

Faculty of Electrical Engineering

IMPROVING DIRECT TORQUE CONTROL PERFORMANCE OF 3-LEVEL CHMI FOR INDUCTION MACHINE BY UTILIZING THE CONSTANT SWITCHING METHOD AND INCREASED SAMPLING FREQUENCY OF THE CONTROLLER

Sundram A/L Ramahlingam

Master of Science in Electrical Engineering

2017

C Universiti Teknikal Malaysia Melaka

APPROVAL

I hereby declare that I have read this dissertation/report and in my opinion this dissertation/report is sufficient in terms of scope and quality as a partial fulfillment of Master of Science in Electrical Engineering (Power Electronics and Drives).

Signature	:	
Name	:	
Date	:	

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "Improving Direct Torque Control Performance Of 3-Level Chmi For Induction Machine By Utilizing The Constant Switching Method And Increased Sampling Frequency Of The Controller" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	
Date	:	

DEDICATION

To my parents, almighty God,

supervisor Dr Auzani bin Jidin,

friend Logan Raj Lourdes Victor Raj,

and others for their support, care and patience.

ABSTRACT

Excellent torque control has been a focus of research in AC drives since last decades due to its important requirements for many industrial applications. Spurred on by rapid developments in the embedded computing systems, two popular approaches namely Field Oriented Control (FOC) and Direct Torque Control (DTC) were used to obtain excellent torque control. Obviously, both approaches use the space vector modulation (SVM) technique to reduce torque ripples as well as produce a constant switching frequency. However, the use of SVM complicates the control structures of FOC and DTC, which somehow increase the sensitivity control and hence may degrade the control's accuracy. Moreover, the selection of voltage vectors is inappropriate, particularly for application of two-level inverter which offers limit number of voltage vectors. This thesis aims to reduce torque ripple and produce a constant switching frequency in DTC by replacing the hysteresis controller and two-level inverter with a PI based torque controller and threelevel cascaded H-Bridge multilevel inverter (CHMI), respectively. By employing the threelevel CHMI, it provides a greater number of voltage vectors as compared to that offered in the conventional two-level inverter which gives more options to select the most optimal voltage vectors. The analysis of effects of selecting different voltage vectors on DTC performances are carried out to identify the most optimal vectors that can be chosen to improve torque control performances for every operating condition. The identification is made with the aid of vector diagrams and some equations, i.e. equations of torque rate, slip angular frequency and torque capability. This thesis also presents detail explanation and calculation of optimal PI parameter tuning strategy consecutively to improve torque control with reduced torque ripples. The proposed DTC control algorithm can be optimally executed at high computation rate by totally using C-coding with DS1104 controller board. The effectiveness of the proposed method is verified via simulation and experiment results, as well as comparison with the conventional DTC method. The results have shown that the torque ripple in the proposed method can be greatly reduced about 9.54%.

