

Faculty of Mechanical Engineering

DESIGN, DEVELOPMENT AND PERFORMANCE OF A LOW COST THREE-DIMENSIONAL METAL PRINTER

Nor Ana binti Rosli

Master of Science in Mechanical Engineering

2018

C Universiti Teknikal Malaysia Melaka

DESIGN, DEVELOPMENT AND PERFORMANCE OF A LOW COST THREE-DIMENSIONAL METAL PRINTER

NOR ANA BINTI ROSLI

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "Design, Development and Performance of A Low Cost Three-Dimensional Metal Printer" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	Nor Ana binti Rosli
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Mechanical Engineering

Signature	:	
Supervisor Name	:	Ir. Dr. Mohd Rizal bin Alkahari
Date	:	

DEDICATION

"To my beloved family"

ABSTRACT

3D printing or additive manufacturing (AM) for metallic component is one of the most promising processes that offers freedom to produce an intricate design in a single step. The metal AM process is characterised by high productivity, high energy efficiency, and low raw material cost. A functional metal part can be directly built by using AM process. This increases productivity while enabling reduction in cost and time. The technology is a relatively new and emerging technology. Recently, the growing demand in metal-based material application is utilised in 3D printing. The laser-based system is commonly used for commercial 3D metal printing. However, the price of commercial metal-based 3D printer systems is relatively expensive. Moreover, this drawback has severely restricted the technology access to small and medium industry applications. This study develops a new low-cost 3D metal printing machine by using a wire and arc additive manufacturing process. In other to reduce cost, alternative heat sources were used and a new system utilising an open source was developed. The design and development processes on the hardware and electronic components were described and evaluated. A brief description on basic construction, process, and operations to handle the low-cost 3D metal printer, were presented. This study also presents the total bill for material, connection of electronic parts, and illustration of the experimental setup. Besides that, to test the newly developed machine performance, printed samples were manufactured and tested. In this context, two different heat sources were used, which were the metal inert gas (MIG) welding and plasma arc welding (PAW) process. The experimental setup for both heat sources was described. The sample's accuracy and structure were examined and compared with the computer aided design (CAD) data. In order to obtain more information about the printed bead geometry, the specimen was cut cross-sectionally and captured by using a scanning electron machine (SEM). As a result, two different findings can be found by using two different heat sources. Nonetheless, the result confirms that the newly developed low-cost 3D metal printer with wire feed AM process is relatively acceptable to produce 3D metal structures.

ABSTRAK

Percetakan 3D atau pembuatan secara tambahan untuk menghasilkan komponen logam adalah salah satu proses yang menjanjikan kebebasan dalam menghasilkan reka bentuk yang rumit dengan satu langkah. Pembuatan secara tambahan untuk bahan logam dicirikan sebagai tinggi produktiviti, tinggi kecekapan tenaga dan kos bahan mentah yang rendah. Bahagian logam vang berfungsi juga boleh dihasilkan secara terus menggunakan proses pembuatan secara tambahan dan ini dapat meningkatkan produktiviti selain membolehkan pengurangan kos dan masa. Baru-baru ini, permintaan penggunaan percetakan 3D untuk bahan logam semakin meningkat. Sistem berasaskan laser biasanya digunakan untuk percetakan logam 3D komersial. Walaubagaimanpun, harga sistem percetakan 3D komesial yang berasaskan logam agak mahal. Tambahan pula, kelemahan ini telah menghadkan penggunaan teknologi ini untuk kegunaan industri kecil dan sederhana. Kajian ini membangunkan mesin percetakan logam 3D berkos rendah dengan menggunakan wayar untuk pembuatan secara tambahan. Untuk mengurangkan kos, sumber haba alternatif telah digunakan dan sistem baru menggunakan sistem terbuka telah dibangunkan. Proses mereka dan membangunkan komponen perkakasan dan elekronik telah dinilai dan diterangkan. Penerangan ringkas mengenai pembinaan asas, proses dan cara untuk mengendalikan percetakan logam 3D berkos rendah dibentangkan. Kajian ini juga membentangkan jumlah senarai bahan, penyambungan bahagian elektronik dan ilustrasi persediaan melakukan eksperimen. Selain itu, untuk menguji kecekapan mesin yagng baru dibangunkan ini, sampel logam 3D telah dicetak dan diuji. Dalam konteks ini, dua sumber haba digunakan iaitu kimpalan logam gas lengai dan kimplan. Persediaan eksperimen untuk kedua-dua sumber haba telah dijelaskan. Ketepatan dan struktur sampel diperiksa dan dibandingkan dengan rekabentuk bantuan komputer. Untuk mendapatkan lebih banyak maklumat tentang geometri yang dihasilkan, sampel telah dipotong secara rentas dan dilihat menggunakan mesin pengimbas elektronik. Keputusan menunjukkan dua hasil yang berbeza boleh didapati dengan menggunakan dua sumber haba yang berlainan. Walaubagaimanapun, keputusan mengesahkan bahawa pencetak logam 3D berkos rendah yang baru dibangunkan ini dengan proses pembuatan secara penambahan wayar boleh diterima dalam menghasilkan struktur logam 3D.

