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ABSTRACT 

 

 

Additive manufacturing (AM) has come a long way since the days of rapid prototyping 

began with the capability to produce a complex solid part rapidly. AM has begun to be 

acknowledged and accepted in numerous industries such as aerospace, automotive, medical, 

and even art. Fused deposition modeling (FDM), one of the AM technologies, is a popular 

and most used technology based on polymer extrusion method. FDM generally works by 

depositing a molten thin polymer filament from the nozzle onto the build platform 

repeatedly layer by layer up to create a solid part. Despite having the advantages to 

produce part without any complexity restrictions, the known poor mechanical strength for a 

functional part produced is the limitation. Literature has found out that one of the main 

reasons anisotropic behaviour which was the insufficient bonding between layers was 

found weakest at the z-axis. The layer by layer bonding occurred too fast and was not fully 

fused together causing weak structural strength and easily shattered through pulling force. 

It was found that vacuum technology could improve the layer bonding by reducing the 

convective heat transfer. In a vacuum environment, the reduced amount of air molecules 

hindered the heat energy to be released from the deposited filament. Simulations were 

successfully created a vacuum chamber to sustain the vacuum pressure and confirmed the 

thermal behaviour of heat transfer in the vacuum was similar to the literature study. The 

pilot test confirmed that the different level of vacuum pressure does affect the tensile 

strength of the printed parts. Then, a total 20 experiment runs with 60 printed specimens 

were conducted with two parameters namely layer thickness and vacuum pressure. Results 

have found out that the highest percentage improvement (16.77 %) were 18.0846 N/mm
2
 

produced by 0.20 mm/21 inHg, while the highest strength measured at 0.25 mm/21 inHg, 

giving 19.7202 N/mm
2
. The z-axis produced in vacuum environment was now at 77.67 % 

of strength produced by x-y axes signifying reduced anisotropic behaviour. It was found 

out that under scanning electron microscope (SEM), the specimens produced under 

vacuum pressure had a better bonding formation compared to normal atmospheric ones. 

Lastly, the ANOVA method had validated the significance of the set of parameters and the 

optimised parameter was 0.25 mm/21 inHG for recommended tensile strength while 0.22 

mm/21 inHg for recommended tensile strain. The vacuum assisted FDM was proven to be 

feasible and this study had increased the understanding of vacuum technology and FDM to 

improve the tensile strength of the printed part. Further improvements of vacuum assisted 

FDM will allow the creation of mechanically stronger complex parts in a wide range of 

applications. 
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ABSTRAK 

 

 

Pembuatan tambahan (AM) telah berkembang dari proses pembuatan pantas bermula 

dengan keupayaan untuk menghasilkan rekabentuk yang kompleks dengan pantas. AM 

telah mula diakui dan diterima di banyak industri seperti aeroangkasa, automotif, 

perubatan, dan juga seni. Pemendapan pemodenan terlakur (FDM), salah satu teknologi 

AM yang popular and paling banyak digunakan berdasarkan kaedah penyemperitan 

polimer. FDM biasanya berfungsi dengan mendepositkan filamen polimer lebur dari 

muncung ke platform binaan berulang kali lapisan sehingga menghasilkan sesuatu produk. 

Walaupun mempunyai kelebihan untuk menghasilkan produk kompleks tetapi kekurangan 

kekuatan mekanikal untuk produk berfungsi telah menjadikannya had batasan. Kajian 

literasi telah menemui bahawa salah satu sebab utama kelakuan anisotropik yang 

merupakan ikatan yang lemah antara lapisan didapati paling kurang pada paksi z. 