ABSTRAK

Kecemerlangan kawalan dayakilas telah menjadi fokus dalam penyelidikan pemacuan arus ulang-alik semenjak beberapa dekad sebelum ini disebabkan keperluan penting bagi banyak aplikasi industri. Didorong oleh perkembangan pesat dalam sistem pengkomputeran tertanam, dua pendekatan popular iaitu Kawalan Berorientasikan Medan (FOC) dan Kawalan Dayakilas Langsung (DTC) telah digunakan untuk mencapai kawalan dayakilas yang cemerlang. Jelas sekali, kedua-dua pendekatan menggunakan teknik Modulasi Vektor Ruang (SVM) untuk mengurangkan riak-riak dayakilas dan juga menghasilkan sebuah frekuensi pensuisan yang malar. Walaubagaimanapun, penggunaan SVM merumitkan struktur kawalan bagi FOC dan DTC, yang boleh meningkatkan kepekaan kawalan dan seterusnya boleh menurunkan ketepatan kawalan. Tambahan lagi, pemilihan voltan vektor adalah tidak bersesuaian, terutama bagi penggunaan penyongsang dua peringkat yang menawarkan bilangan voltan vektor yang terhad. Tesis ini mensasarkan untuk mengurangkan riak dayakilas dan menghasilkan sebuah frekuensi pensuisan yang malar dalam DTC dengan menggantikan kawalan histeresis dan penyongsang dua peringkat masing-masing dengan sebuah kawalan dayakilas berasaskan PI dan penyongsang berganda peringkat lata jejambat-H. Dengan menggunakan tiga peringkat CHMI, ia menyediakan bilangan voltan vektor yang lebih banyak berbanding dengan yang ditawarkan dalam penyongsang konvenyenal dua peringkat yang memberi lebih opsyen untuk memilih voltan vektor yang paling optimal. Analisis bagi kesan-kesan pemilihan voltan vektor yang berbeza terhadap prestasi DTC dilakukan untuk mengenalpasti vektor yang paling optima untuk dipilih bagi menambahbaik prestasi kawalan dayakilas bagi setiap operasi keadaan. Pengenalpastian ini dilakukan dengan bantuan rajah vektor dan beberapa persamaan, iaitu persamaan kadar dayakilas, frekuensi sudut gelinciran dan keupayaan dayakilas. Tesis ini juga membentangkan penerangan terperinci dan pengiraan bagi strategy pelarasan parameter PI yang optimal untuk menambahbaik kawalan dayakilas dengan pengurangan riak-riak dayakilas. Cadangan kawalan algoritma DTC boleh secara optimal dilaksanakan pada kadaran pengiraan yang tinggi dengan sepenuhnya menggunakan kod-C dengan papan kawalan DS1104. Keberkesanan bagi cadangan kawalan disahkan melalui keputusan-keputusan simulasi dan eksperimen, dan juga perbandingan dengan kaedah konvensyenal DTC. Keputusan-keputusan telah menunjukkan bahawa dayakilas dalam kaedah cadangan boleh dikurangkan dengan jelas kira-kira 9.54%.

ACKNOWLEDGEMENTS

I acknowledge, with gratitude, my debt of thanks to Dr. Auzani bin Jidin for his generous guidance with expertise, ancouragement, understanding and patience on assisting me throughout my research and until the completion of my thesis. I would also like to thank everyone who have contributed to this thesis particularly my friend and co-researchers Logan Raj Lourdes Victor Raj and Khairi Rahim for their undisputed support and encouragament. This research was fully supported and funded by Universiti Teknikal Malaysia Melaka. I am grateful to this institution for providing me the platform and support through scholarship and reasearch grant to complete this study. Finally, I would like to thank my both parents and family members for their moral support, financial support, encouragement and tollerence throughout my study.

TABLE OF CONTENTS

DECLARATION	
APPROVAL	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF APPENDICES	xvii
LIST OF SYMBOL	xviii
LIST OF ABBREVIATIONS	XX
LIST OF ACHIVEMENTS	xxii

CHAPTER

1.	IN	TRODUCTION	1
	1.1	Research Background	1
	1.2	Motivation of Research	5
	1.3	Problem statement	6
		1.3.1 Large Torque Ripple	6
		1.3.2 Irregular Switching Frequency	7
		1.3.3 Droop in Torque Regulation	8
	1.4	Thesis Objectives and Contributions	8
	1.5	Methodology	10
	1.6	Thesis organization	12
2.	LIT	ERATURE REVIEW	14
	2.1	Introduction	14
	2.2	Mathematical Modeling of Three-Phase Induction Machine	14
	2.3	Principle of Direct Torque Control (DTC) of Three-Phase	
		Induction Motors	19
		2.3.1 Conventional Three-Phase Voltage Source Inverter	20
		2.3.2 Control Strategy of Flux in DTC	22
		2.3.3 Control Strategy of Torque in DTC	24
		2.3.4 Decouple Control of Torque and Flux	29
		2.3.5 Structure of DTC Drives	32
	2.4	Effect of Hysteresis Band on the Switching Frequency of DTC	34
	2.5	Constant Frequency Torque Controller	37
	2.6	Conclusion	42
3.	RES	SEARCH METHODOLOGY	44
	3.1	Introduction	44
	3.2	Contribution 1: Reduction of Torque Ripple in conventional	
		Three-Phase DTC system by utilizing the 3-Level CHMI	45
		3.2.1 Mapping of voltage vectors for three-phase inverter	45