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful. Alhamdulillah, all praise is due to Allah for the strength and blessings in completing this thesis. First and foremost, I wish to express my sincere gratitude to my supervisor, Ir. Dr. Mohd Rizal bin Alkahari and Co-supervisor, Dr. Faiz Redza bin Ramli, for their supervisory support, guidance, and immense knowledge towards completing this study. My sincere thanks to all technicians from the Faculty of Mechanical Engineering for helping me in regard to facilities and apparatus required for this study. Also, my special thanks to Universiti Teknikal Malaysia Melaka (UTeM) and the Ministry of Education (MoE) for the financial support under the FRGS research grant FRGS/1/2015/TK03/FKM/02/F00269.

I also would like to express my warmest and deepest appreciation to my beloved parents, Mr. Rosli bin Mohd Deni and Mrs. Ramlah binti Yunus for their continuous prayers, love, and support through this unforgettable journey. Thanks also to my siblings, in-laws, and nephews who have always understood me and kept-encouraging me to successfully finish this study. Finally, my deepest thanks to my dear friends, especially members of Innovation Lab Faculty of Mechanical Engineering, who have shared their ideas and made their contributions in many ways to make this study a success.

TABLE OF CONTENTS

DE	CLAF	RATION	
AP	PROV	VAL	
DE	DICA	ATION	
AB	STRA	ACT	i
AB	STRA	AK	ii
AC	KNO	WLEDGEMENTS	iii
ТА	BLE (OF CONTENTS	iv
LIS	ST OF	TABLES	vii
LIS	ST OF	FIGURES	ix
LIS	ST OF	FAPPENDICES	xiii
LIS	ST OF	SYMBOLS	XÌV
	ST OF	ABBREVIATIONS	XV ·
	SI OF	PUBLICATIONS	XVI
LIS	of OF	AWAKDS	XVII
сп	ADTE	FD	
сп 1	INT	TRODUCTION	1
1.	11	Background	1
	1 2	Problem Statement	3
	1.3	Objective	4
	1.4	Scope of Research	4
	1.5	Thesis Outline	4
2.	LIT	TERATURE REVIEW	7
_•	2.1	Introduction	7
	2.2	Additive Manufacturing Process	7
		2.2.1 Vat Photopolymerization	11
		2.2.2 Material Jetting	12
		2.2.3 Material Extrusion	12
		2.2.4 Powder Bed Fusion	13
		2.2.5 Binder Jetting	14
		2.2.6 Sheet Lamination	14
		2.2.7 Directed Energy Deposition	15
	2.3	Design of Three-Dimensional printer	15
	2.4	Metal Additive Manufacturing	17
	2.5	Metal Inert Gas (MIG) Welding in Additive Manufactu	ring 20
		2.5.1 MIG Welding	21
		2.5.2 Printing Method	23
	2.6	Plasma Arc Welding (PAW) in Additive Manufacturing	g 27
		2.6.1 Plasma Arc Welding	27
	. –	2.6.2 Printing Method	29
	2.7	Research Gap	33

