Skew Anomaly

Gray et al. in [4], Berenson et al. in [10] and Kemme et al. in

[12] discussed about the concurrency anomalies and different

isolation level. The read uncommitted, read committed, and

snapshot isolation were proposed to improve the concurrency.

But the concurrency control still relies on locking to make

interleaved write operations become serializable.

These concurrency anomalies and different read protocols

with their weakness and limitation give us the base knowledge.

It becomes an important information to establish and develop

an algorithm that can preserve consistency in blind write

protocol.

III. Blind Write Protocol

The blind write protocol is proposed as a complement to allow

more write operation to be interleaved and transaction should

not lock any entity and no transaction should be restarted.

Since the blind write protocol is a complement then the

application system has another option to perform write

operation. If application system does not want to create their

own specific approach to achieve consistency, then it can use

normal write protocol to achieve the consistency. Moreover,

since two write operations, i.e. normal and blind, can be used

together, then the blind write protocol should be able to make

them work together.

There will be three combinations if two interleaved write

operations are writing to same entity and they are executed at

the same time, i.e.:

1. both are using normal write protocols

2. one transaction is using normal and another one is

using blind write protocols

3. both are using blind write protocol

Point no. 1 above is clear. Normal write protocol is using

locking protocol to preserve consistency. Since both are using

locking protocol, then one transaction should wait for or

preempt from other transaction. Before we discuss point no. 2,

let discuss point no. 3 first. Because, we should know whether

the application system can create and develop their own

approach to prevent the lost update and write skew anomaly

when two blind operations executed at the same time.

A. Two Interleaved Operations are Using Blind Write

Protocol

To begin with, let start with making proper definition and its

principal of blind write operation. This definition is related to

database system discussed in [2], [3], and [6] which refers to

[1]. Interaction between client and database system is known

as transaction. The content of interaction consists of one or

more operations. The operation can be read or write. Write

operation is an action to create new entity, modify or delete

existing entity value. Read operation is an action to get entity

value, it can be uncommitted or committed value as discussed

in Section 2.

1) Blind Write Definition

Before we discuss more detail on how to handle 2 or more

interleaved transactions that use blind write protocol, we need

to give proper definition on database system. We define

database system as D which consists of n number of entity.

 D = {e1, e2, e3, …, en} (1)

These entities can be either tables, rows, or columns. This

paper is focusing on the Data Manipulation Language (DML)

protocol, which create, modify or delete a row into, in, or from

a table. The Data Definition Language (DDL) is not part of our

paper scope. We also consider that modifying a current value

of one column as modifying a row. Therefore, the write

operation is action to assign a value to the entity. We use 

notation as assigning a value on the right to entity on the left as

discussed on Section 2.

Create operation is considered as assigning any value, v, to

new entity, en+1,

 en+1 v; where v is not NULL. (2)

Delete operation is considered as assigning NULL to existing

entity, ei,

 ei NULL; where 1 < i < n. (3)

Modify/ update operation is considered as assigning a value, v,

to existing entity, ei,

 eiv; where v is not NULL and 1 < i < n. (4)

The value of v above can be defined as:

1. function of any entity, ej. It is known as normal write

operation. Therefore,

en+1 f(ej); where 1 < j < n. (5)

ei  f(ej); where 1 < i < n, and 1 < j < n. (6)

If i=j then it means the new value depends on the initial

value of entity

Suryana et al.

222

2. Constant or Fixed value, e.g. ‘APPROVED’,

‘536980 MALAYSIA’, ‘+6012345678’, 20, etc. It is

known as blind write operation. The Constant or

Fixed value should not be NULL. Therefore,

en+1 c; where c is fixed value and c is not NULL. (7)

eic; where 1 < i < n and c is fixed value and c is not NULL.

(8)

Since delete operation is considered as assigning NULL to the

entity, then there is no different between normal and blind

write protocol. The main different between them is that blind

write protocol will not apply any locking to any entity. Based

on Bernstein argument in [20] that the high availability

increases the application complexity to handle inconsistent

data. One concrete example is handling lost update and write

skew anomaly.