		3.2.1.1	Three-Phase Voltage Source Inverter (VSI) of	
			Three-Level CHMI Topology	46
		3.2.1.2	Space Voltage Vector for 3-level CHMI.	50
		3.2.1.3	d- and q- Components of Stator Voltage	52
		3.2.1.4	Voltage Vectors of 3-Phase CHMI Inverter on	
			the Voltage Vector Plane.	55
	3.2.2	Complex	x Space Vector Transformation Using Three-	
		Phase st	ator current to stationary reference frame	56
	3.2.3	Identific	ation of Optimal Voltage Vectors Based On the	
		Operatir	ng Condition.	58
		3.2.3.1	Selection of Voltage Vector Based On the Angle	58
		3.2.3.2	Selection of Voltage Vector Based On the Magnitude	63
		3.2.3.3	Proper Voltage Vector Combination Selection	
			Analysis on High, Medium and Low Speed	
			Operation Condition.	70
		3.2.3.4	Sector Definition of Stator Flux for Optimal	
			Voltage Vector Selection	74
		3.2.3.5	Formation of Look-Up Table Based on The	
			Optimal Voltage Vector Selection.	76
3.3	Contri	bution 2:	Improve the Overall Performance of 3-Level DTC	
	Schem	ne by Incre	easing the Sampling Frequency of the Controller	77
	3.3.1	Reduction	on of Overshoot Error of the Torque and selection	
		of revers	se voltage vector	78
	3.3.2	Reduction	on of overall torque ripple	81
3.4	Contri	bution 3:	Improve the Performance of 3-Level DTC Scheme by	
	Implei	menting C	onstant Switching Method Using PI Controller Block	83
	3.4.1	Principle	e of Operation of the Proposed 3-Level Constant	
		Switchir	ng Torque Controller.	84
	3.4.2	Frequen	cy analysis of the Proposed Method	87
		3.4.2.1	Transfer Function of the Torque Status's Duty Ratio	88
		3.4.2.2	Derivation of Averaging and Linearising the	
			Torque Equation	93
		3.4.2.3	Designing the PI Controller	98
3.5	Simula	ation Mod	el of CFTC Based 3-Level DTC of Three-	
	Phase	Induction	Machine	104
	3.5.1	Three-P	hase Induction Machine	105
	3.5.2	Simulati	on Model of voltage Vector for three-phase	
		CHMI ii	nverter	107
	3.5.3	Simulati	on Model of d- and q-Components of Stator Current	108
	3.5.4	Simulati	on Model of Flux and Torque Estimation	109
	3.5.5	Simulati	on Model of Flux Sector Definition	111
	3.5.6	Simulati	on Model of 3-level CFTC based Optimal Torque	
2.6	ъ ·	status se	lection block	111
3.6	Descri	ption on E	Experimental Setup	113
	3.6.1	DS1104	R&D Controller Board	115
	3.6.2	FPGA –	Altera DEU Board	119
	3.6.3	Hall Eff	ect Current Transducer	120
	3.6.4	Gate Dr	Ivers	121
	3.6.5	Three-le	evel CHIVII based Voltage Source Inverter	122