3.	ME	THOD	DLOGY	34
	3.1	Introd	uction	34
	3.2	Design	n Stage	36
		3.2.1	Product Design Specification	36
		3.2.2	Design Generation	37
		3.2.3	Design Selection and Evaluation	37
		3.2.4	Detailed Design	40
	3.3	Develo	opment Stage	41
		3.3.1	Selection and Sizing of Component	41
		3.3.2	Fabrication Process	42
	3.4	Perfor	mance Stage	43
		3.4.1	Experimental Setup 3D Metal Printer with MIG Welding	44
		3.4.2	Experimental Setup 3D Metal Printer with PAW	46
			3.4.2.1 Wire Feed Orientation	47
			3.4.2.2 Full Factorial Approach	47
	3.5	Summ	ary	48
4.	3D I	METAI	L PRINTER MACHINE DESIGN AND DEVELOPMENT	49
	4.1	Introdu	uction	49
	4.2	Design	n Specifications	49
	4.3	Design	n Generation	50
		4.3.1	First Design Concept	52
		4.3.2	Second Design Concept	53
		4.3.3	Third Design Concept	54
		4.3.4	Fourth Design Concept	55
	4.4	Design	n Selection and Evaluation	56
	4.5	Detail	Design Selection	60
		4.5.1	Detail Design of the X-Axis Component	60
		4.5.2	Detail Design of the Y-Axis Component	62
		4.5.3	Detail Design of the Z-Axis Component	64
	4.6	Selecti	ion of Component	65
		4.6.1	Selection of Linear Bearing	65
		4.6.2	Selection of Smooth Rod	66
		4.6.3	Selection of Ball Screw	67
		4.6.4	Selection of Flexible Coupling	68
		4.6.5	Selection of Limit Switch	69
		4.6.6	Selection of Rod Support	70
		4.6.7	Selection of PTFE Tube	70
		4.6.8	Selection of Motors	71
		4.6.9	Selection of Stepper Motor Driver	72
		4.6.10	Design of Self-Fabricated Component	74
		4.6.11	Design of Motor Bracket	75
		4.6.12	Design of MIG Welding Holder	76
		4.6.13	Design of PAW Holder	77

	4.7	Fabric	ation Process	78
		4.7.1	Hardware Components	78
		4.7.2	Electronic Components	82
		4.7.3	Configuring and Compiling Marlin Firmware	85
	4.8	Calibra	ation Process	87
		4.8.1	Motor Calibration	89
		4.8.2	Positioning (x, y, z) Calibration	89
	4.9	Summ	ary	91
5.	RES	SULT A	ND DISCUSSION	92
	5.1	Introdu	uction	92
	5.2	Metal	3D Printing Process with MIG Welding	92
		5.2.1	Effect of Welding Voltage	93
		5.2.2	Effect of Travel Speed	97
		5.2.3	Post Processing Process	102
		5.2.4	Sample Manufacturing using 3D Metal Printer	103
	5.3	Metal	3D Printing with Plasma Wire Deposition Process	104
		5.3.1	Wire Feed Orientation	105
		5.3.2	Single Layer Formation of Plasma Wire Deposition Process	107
		5.3.3	Instability of Single Layer	111
		5.3.4	Optimal Parameters of Single Layer	112
		5.3.5	Multi-Layer Formation	115
	5.4	Summ	ary	118
6.	CO	NCLUS	ION AND RECOMMENDATIONS	120
	6.1	Conclu	usions	120
	6.2	Recon	nmendations for Future Studies	122
RE	FERE	NCES		123
AP	PEND	ICES		135