2) Achieving the Consistency using Blind Write Protocol

The example of lost update and write skew anomaly can be

seen in Section 2. In that example, it is utilizing one entity only

to handle and maintain the operation. The entity in that

example is considered as a table. To give more explanation

please see Table 1 below. It is a balance table consist of one

entity, in this case the entity is a row, with 4 columns i.e.

account_id, account_number, balance_amount and

last_updated_date.

Table 1. Balance Table.

Account_id Account_nu

mber

Balance_am

ount

Last_update

d_date

1 1234-567-89

0

1000 10-Jan-1980

00:00:01

As explained above, the value of blind write operation should

be a fixed value, c. Therefore, one table is not enough to

preserve the consistency using blind write protocol. To

achieve that, then it required at least one table to handle and

maintain historical write operation as can be seen on Table 2.

Table 2. History Table.

History_i

d

Account_

id

Transacti

on_amou

nt

Transacti

on_date

Status

0 1 1000 10-Jan-19

80

00:00:01

approved

1 1 100 20-Jan-19

80

00:00:01

approved

2 1 300 20-Jan-19

80

00:00:01

approved

The history table has foreign key of balance table, i.e.

account_id. For deposit operation then the transaction_amount

should be greater than 0. For withdraw operation, the

transaction_amount should be less than 0. The

transaction_date is used to record the time stamp when the

operation is committed. The status is used to differentiate

whether the operation is approved or rejected. The status will

be set to rejected if the operation for particular account_id do

not meet with specific constrain. The history_id is primary key

of the history table, it is a running number generated from

sequence object. Two or more entity (row) may have same

transaction_date but they should have unique history_id value.

Using history table, there will be no aborted transaction. All

the operation from all transactions will be recorded in this

table as one entity (record). The balance_amount of particular

account_number in the balance table is aggregation of

transaction_amount in history table which has same

account_id and the status should be approved. To achive the

consistency using blind write operation, then we need to

discuss the possibility of interleaved write operation

combinations, i.e.:

1. both operations are deposit

2. both operations are withdrawal

3. one operation is deposit and another one is

withdrawal

a) Both Operations are Deposit

Let say the entity of balance and history table is eb and et

respectively. It may consist of many account_id. To indicate

account_id=1, we use eb1 and et[1]. The update operation

value of eb is (balance_amount, last_updated_date) and for

insert operation of et[1] is (history_id, account_id,

transaction_amount, transaction_date, status). If two

transactions, T1 and T2, are using blind write protocol and

executed at the same time follow the same step, as can be seen

on Figure 4, then the result can be same if they are executed

one by one, either T1 first or T2.

Figure 4. The Aggregation

To achieve this then there are some conditions need to be

applied as follows:

1. the read operation should use read committed

isolation level

2. it should apply auto commit on each write operation

to prevent the lost update anomaly

The first condition is clear. It was explained on the previous

section. To show that condition no. 2 is required then let say

there are two commit operations. The first commit is between

seq. no. 3 and 4 and the second one is between seq. no 4 and 5.

The sequence of operation is as follow:

T1[seq. no. 1]  T1[seq. no. 2]  T1[seq. no. 3] T1[commit]

 T1[seq. no. 4]  T2[seq. no. 1]  T2[seq. no. 2]  T2[seq.

no. 3] T2[commit]  T2[seq. no. 4]  T2[commit] 

T1[commit]

Since the T1[seq. no. 4] has not been committed then the

T2[seq. no. 4] and the second T2[commit] will be overwritten

by the second T1[commit] which will eventually experience

the lost update anomaly. Therefore, to prevent the lost update

anomaly the blind write protocol should apply auto commit.