v

		3.6.6	Three-Phase Induction Machine	123
	3.7	Concl	usion	124
4.	RES	SULT A	AND DISCUSSION	125
	4.1	Introd	luction	125
	4.2	Perfor	mance Analysis of Torque Ripple, Sampling Time, and	
		Switcl	hing Frequency Improvements via Simulations	125
		4.2.1	Improvement 1: Reduction of Torque Ripple in conventional	
			Three-Phase DTC system by utilizing the 3-Level CHMI	127
		4.2.2	Improvement 2: Reduction of Torque Ripple by implementing	
			higher sampling Frequency	131
		4.2.3	Improvement 3: Reduction of Torque Ripple with the	
			implementation of Constant Switching Method in 3 Level	
			CHMI Based DTC	133
	4.3	Verifi	cation of the Improvements via Experimental Results	143
		4.3.1	Contribution 1: Reduction of Torque Ripple in conventional	
			Three-Phase DTC system by utilizing the 3-Level CHMI	145
		4.3.2	Improvement 2: Reduction of Torque Ripple by implementing	
			higher sampling Frequency	149
		4.3.3	Improvement 3: Reduction of Torque Ripple with the	
			implementation of Constant Switching Method in 3 Level	153
	4.4	Concl	usion	163
•	CO	NCLUS	SION AND RECOMMENDATIONS	164
	5.1	Concl	usions	164
	5.2	Const	rains and Limitations of Research	165
	5.3	Future	e Works	166
E	FERE	NCES		167
P	PEND	ICES		180

LIST OF TABLES

TABLE	TITLE	PAGES
2.1	Selection of Voltage Vectors as Proposed in	
	(Takahashi and Noguchi, 1986)	32
3.1	Classification of Voltage Vectors of Three-Phase CHMI Inverter	55
3.2	Selection of Optimal of Voltage Vectors Selection for 3-Level	
	DTC Scheme	77
3.3	Three Phase Induction Machine Parameter	98
3.4	Optimal Torque Status And PI Parameter Selection Table	113
4.1	Switching Frequency of proposed method and conventional	
	method at different rotor speed	139

vii

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	DTC Structure Proposed in (Takahashi and Noguchi, 1986)	2
1.2	Flow chart of Research Methodology	11
2.1	Cross-section of a Single Pole-Pair Three-Phase Machine	16
2.2	A Three-Phase Voltage Source Inverter	21
2.3	Voltage Vectors (including Switching States Information)	21
	on the voltage vector Plane	
2.4	Trajectory of Stator Flux Vector in DTC	23
2.5	The Variation of δ sr with Application of (a) Active Forward	26
	Voltage Vectors, (b) Zero Voltage Vectors, and (c) Active	
	Reverse Voltage Vectors	
2.6	The Torque Hysteresis Comparator proposed by Takashi	27
2.7	Typical Waveforms of the Torque, the Torque Error and the	28
	Torque Error Status in Hysteresis-Based DTC	
2.8	A Decoupled Control Structure with a Look-up Table for	30
	Establishing Simultaneous Control of Stator Flux and Torque	
	V111	

2.9	Production of Flux Error Status σ_{ϕ} and Torque Error	31
	Status σ_T using (a) 2-Level Hysteresis Comparator and	
	(b) 3-level Hysteresis Comparator, Respectively	
2.10	Structure of hysteresis based Induction Machine drives Direct	33
	Torque Control (DTC), as Proposed in (Takahashi and	
	Noguchi, 1986)	
2.11	Switching Frequency Variation with torque hysteresis band	35
	and flux hysteresis band at operating speed of (a) 120 rad/s,	
	(b) 80 rad/s, (c) 40 rad/s.	
2.12	The basic structure of CFTC for conventional 2-level DTC scheme	38
2.13	Block diagram of the torque loop in frequency domain	40
2.14	Illustration comparison of (a) basic conventional 2-level DTC	41
	system and (b) the CFTC based 2-level DTC scheme in term of	
	the torque, controller, torque error status, and stator flux angle	
	(sector II from Figure 2.4).	
2.15	FFT result for output torque of (a) basic DTC system and (b) the	42
	CFTC system in which simulated in same operating condition	
3.1	Simplified Three-level CHMI Inverter Connected to a Induction	48
	Machine	
3.2	Three-level CHMI Inverter topology with a faulty	48
	switching condition	