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	List of Cartesian designs that are available	17
2.2	AM technology for metal component	18
2.3	Existing research that produce 3D metal part using AM technologies	20
2.4	Various research group used PAW in AM process	27
3.1	Function and criteria desired for the newly developed low-cost 3D m	etal
	printer	36
3.2	Welding and 3D metal printer machine parameters and setting	45
3.3	Parameters for plasma wire deposition	47
4.1	Design specification of the newly develop 3D metal printer	50
4.2	Morphological chart	51
4.3	Summary comparison using Pugh method	57
4.4	Weight decision matrix for 3D metal printer	59
4.5	Specification of stepper motor Nema 17	72
4.6	Custom design fabricate with RepRap 3D printer	75
4.7	Material costs for the newly developed low-cost 3D metal printer	87
5.1	Experiment parameters for voltage influence	96
5.2	Experimental parameters to identify suitable speed	98
5.3	Experimental parameters to examined wire feed orientation	106
5.4	Experimental parameters	108

5.5	Factor level of full factorial approach	109
5.6	Full factorial approach single layer pattern	110
5.7	Types of single layer deposition	111
5.8	Parameters for multi-layer formation	115

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Schematic diagram comparison of the manufacturing method	9
2.2	The growth of AM industries	10
2.3	Product development of addditive manufacturing process	11
2.4	Vat photopolymerization schematic process	11
2.5	Material jetting process	12
2.6	Material extrusion process	13
2.7	Schematic diagram of powder bed fusion	13
2.8	Binder jetting	14
2.9	Schematic system of LOM	15
2.10	Schematic illustration of directed energy deposition	15
2.11	Popular design of open source 3D printer; (a) Cartesian and (b) Delta	. 16
2.12	Schematic drawing MIG welding process	21
2.13	Types of metal transfer; (a) Short-circuting, (b) Spray and	
	(c) Globular	22
2.14	Deposition direction of single-pass multi-layer component;	
	(a) Same deposition direction and (b) Reverse deposition direction	25
2.15	Direction of deposition between in the layer of bead and between	
	the layer; (a) Alternater angle 0° and (b) Alternate angle 90°	25

2.16	3D metal printing utilize MIG welding process	26
2.17	Schematic diagram of the PAW process	28
2.18	Principal of PAW; (a) Transferred arc and (b) Non-transferred arc	29
2.19	Three types of feeding direction	32
3.1	Flow chart for study conducted	35
3.2	Process use morphological method	37
3.3	Process flow of Pugh method	38
3.4	Hierachical objective tree	39
3.5	Objective tree for the design of 3D metal printer	40
3.6	RepRap 3D printer	42
3.7	Flow of process using low cost 3D metal printer machine; (a) Draw using	ng
	CATIA, (b) Slice and save with G-code and (c) Start printing process	44
3.8	CATIA drawing of the two sample; (a) Custom rectangular and	
	(b) Custom cylinder	45
3.9	Wire feed orientation; (a) Back feeding and (b) Front feeding	47
4.1	First design concept	52
4.2	Second design concept	53
4.3	Third design concept	54
4.4	Fourth design concept	55
4.5	Assembly drawing of x-axis components	60
4.6	Bill of material for x-axis component	61
4.7	Assembly drawing of y-axis components	62
4.8	Bill of material for y-axis component	63
4.9	Assembly drawing of z-axis components	64
4.10	Bill of material of z-axis component	65

Х

4.11	Linear bearing case SCS8UU	66
4.12	Smooth rod with 8 mm diameter	67
4.13	Jaw types of flexible coupling	69
4.14	Rod support SK8	70
4.15	Stepper driver DRV 8825	73
4.16	Motor bracket	76
4.17	The design of MIG welding holder	77
4.18	Plasma holder with wire feed system	78
4.19	X-axis assembly components	79
4.20	Y-axis assembly components	79
4.21	Z-axis assembly components	80
4.22	Assembly of all components	80
4.23	Fabrication process	81
4.24	Install all jumper at the area outlined	82
4.25	RAMPS 1.4 on top of Arduino Mega 2560	83
4.26	Install stepper driver on top of RAMPS 1.4	83
4.27	Connection with power supply	84
4.28	Full schematic wiring diagram	85
4.29	Marlin firmware for new develop 3D metal printer configuration	86
4.30	Displacement of printing position; (a) First and (b) Second layer	88
4.31	Drawing of rod bracket; (a) CAD data and (b) Actual drawing	88
4.32	Controlling of potentionmeter for desired current	89
4.33	Modification on Arduino firmware	90
4.34	Example of accurate drawing	91
5.1	Schematic diagram of MIG welding deposition	93

