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ABSTRACT 

 

 

Excellent torque control has been a focus of research in AC drives since last decades due to 
its important requirements for many industrial applications. Spurred on by rapid 
developments in the embedded computing systems, two popular approaches namely Field 
Oriented Control (FOC) and Direct Torque Control (DTC) were used to obtain excellent 
torque control. Obviously, both approaches use the space vector modulation (SVM) 
technique to reduce torque ripples as well as produce a constant switching frequency. 
However, the use of SVM complicates the control structures of FOC and DTC, which 
somehow increase the sensitivity control and hence may degrade the control’s accuracy. 
Moreover, the selection of voltage vectors is inappropriate, particularly for application of 
two-level inverter which offers limit number of voltage vectors. This thesis aims to reduce 
torque ripple and produce a constant switching frequency in DTC by replacing the 
hysteresis controller and two-level inverter with a PI based torque controller and three-
level cascaded H-Bridge multilevel inverter (CHMI), respectively. By employing the three-
level CHMI, it provides a greater number of voltage vectors as compared to that offered in 
the conventional two-level inverter which gives more options to select the most optimal 
voltage vectors. The analysis of effects of selecting different voltage vectors on DTC 
performances are carried out to identify the most optimal vectors that can be chosen to 
improve torque control performances for every operating condition. The identification is 
made with the aid of vector diagrams and some equations, i.e. equations of torque rate, slip 
angular frequency and torque capability. This thesis also presents detail explanation and 
calculation of optimal PI parameter tuning strategy consecutively to improve torque 
control with reduced torque ripples. The proposed DTC control algorithm can be optimally 
executed at high computation rate by totally using C-coding with DS1104 controller board. 
The effectiveness of the proposed method is verified via simulation and experiment results, 
as well as comparison with the conventional DTC method. The results have shown that the 
torque ripple in the proposed method can be greatly reduced about 9.54%.  
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ABSTRAK 

 

 

 
Kecemerlangan kawalan dayakilas telah menjadi fokus dalam penyelidikan pemacuan 
arus ulang-alik semenjak beberapa dekad sebelum ini disebabkan keperluan penting bagi 
banyak aplikasi industri. Didorong oleh perkembangan pesat dalam sistem 
pengkomputeran tertanam, dua pendekatan popular iaitu Kawalan Berorientasikan Medan 
(FOC) dan Kawalan Dayakilas Langsung (DTC) telah digunakan untuk mencapai kawalan 
dayakilas yang cemerlang. Jelas sekali, kedua-dua pendekatan menggunakan teknik 
Modulasi Vektor Ruang (SVM) untuk mengurangkan riak-riak dayakilas dan juga 
menghasilkan sebuah frekuensi pensuisan yang malar. Walaubagaimanapun, penggunaan 
SVM merumitkan struktur kawalan bagi FOC dan DTC, yang boleh meningkatkan 
kepekaan kawalan dan seterusnya boleh menurunkan ketepatan kawalan. Tambahan lagi, 
pemilihan voltan vektor adalah tidak bersesuaian, terutama bagi penggunaan 
penyongsang dua peringkat yang menawarkan bilangan voltan vektor yang terhad. Tesis 
ini mensasarkan untuk mengurangkan riak dayakilas dan menghasilkan sebuah frekuensi 
pensuisan yang malar dalam DTC dengan menggantikan kawalan histeresis dan 
penyongsang dua peringkat masing-masing dengan sebuah kawalan dayakilas berasaskan 
PI dan penyongsang berganda peringkat lata jejambat-H. Dengan menggunakan tiga 
peringkat CHMI, ia menyediakan bilangan voltan vektor yang lebih banyak berbanding 
dengan yang ditawarkan dalam penyongsang konvenyenal dua peringkat yang memberi 
lebih opsyen untuk memilih voltan vektor yang paling optimal. Analisis bagi kesan-kesan 
pemilihan voltan vektor yang berbeza terhadap prestasi DTC dilakukan untuk 
mengenalpasti vektor yang paling optima untuk dipilih bagi menambahbaik prestasi 
kawalan dayakilas bagi setiap operasi keadaan. Pengenalpastian ini dilakukan dengan 
bantuan rajah vektor dan beberapa persamaan, iaitu persamaan kadar dayakilas, 
frekuensi sudut gelinciran dan keupayaan dayakilas. Tesis ini juga membentangkan 
penerangan terperinci dan pengiraan bagi strategy pelarasan parameter PI yang optimal 
untuk menambahbaik kawalan dayakilas dengan pengurangan riak-riak dayakilas. 
Cadangan kawalan algoritma DTC boleh secara optimal dilaksanakan pada kadaran 
pengiraan yang tinggi dengan sepenuhnya menggunakan kod-C dengan papan kawalan 
DS1104. Keberkesanan bagi cadangan kawalan disahkan melalui keputusan-keputusan 
simulasi dan eksperimen, dan juga perbandingan dengan kaedah konvensyenal DTC. 
Keputusan-keputusan telah menunjukkan bahawa dayakilas dalam kaedah cadangan boleh 
dikurangkan dengan jelas kira-kira 9.54%. 
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