ix

3.3	Simplified per-phase three-level CHIMI Inverter topology	49
3.4	Definition of Phase Vectors in (3.4)	51
3.5	Vector units for Each Phase on the Rectangular Coordinates	53
3.6	32 Voltage Vectors (on the Voltage Vector Plane) offered in a	54
3.7	Space Vectors of the Applied Voltage, the Stator Flux and the	59
	Rotor Flux	5
3.8	Analysis of Torque Dynamic or Slope based for Different Switching angle of Voltage Vectors.	61
3.9	Simulation result of torque estimation, torque error and torque status in conventional DTC scheme at very (a) low speed condition, and (b) very high speed condition	64
3.10	(a) Analysis of Torque slope for Different Voltage Vectorsmagnitude and voltage vectors available in (b) 3-level inverterand (c) 3-level Cascaded H-Bridge Multilevel Inverter	66
3.11	Control of Torque using the Proposed 3-level CHMI (Dotted Line) and the Conventional DTC (Solid Line) at (a) Low Speed Operation (b) High Speed Operations. The red colour lines show the improvement of the torque slope.	67
3.12	Simulation result of d-component of voltage vector of (a) conventional voltage vector with selection of long and zero, and	69

Х

🔘 Universiti Teknikal Malaysia Melaka

(b) three-level voltage vector with selection of long and short. The result in right side is the zoom version of left side voltage vector

- 3.13 Selection of voltage vector according to the location of the flux 72 locus in the d- and q- axis reference frame
- 3.14 The change of rate of the torque output based on the magnitude of 74 voltage vector in sector 2 (from flux locus angle -300 until +300). The graph is plotted with the combination voltage vector of
 (a) long-medium, (b) long-medium-short, (c) long-short, and
 (d) medium-short.
- 3.15 Proposed Two Stator Flux Sector Definitions for Optimal 75
 Switching of (a) Short and Long Amplitude of Vectors and
 (b) Medium Amplitude of Vectors
- 3.16 Simulation of extreme slope condition in terms of high(50μs) 79
 and low (20μs) sampling time.
- 3.17 Simulation result of torque error and torque status in conventional 80
 DTC scheme at low speed condition with different sampling time of (a) high (50µs) and (b) low (20µs) sampling time.
- 3.18 Simulation result of overall torque error in conventional DTC 82
 scheme at low speed condition with different sampling time
 of (a) high (50μs) and (b) low (20μs) sampling time
- 3.19 The basic structure of CFTC for conventional DTC scheme 85

xi

3.20	The proposed structure of modified CFTC for the 3-level DTC scheme	85
3.21	The timing diagram of proposed method of modified CFTC controller for 3-level DTC scheme in steady state operation	86
3.22	Averaging the timing diagram of PI controller signal	88
3.23	Averaging the timing diagram of PI controller signal	95
3.24	Block diagram of the Equation (3.83)	98
3.25	Block diagram of the torque loop in frequency domain	98
3.26	Block diagram of the torque loop in frequency domain	99
3.27	Bode plot of the loop gain without the PI controller for three level voltage vectors whereas the red line for long $(v_s^{\Psi}s=160V)$, green line for medium $(v_s^{\Psi}s=138.56V)$, and blue line for short $(v_s^{\Psi}s=80V)$	100
3.28	Carrier waveform for both simulation and experiment setup	102
3.29	Compensated Bode plot of the loop gain with the PI controller for three level voltage vectors whereas the red line for long (v_s^ Ψ s=160V), green line for medium (v_s^ Ψ s=138.56V), and blue line for short (v_s^ Ψ s=80V)	104
3.30	Complete Simulation Model of Proposed CFTC based 3-level DTC	106
3.31	Simulation Model of a Three-Phase Induction Machine xii	107