5.2	Printed metal part of rectangular specimen; (a) CAD data and	
	(b) 3D metal part produce using 3D metal printer with MIG welding	94
5.3	Printed metal part of cylindrical specimen; (a) CAD data and	
	(b) 3D metal part produce using 3D metal printer with MIG welding	95
5.4	Influence of voltage on the manufactured layers	97
5.5	Output of printing process; (a) speed at 20 mm/s, (b) speed at 40 mm, (c	c)
	speed at 60 mm/s and (d) speed at 80 mm/s	99
5.6	Experimental data speed influence the manufactured layer	100
5.7	SEM micrograph representing various speeds to analyse the quality	
	of multi-layer wall deposition at speeds of; (a) 20 mm/s, (b) 40 mm/s,	101
	(c) 60 mm/s and (d) 80 mm/s	
5.8	Hardness measuring; (a) Schematic of cross section and	
	(b) Microhardness profile of deposited metal	102
5.9	After post processing process	103
5.10	Sample manufactured with 3D metal printer	104
5.11	Schematic diagram of plasma wire depositon	105
5.12	Influence of welding current on plasma wire depositon	106
5.13	Disconnected due to wire feed orientation	107
5.14	Pattern of single layer deposition at torch distance of 5 mm	112
5.15	Pattern of single layer deposition at torch distance of 6 mm	113
5.16	Sectioned view single layer microscopy image	115
5.17	Deposition of; (a) 10 seconds, (b) 20 seconds and 30 seconds	116
5.18	Deposition of ; (a) 50 seconds and (b) 60 seconds	116
5.19	Deposition of; (a) 70 seconds, (b) 80 seconds and (c) 90 seconds	117
5.20	Sectioned view of multilayer microscopy image	118

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Full engineering drawing of low cost 3D metal printer	135

xiii

C Universiti Teknikal Malaysia Melaka

LIST OF SYMBOLS

- \sum Summation w_i - Weighting factor
- *n* Number of evaluation
- *V* Voltage applied
- I_{max} Maximum current [A]
- spr Step per revolution

.

L - Stepper motor inductance

LIST OF ABBREVIATIONS

AM	-	Additive Manufacturing
CAD	-	Computer Aided Design
CNC	-	Computer Numerical Control
DED	-	Direct Energy Deposition
FDM	-	Fused Deposition Modelling
GMAW	-	Gas Metal Arc Welding
GTAW	-	Gas Tungsten Arc Welding
HAZ	-	Heat Affected Zone
LOM	-	Laminated Object Manufacturing
MAG	-	Metal Active Gas
MIG	-	Metal Inert Gas
PAW	-	Plasma Arc Welding
РТА	-	Plasma Tungsten Arc
SEM	-	Scanning Electron Microscope
SLS	-	Selective Laser Sintering
SOD	-	Stand Off Distance
STL	-	Standard Tessellation Language
TIG	-	Tungsten Inert Gas
WAAM	-	Wire Arc Additive Manufacturing
3D	-	Three-Dimensional

🔘 Universiti Teknikal Malaysia Melaka

LIST OF PUBLICATIONS

Journal Articles

N. A. Rosli, M. R. Alkahari, F. R. Ramli, S. Maidin, M. N. Sudin, S. Subramoniam, T, Furumoto, 2018. Design and Development of a Low-Cost 3D Metal Printer, *Journal of Mechanical Engineering Research and Development*, 41(3), pp. 47-54.