The Potential Application of Blind Write Protocol

223

Since it is using auto commit and balance_ammount of eb1 is

calculated by summing up all transaction_amount of et[1],

then it always gives the latest result, regardless T1 is executed

first or T2.

b) Both Operations are Withdrawal

From pevious section, we find that the blind write protocol can

handle lost update anomaly without lock any entity. The

example above is involving deposit operation only. But how if

both operations are withdrawal and it must be in accordance

with certain rules as follow:

1. the balance_amount should not be minus

2. the operation should not be rejected if the

balance_amount is greater or equal than

absolute(transaction_amount). The withdrawal

amount is always less than 0

To discuss this, let say the current balance amount eb1=1000

as shown in Table 1 above. We set two interleaved

transactions, T1 and T2, and execute at the same time. These

transactions are performing withdrawal operation respectively

with different scenarios as follows:

1. -100 and -300. Since 1000-100-300>0 then both

should not be rejected

2. -900 and -500. Since 1000-900-500<0 and

1000-900>0 and 1000-500>0 then one of them

should be rejected and the other one should be

approved

3. -1100 and -900. Since 1000-1100-900<0 and

1000-1100<0 and 1000-900>0 then T1 should be

rejected and T2 should be approved

4. -1100 and -1200. Since 1000-1100-900<0 and

1000-1100<0 and 1000-1200<0 then both

transactions should be rejected

To handle all the scenarios above, we introduce 2 functions.

The first function is simple function used to get account_id for

specific account number from the balance table. The second

function has 2 input arguments, i.e. account id and transaction

amount. It has one output either true or false. This discussion is

focusing more on the second function, we do not explain the

first function in detail.

Let name the second function as transact. We modify the steps

in Figure 4 above to implement both functions as shown in

Figure 5 below. The transact function is shown in Figure 6.

Figure 5. The Aggregation with Transac Function

The explanation of transact function is as follows:

 Seq. no. 1 defines function name, its input argument and

output

 Seq. no. 2 begins the function

 Seq. no. 3 gets history id from sequence object and put into

seq_history_id. It is running number

 Seq. no. 4 sets default value of v_status to ‘approved’. If

both operations are Deposit, there is no any validation

required since it will not make the balance amount become

negative. Hence, the status should always be approved

 Seq. no. 5 assigns v_status value to ‘not approved’ if

a_transaction_amount is minus (withdrawal operation)

 Seq. no. 6 inserts new record to History table with

history_id value is seq_history_id. The operations from

seq. no. 3 until 6 can be executed as one statement by

utilizing output in insert statement and decode clause. So,

it can be treated as one operation. The example of DML

statement for these operations is:

insert into history values (history_seq.nextval,

a_account_id, a_transaction_amount, sysdate,

decode((a_transaction_amount/abs(a_transaction_amou

nt)), 1, ’approve’, ’not approve’)) returning history_id

into seq_history_id;

The returning history_id into seq_history_id is used for

seq. no. 3.

decode((a_transaction_amount/abs(a_transaction_amou

nt)), 1, ’approve’, ’not approve’) is used for seq. no. 4 and

5.

Figure 6. Transact Function

 Seq. no. 7 gets transaction_date from the history table

where history_id is equal to seq_history_id. The example

of DML statement for this operation is:

select transaction_date into v_ sysdate from history where

history_id=seq_history_id;

 Seq. no. 8 determines whether the operation is deposit or

withdrawal. If a_transaction_amount > 0 then end the

function and return true. Otherwise, then it continues to

Seq no. 9. It means for deposit operaion, it does not need

any further validation.

Suryana et al.

224

 Seq. no. 9 is else condition

 Seq. no. 10 gets collection of history records for specific

account_id. The example of DML statement for this

operation is:

select min (transaction_date), -1 history_id,

sum(transaction_amount) transaction_amount from

history where account_id= a_account_id and

status=’approved’

union

select transaction_date, history_id, transaction_amount

from history where account_id= a_account_id and

status=’not approved’ and transaction_date <=v_sysdate

order by transaction_date, history_id;

This DML statement is utilizing ‘union’ that will be

executed as one operation. If it does not use ‘union’ in the

statement above, then the DML will become two statements

(operations) as follows:

DML statement 1:

select min (transaction_date), -1 history_id,

sum(transaction_amount) transaction_amount from

history where account_id= a_account_id and

status=’approved’;