3.32	Detailed Simulation Model of a Three-Phase Induction Machine	107
3.33	Simulation Model of d- and q-Component Voltage vector for three-phase CHMI Inverter	108
3.34	Simulation Model of d- and q-Component transformation of Current stator current	109
3.35	Simulation Model of Flux and Torque Estimation	109
3.36	Flowchart of Flux Sectors definition	110
3.37	Simulation Model of 3-level CFTC based Optimal Torque status selection block	112
3.38	Block Diagram of Experimental Setup of the proposed method	114
3.39	Photography of Experimental Setup of the Proposed Method	115
3.40	Photography of FPGA Altera DE0 Board	120
3.41	Photography of Current transducer	121
3.42	Photography of the Gate Driver	122
3.43	Photography of three-level CHMI Inverter	122
3.44	Photography of Three-Phase Induction Machine Coupled with a DC Generator as a Loading Unit	123
4.1	simulation result of Torque Reference, Torque Estimation, Torque error with torque band and Torque Status signal at	126

High, Medium and Low-Speed operation for conventional DTC scheme of 2-level VSI

- 4.2 Simulation result of Torque Reference, Torque Estimation, and 129 Torque Status signal at High Speed (left side) and Low Speed (right side) operation for (a) 2-level VSI based conventional DTC scheme, and (b) 3-level CHMI based proposed DTC scheme. (sampling time = 50μs)
- 4.3 Simulation result of Torque Reference, Torque Estimation, torque 130 error with 3-level torque band and Torque Status signal at High Speed (left side) and Low Speed (right side) operation for 3-level CHMI with minimized torque bandwidth.. (sampling time = 50μs)
- 4.4 Simulation result of Torque Reference, Torque Estimation, and 132 torque error with 3-level torque band at High Speed (left side) and Low Speed (right side) operation for 3-level CHMI with
 (a) remaining the torque band, and (b) reduced torque bandwidth.
 (sampling time = 20µs)
- 4.5 Simulation result of Torque Reference, Torque Estimation, and 134
 Torque Error with torque band and Torque Status at High Speed
 (left side) and Low Speed (right side) operation for conventional
 2-level DTC scheme. (sampling time = 20μs)
- 4.6 Simulation result of Torque Reference, Torque Estimation, and 135 Compensated Torque Error (Tpi) with carrier signal and Torque

xiv

C Universiti Teknikal Malaysia Melaka

Status at High Speed (left side) and Low Speed (right side) operation for CFTC based 2-level DTC scheme. (sampling time = 20μ s)

4.7 Simulation result of Torque Reference, Torque Estimation, and 137 Compensated Torque Error (Tpi) with carrier signal and Torque Status at High Speed (left side) and Low Speed (right side) operation for CFTC based 3-level DTC scheme. (sampling time = 20μs)

- 4.8 Simulation result of FFT transform of the Phase current of the 141 induction machine at High Speed (left side) and Low Speed (right side) operation. (sampling time = 20μs)
- 4.9 Simulation result of FFT transform of the torque estimation of 142 the DTC Scheme at High Speed (left side) and Low Speed (right side) operation. (sampling time = $20\mu s$)
- 4.10 Experimental result of Torque Reference, Torque Estimation, 144
 Torque error and Torque Status at High, Medium and Low Speed operation for DTC of 2-level VSI
- 4.11 Experimental result of Torque Reference, Torque Estimation, 146
 Torque error and Torque Status at High (top) and Low (below)
 Speed operation for DTC of 2-level VSI