Perlekatan lapisan demi lapisan berlaku terlalu cepat dan tidak menyatu sepenuhnya 

menyebabkan kekuatan struktur mekanikal yang lemah dan mudah pecah melalui daya 

tarik. Didapati bahawa teknologi vakum boleh meningkatkan ikatan lapisan dengan 

mengurangkan pemindahan haba konveksi. Dalam persekitaran vakum, jumlah molekul 

udara yang dikurangkan menghalang tenaga haba untuk dilepaskan dari lapisan filamen. 
Simulasi berjaya mencipta ruang vakum untuk mengekalkan tekanan vakum dan 

mengesahkan kelakuan haba pemindahan haba dalam vakum adalah sama dengan kajian 

kesusasteraan. Ujian rintis mengesahkan bahawa tekanan tekanan vakum berbeza 

mempengaruhi kekuatan tarik bahagian-bahagian yang dicetak. Kemudian, sebanyak 20 

esperimen yang dijalankan dengan 60 spesimen telah dijalankan dengan dua parameter 

iaitu ketebalan lapisan dan tekanan vakum. Keputusan mendapati bahawa peningkatan 

peratusan tertinggi (16.77%) adalah 18.0846 N / mm2 yang dihasilkan oleh 0.20 mm / 21 

inHg, manakala kekuatan tertinggi diukur pada 0.25 mm / 21 inHg, memberikan 19.7202 

N / mm2. Paksi z yang dihasilkan dalam persekitaran vakum kini berada pada 77.67% 

kekuatan yang dihasilkan oleh paksi x-y yang menandakan kelakuan anisotropik yang 

berkurangkan. Keputusan kajian dari imbasan mikroskop electron (SEM) menunjukkan 

bahawa spesimen yang dihasilkan di bawah tekanan vakum mempunyai pembentukan 

ikatan yang lebih baik berbanding dengan yang biasa di atmosfera. Akhir sekali, kaedah 

ANOVA telah mengesahkan kepentingan set parameter dan parameter yang dioptimumkan 

ialah 0.25 mm / 21 inHG untuk kekuatan tegangan yang disyorkan manakala 0.22 mm / 21 

inHg untuk tegangan yang disyorkan. FDM yang dibantu vakum terbukti boleh 

dilaksanakan dan kajian ini telah meningkatkan pemahaman teknologi vakum dan FDM 

untuk meningkatkan kekuatan tegangan bahagian yang dicetak. Penambahbaikan 

selanjutnya bagi FDM dengan vakum akan membolehkan penciptaan rekabentuk produk 

yang kompleks serta baik dari aspek mekanikal untuk pelbagai aplikasi. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background                          

Additive manufacturing (AM) technology has been around for decades, with the 

advances in technology powering each segment‟s growth. The term additive manufacturing 

is defined as “process of joining materials to make parts from 3D model data, usually layer 

upon layer, as opposed to subtractive manufacturing and formative manufacturing 

methodologies” (ISO/ASTM52900-15, 2015). AM has successfully used in various 

industries such as automotive, aerospace, medical and even art. In early the years, the 

exposure to AM was little and hard to revolutionize in any industry simply because of 

expensive technology and slow process. However, as the more researchers and inventors 

developed new kind of AM technology, the competitiveness arises. The prices drop and 

manufacturing industries began to adapt the AM technology. AM is different compared to 

subtractive manufacturing such as CNC machining, lathe and milling, which they remove a 

block a material to form the desired shape, whereas AM builds through layer by layer to 

form highly complex shape. 

The technology AM possesses capable of producing complex geometries with little 

post-processing and low material waste while broadly applicable to a variety of materials 

including metals and polymers. Thus, with design freedom offered by AM, it would be the 

best alternative to allow engineers and designers to create any products economically for 

prototyping and manufacturing purpose in a small volume (Bikas et al., 2015). AM 
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effortlessly generates 3D prototypes from concepts and ease manufacturing processes 

including assembly jobs. This kind of flexibility makes AM an advantageous leap in 

manufacturing technology (Croccolo et al., 2013). 

Fused deposition modeling (FDM) is one of the AM technologies that is capable of 

producing complex geometry of polymer parts. FDM technology‟s main principle is to use 

three-dimensional CAD data and converted it to STL files. After proper setup, tool paths 

will be generated and transferred to the FDM machine for fabrication (Hossain et al., 

2013). In FDM machine, a coil of plastic filament supplied to the extrusion nozzle, heated 

and deposits a thread of molten polymer to form required geometry (Jain and Kuthe, 2013). 