DML statement 2:

select transaction_date, history_id, transaction_amount

from history where account_id= a_account_id and

status=’not approved’ and history_id<=seq_history_id;

Moreover, if there is blind write operation, which update

the status from ‘not approved’ to either ‘approved’ or

‘rejected’, between these two DML statements then it will

affect sum(transaction_amount) in DML statement 1 and

the collection of records for DML statement 2. This will

end with lost update anomaly. Therefore, the third

condition requierd by blind write protocol is:

Since blind write protocol will not lock any entity, then the

transaction should request one read operation to be used in

validation to prevent write skew anomaly.

Table 3. History Table with Withdrawal Operation.

History_i

d

Account_

id

Transacti

on_amou

nt

Transacti

on_date

Status

0 1 1000 10-Jan-19

80

00:00:01

approved

1 1 -900 20-Jan-19

80

00:00:01

not

approved

2 1 -500 20-Jan-19

80

00:00:01

not

approved

To prove this, let execute T1 and T2 at the same time. T1 is a

transaction with history_id=1 and T2 is a transaction with

history_id=2 as shown on Table 3. T1 has executed DML

statement 1 and it returns 1000. Then T2 is executing seq.

no. 11 and 20 (it updates and auto commits T2 status

become ‘approved’ see Figure 3). If T1 continue to execute

DML statement 2 then it will return one record only since

T2 status has become ‘approved’. Thus, T1 status will be

updated and auto committed to ‘approved’ also because the

validation 1000-900>0. Now, update Balance table as

shown in Figure 5 seq. no. 4. It shows that the balance

amount will become 1000 -900 -500 = -400 since T1 and T2

was updated as ‘approved’.

 Seq. no. 11 assigns sum(transaction_amount) value of

approved status to v_balance

 Seq. no. 12 sets default value of v_success to false

 Seq. no. 13 until 29 validates the transaction amount with

balance amount

 Seq. no. 32 returns the validation result. If the history

status is updated and committed to ‘rejected’ then it returns

false, otherwise it returns true.

c) Combination of deposit and wirdrawal operation

There are no significant obstacles with the deposit operation in

this combination. Likewise, with the withdrawal operation.

The main obstacle with this combination is about the timing.

As explained above that the seq. no. 10 operation is fetching

collection of history record which ordered by transaction_date

and history_id. If two transactions have same transaction_date

then it will be ordered by history_id which is unique for each

history record.

B. Two Interleaved Operations are Using Normal and Blind

Write Protocol

Until this section, we have already shown that blind write

protocol can preserve the consistency in different approach

with the normal write protocol. For two or more transactions

that use different protocol, then they are two options. First

option is the blind write protocol should wait until the locked

entity is released. The second option is the blind write protocol

should not wait other transaction to release the lock on the

entity. These options provide more choice to the application to

determine which one suits with the business requirements.

This wait and no wait option should be applied in the DML

statement along with blind write option.

The wait option will work for blind write protocol to wait until

the locked entity is released. Since the blind write protocol will

not lock any entity then the normal write protocol can start to

perform any operation including lock any entity at any time.

Once the entity is locked then any write operation that wants to

access the locked entity, including blind write with wait option,

should wait or preempt.

C. DML Statement of Blind Write Operation

We propopse a set of DML statements that can be used to

determine whether the blind write protocol should wait or not

as well as to distinguish the blind write protocol with the

normal write protocol. These DML statements for blind write

protocol as follows:

1. DML statement for blind write protocol with wait

option.

a. Insert Statement:

BLIND INSERT INTO table_name

(list_of_columns)

The Potential Application of Blind Write Protocol

225

VALUES (list_of_values) WITH WAIT;

b. Update Statement:

BLIND UPDATE table_name

SET column_name = value [, column_name =

value]

[WHERE condition] WITH WAIT;

c. Delete Statement:

BLIND DELETE table_name

[WHERE condition] WITH WAIT;

This wait option will only work for blind write protocol to wait

until the locked entity is released. Since the blind write

protocol will not lock any entity then the normal write protocol

can start to perform any operation including lock any entity at

any time. Once the entity is locked then any write operation

that want to access the locked entity, including blind write,

should wait or preempt if blind write is using wait option.