xv

- 4.12 Experimental result of Torque Reference, Torque Estimation, 147
 Torque error and Torque Status at High (top) and Low (below)
 Speed operation for DTC of 3-level CHMI
- 4.13 Experimental result of Torque Reference, Torque Estimation, 148
 Torque error and Torque Status at High (top) and Low (below)
 Speed operation for DTC of 3-level CHMI with minimized torque bandwidth
- 4.14 Experimental result of Torque Reference, Torque Estimation, 150
 Torque error and Torque Status at High (top) and Low (below)
 Speed operation for DTC of 3-level CHMI with minimized
 sampling time (20μs)
- 4.15 Experimental result of Torque Reference, Torque Estimation, 152
 Torque error and Torque Status at High (top) and Low (below)
 Speed operation for DTC of 3-level CHMI with minimized torque
 bandwidth and sampling time (20μs)
- 4.16 Experimental result of Torque Reference, Torque Estimation, 154
 and Voltage Vector (Vd and Vq) at High, Medium and
 Low-Speed operation for DTC of 2-level VSI
- 4.17 Experimental result of Flux Vector (φd and φq), three-phase 155
 current, and the FFT transform of phase-a current at High,
 Medium and Low-Speed operation for DTC of 2-level VSI

- 4.18 Experimental result of Torque Reference, Torque Estimation, 157
 Carrier triangle wave and Compensated signal at High, Medium
 and Low-Speed operation for CFTC based DTC of 2-level VSI
- 4.19 Experimental result of Flux Vector (φd and φq), three-phase 158 current, and the FFT transform of phase-a current at High,
 Medium and Low-Speed operation for CFTC based
 DTC of 2-level VSI
- 4.20 Experimental result of Torque Reference, Torque Estimation, 160
 Carrier triangle wave and Compensated signal at High, Medium
 and Low-Speed operation for CFTC based DTC of 3-level VSI
- 4.21 Experimental result of Flux Vector (φd and φq), three-phase 161
 current, and the FFT transform of phase-a current at High,
 Medium and Low-Speed operation for CFTC based
 DTC of 3-level VSI

xvii

LIST OF APPENDICES

APPENDIX	

TITLE PAGE dSPACE DS1104 source code listing Α 180 В VHDL source code listing 202 С Sector Definition (Matlab) 208

xviii

LIST OF ABBREVIATIONS

AC	-	Alternating Current
ADC	-	Analog Digital Converter
CFTC		Constant Frequency Torque Controller
DC	-	Direct current
DAC		Digital Analog Converter
DSC	-	Direct Self Control
DSP	-	Digital Signal Processor
DT	-	Sampling period
DTC	-	Direct Torque Control
FPGA	-	Field Programmer Gate Array
FOC	-	Field Oriented Control
IGBT	-	Insulated gate bipolar transistor
IM	-	Induction Motor
LB	-	Lower band
SVM	-	Space vector modulated
UB	-	Upper band

VSI - Voltage Source Inverter

xix

LIST OF SYMBOL

d ,q	-	Direct and quadrature of the stationary reference frame
d^r , q^r	-	Real and imaginary axis of the rotor
i _s , i _r	-	Stator and rotor current space vector in stationary reference frame
$R_{r,}R_s$	-	Rotor and stator resistance
Lr Ls	-	Rotor and Stator self-inductance
Lm	-	Mutual inductance
$\overline{\Psi}_{s_r}\overline{\Psi}_r$	-	Stator and rotor flux linkage space vector in reference frame
i _{rd} , i _{rq}	-	d and q components of the rotor current in stationary reference frame
i _{sd} , i _{sq}	-	d and q components of the stator current in stationary reference
		frame
V _{sd} , V _{sq}	-	d and q-axis of the stator voltage in stationary reference frame
Ψ_{sd}, Ψ_{sq}	-	d and q components of the stator flux in stationary reference frame
\bar{v}_s	-	Voltage vectors
п	-	Numbers of phase
$i_{a,b}i_{b}i_{c}$	-	Phase current a, b and c
L	-	Self-inductance
Te	-	Electromagnetic Torque
T _{reff}	-	Reference of torque

C Universiti Teknikal Malaysia Melaka