A functional application from FDM parts requires dimensional accuracy, surface finish and 

mechanical strength of the parts which is important to optimise parameters to achieve 

desired quality build of parts manufactured (Nidagundi et al., 2015; Kumar et al., 2014). In 

reality, FDM part strength is still below the satisfactory level. Although FDM is capable to 

produce complex parts, it is still unable to provide a satisfactory mechanical strength of the 

printed parts. FDM printed parts possess anisotropic behaviour where the strength has a 

different value at different axes (Torrado and Roberson, 2016). 

On the other hand, vacuum technology has become a valuable industrial tool. 

Vacuum is used to create a space without matter or no particles. The use of vacuum will 

create a pressure is much less than the atmospheric pressure. At normal atmospheric 

pressure (1 atm), the surrounding contains air molecules that are constantly colliding with 

one another. Therefore, lowering the pressure lower than one atmospheric requires air 

molecules to be reduced by suctioning them out.  Vacuum ranges from low to extremely 

high vacuum and each level are used for vast applications in studies and industries to 

perform tasks under low pressure such as instrumentation, coating, refrigeration, light bulb, 

leak detection and more. Lowering the pressure will reduce the number of air particles 
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which will limits the energy transfer such as heat energy (Wang et al., 2007). This 

particular vacuum‟s characteristic could be the potential solution to the poor mechanical 

strength of FDM parts by stimulating neck growth between layer bonding and directly 

improving the mechanical strength. 

In this research, the novelty of using vacuum technology was tested to determine its 

influence and effect on the mechanical properties of the FDM printed parts. An open-

sourced FDM machine was used to build the specimens under a vacuum environment by 

conducting different operating parameters (vacuum pressure and layer thickness) to obtain 

the optimum results. The results from various parameters were analysed on the specimen 

mechanical properties. 

 

1.2 Problem Statement 

Additive manufacturing (AM) technologies have been around for the past few 

decades with dramatic improvements on the quality build. However one of the great 

restrictions to further implementation of 3D printed parts is the weak strength of the 

printed parts (Bikas et al., 2015; Gao et al., 2015; Nelaturi and Shapiro, 2015; Martínez et 

al., 2013). The 3D printed parts easily damaged upon force and thus hindered them to be 

used as a functional product. The strength and stiffness of the parts built is not relatively 

high and hard to be defined as they possess strong anisotropy (Croccolo et al., 2013; Ahn 

et al., 2002; Hildebrand et al., 2013). Under additive manufacturing processes, selective 

laser sintering (SLS) with metal processes compatibility are better in mechanical strength 

compared to other processes such as fused deposition modeling (FDM) and 

stereolithography (SLA). The available materials for FDM are limited to ABS, PLA, 

Nylon, and Polycarbonate which produced lower strength in printed parts (Belter and 

Dollar, 2015).  
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The current techniques and published information related to AM parts mechanical 

properties improvement focusing on additional processing such as chemical treatment 

(Galantucci et al., 2010), fill compositing method (Belter and Dollar, 2015), parameter 

optimization (Onwubolu and Rayegani, 2014), computer assisted automatic detection and 

correction system (Stava et al., 2012), composites (Nikzad et al., 2011) and slicing method 

(Hildebrand et al., 2013). All the processing mentioned requires the aid of additional 

equipment, hazardous control, consistent efficiency and labour which involves time and 

cost. 

Therefore, novel studies of integrating two different technologies, FDM and 

vacuum system has been explored to understand the properties of the mechanical 

properties of the 3D printed parts. Currently, there is no information published on the 

vacuum assisted FDM in studying its feasibility to improve the mechanical properties of 

printed parts. Therefore, to fill this knowledge gap, a fundamental knowledge focuses on 

the study of vacuum assisted FDM and their relationships with the parameters involved 

were explored.  

 

1.3 Objectives 

 The aim of this this research is to improve the tensile properties of printed parts 

through vacuum assisted FDM machine by identifying the optimum process parameters. In 

order to fulfil the aim, the objectives are: 

 

i. To explore the feasibility study of using vacuum technology to increase the tensile 

strength of FDM printed parts. 

ii. To conduct finite element analysis on the vacuum chamber and thermal behaviour 

of FDM process in a different level of vacuum pressure. 