N. A. Rosli, M. R. Alkahari, F. R. Ramli, M. N. Sudin, S. Maidin, Single Track Formation of Plasma Wire Deposition Process, *Journal of Advanced Manufacturing Technology* (Accepted).

Intelectual Property

M. R. Alkahari, N. A. Rosli, F. R. Ramli, S. Maidin, S. Subramaniam, M. N. Sudin, "A Multimodal Three-Dimensional Printer and a Method for Printing a Metallic Component in Three Dimensions", Patent Application No. PI 2017/00097, filed Jan 10, 2017.

xvi

LIST OF AWARDS

- Gold Award Universiti Teknikal Malaysia Melaka Exhibition (UTeMEX 2016)
- Bronze Award, International Research Conference and Innovation Exhibition (IRCIE 2016)
- Bronze Award Malaysia Technology Expo (MTE 2017)
- Bronze Award The International Conference and Exposition on Inventions by Institutions of Higher Learning (PECIPTA 2017)

xvii

CHAPTER 1

INTRODUCTION

1.1 Background

Additive manufacturing (AM) process has gained attention in most manufacturing industries (Dilberoglu et al., 2017). The technology creates a part without using a machine as a tool to assist in production processes, therefore, saves a lot of time and money (Herderick, 2011). AM or 3D printing is a group of technologies that is used to build prototypes, physical models, and finished parts from 3D computer-aided design (CAD) data. (Udroiu and Nedelcu, 2011). This technology has developed rapidly and its effectiveness is proven, especially for designing and small production (Kruth et al., 1998; Galantucci et al., 2015).

AM technology also allows the fabrication of complex shapes directly from CAD data by using a layer by layer approach with minimum adjustment (Villalpando et al., 2014; Lanzotti et al., 2016). Furthermore, AM technology offers advantages in many applications as compared to the conventional machines, such as CNC. Although CNC machines are capable of producing products directly from CAD, but for complex shapes it is necessary to do multiple re-fixtures and recalibrate the procedure (Ding et al., 2015). A manufacturing process that use AM technology from virtual designs to ready-to-use parts is also lesser than the common process and conveniently allows the manufacturer to commercialise the product faster. Besides, this technology can create a single structure with complex shapes that are nearly impossible to be built by using traditional approaches.

The evolution of 3D printer technology is now easily accessible through the Internet, and due to that, open design can also be developed. In fact, the increase in 3D printing applications has drawn manufacturers and individuals to improve the machine, especially for fabrication processes. (Galantucci et al., 2015). AM technology has great potential to improve the processing industry in the future. Furthermore, a 3D printing machine can be developed by using an open source. The presence of open source allows the building of a 3D printer with a low fabrication cost. (Galantucci et al., 2015). Available examples of open source models are RepRap, fab@home, and Ultimaker. Anyone can use the open source systems, redistribute it, study, and modify the source code without restriction since the project is an open source system. (Pearce, 2013). Adrian Boyer from the University of Bath, in United Kingdom started to establish the 3D printer capability to repeat a significant number of its structural component (Anzalone et al., 2013). RepRap or rapid self-replicate prototyping is the most successful project in open source systems. The estimated number of RepRap users had increased from 4 to 4,500 between 2008 to 2010 (Jandric et al., 2004).

Recently, the understanding of AM technology for metal-based material processing has significantly improved due to the increase in demand (Qian et al., 2016). The technology has undergone rapid progress and its usage has emerged in some applications, such as automotive engines, manufacturing tools, power tools, and aircraft assemblies (Jurrens and Energetics Incorporated, 2013). There is a diversed selection of producing metal components by using AM technology processes that are commercially available. Process such as selective laser sintering (SLS) (Khaing et al., 2001), direct metal deposition (Dinda et al., 2008), shape metal deposition (Baufeld et al., 2010), electron beam melting (Brandl et al., 2011), and the most recent plasma deposition (Martina et al., 2012). However, the basic process involved in producing 3D products remains the same. The process starts with a CAD drawing. Then the file is converted to the .stl file format, Then the model is sliced and