2. DML statement for blind write protocol without wait

option.

a. Insert Statement:

BLIND INSERT INTO table_name

(list_of_columns)

VALUES (list_of_values) WITHOUT WAIT;

b. Update Statement:

BLIND UPDATE table_name

SET column_name = value [, column_name =

value]

[WHERE condition] WITHOUT WAIT;

c. Delete Statement:

BLIND DELETE table_name

[WHERE condition] WITHOUT WAIT;

IV. Summary

This paper proposes blind write protocol as a complement of

current concurrency control to give more option to the

application on dealing with the interleaved write operation.

The blind protocol provides more option besides wait or

preempt. The blind write protocol also can be used together

with normal write operation with wait or no wait option.

Since, the blind write operation does not use locking protocol,

then the database system will experience a lost update and

write skew anomaly. Therefore, the blind write protocol

should apply their own approach to prevent these anomalies.

To achieve this, there are some conditions need to be applied

in the transaction as follows:

1. the read operation should use read committed

isolation level
2. it should apply auto commit on each write operation to

prevent the lost update anomaly

3. the transaction should request one read operation to be

used in validation to prevent write skew anomaly.

References

[1] E. F. Codd “A Relational Model of Data for Large Shared

Data Banks”. Commun. ACM 13, pp. 377-387, 1970.

[2] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger

“The Notions of Consistency and Predicate Lock in a

Database System”. In: ACM Comput. Surv, vol 19, pp.

624-633, 1976.

[3] Stearns, R. E., Lewis, P. M., Ii, And Rosenkrantz, D. J.

“Concurrency Control for Database Systems”. In Proc.

7th Symp. Foundations of Computer Science, pp. 19-32,

1976.

[4] J. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger

“Granularity of Locks and Degrees of Consistency in a

Shared Database”. In IFIP Working Conference on

Modelling in Database Management Systems, pp.

365–394, 1976.

[5] Philip A. Bernstein, David W. Shipman, and Wing S.

Wong “Formal Aspects of Serializability in Database

Concurrency Control”. In IEEE, vol SE-5, No. 3, 1979.

[6] Kung, H. T., Androbinson, J.T. “An Optimistic Methods

for Concurrency Control”. In ACM Trans. Database Syst.

6, 2, pp. 213-226, 1981.

[7] Stearns, R. E., Rosenkrantz D. J. “Distributed Database

Concurrency Controls Using Before-values”. In

Proceedings of the 1981 ACM SIGMOD International

Conference on Management of Data, 1981.

[8] Philip A. Bernstein, Nathan Goodman “Concurrency

Control in Distributed Database Systems”. In ACM

Computing Surveys (CSUR), v.13 n.2, pp. 185-221,

1981.

[9] N. das Chagas Mendonca and R. de Oliveira Anido

“Using Extended Hierarchical Quorum Consensus to

Control Eeplicated Eata: From Traditional Voting to

Logical Structures”. In Proceedings of the

Twenty-Seventh Hawaii International Conference on

System Sciences, Wailea, HI, USA, pp. 303-312, 1994.

[10] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton,

Elizabeth O'Neil, and Patrick O'Neil “A critique of ANSI

SQL isolation levels”. In Proceedings of the 1995 ACM

SIGMOD International Conference on Management of

data (SIGMOD '95), Michael Carey and Donovan

Schneider (Eds.). ACM, New York, NY, USA, pp. 1-10,

1995.

[11] Albert Burger, Vijay Kumar, and Mary Lou Hines

“Performance of Multiversion and Distributed

Two-phase Locking Concurrency Control Mechanisms

in Distributed Databases”. In Inf. Sci. 96, 1-2, pp.

129-152, 1997.

[12] Bettina Kemme and Gustavo Alonso “A New Approach

to Developing and Implementing Eager Database

Replication Protocols”. In ACM Trans. Database Syst.

25, pp. 333-379, 2000.

[13] Werner Vogels: Eventually consistent. Commun. ACM

52, pp. 40-44, 2009.

[14] M. Alomari, A. Fekete and U. Röhm “A Robust

Technique to Ensure Serializable Executions with

Snapshot Isolation DBMS”. In IEEE 25th International

Conference on Data Engineering, Shanghai, 2009, pp.

341-352, 2009.

[15] J. Cahill, U. ROHM and A. D. Fekete “Serializable

Isolation for Snapshot Databases”. In ACM Transactions

on Database System, vol. 34, no. 4, 2009.

[16] Doug Terry “Replicated Data Consistency Explained

Through Baseball”. Commun. ACM 56, 12, pp. 82-89,

2013.

[17] Philip A. Bernstein and Sudipto Das. “Rethinking

Eventual Consistency”. In Proceedings of the 2013 ACM

SIGMOD International Conference on Management of

Data (SIGMOD '13). ACM, New York, NY, USA, pp.

923-928, 2013.

Suryana et al.

226

[18] M. Alomari and A. Fekete “Serializable use of Read

Committed Isolation Level”. In 2015 IEEE/ACS 12th

International Conference of Computer Systems and

Applications (AICCSA), Marrakech, 2015, pp. 1-8, 2015.

[19] F. Zendaoui and W. K. Hidouci “Performance Evaluation

of Serializable Snapshot Isolation in PostgreSQL”. In

2015 12th International Symposium on Programming

and Systems (ISPS), Algiers, pp. 1-11, 2015.

[20] X. Zhou, Z. Yu and K. L. Tan “Posterior Snapshot

Isolation”. In 2017 IEEE 33rd International Conference

on Data Engineering (ICDE), San Diego, CA, pp.

797-808, 2017.

Author Biographies

Khairul Anshar was born in Garut, West Java, Indonesia

on 20 January 1980. He obtained his degree in Physics on

from Bandung Institute of Technology, Indonesia. He

obtained his Master of Science (MSc) in Information and

Communication Technology by research from Faculty of

Information and Communication Technology (FTMK),

Universiti Teknikal Malaysia Melaka, Malaysia on 2013.

Prof. Dr. Nanna Suryana Herman currently works as a

full Professor in Advanced Databases at the Faculty of

Information and Communication Technology (FTMK)

UTeM. At the same time, he holds the position being the

Manager of COE for Center of Advanced Computing

Technology (C-ACT), Center of Research and Innovation

Management (CRIM), UTeM. He obtained his degree in

Soil and Water Engineering, UNPAD Bandung Indonesia.

He obtained his Master of Science (MSc) in Computer

Assisted Regional Planning at the International Institute

for Geoinformatics and Earth Observation (ITC),

Enschede, The Netherlands. In year 1996, he obtained his

Doctorate Degree from the Department of Remote Sensing

and GIS, Research University of Wageningen, the

Netherlnads.

He currently supervises Master and Doctorate students

who are undertaking research in system interoperability,

mobile computing, handing and managing large (spatial)

data, 3D imaging and image processing and image

analysis.

He published numbers of International Journals, book

chapters. He is actively involved in Editorial Board of

International Journals, member of ASEA UNINET,

EURAS, member of AACHA.

Dr. Noraswaliza Abdullah is a senior lecturer in the

Department of Software Engineering, teaching

programming and database subjects. She is also a member

of the faculty's Computational Intelligence Technology

Research Group. Her research interests include data

mining, recommender system, and database technology.

She received her honors degree in Management

Information System from Universiti Sains Malaysia, her

master degree in Management Information System from

Universiti Putra Malaysia and her PhD in Recommender

System area from Queensland University of Technology,

Australia. Her PhD work includes exploring user

generated contents from the Internet to extract knowledge

for recommendation by applying data mining techniques

and developing a novel hybrid recommender technique for

recommending infrequently purchased products.

