

Faculty of Electronic and Computer Engineering

DESIGN OF HYBRID RF DIPLEXER AND TRIPLEXER FOR MULTIBAND WIMAX APPLICATION

Muhammad Aizat bin Sazali

Master of Science in Electronic Engineering

2018

DESIGN OF HYBRID RF DIPLEXER AND TRIPLEXER FOR MULTIBAND WIMAX APPLICATION

MUHAMMAD AIZAT BIN SAZALI

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Electronic Engineering

Faculty of Electronic and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

DECLARATION

I declare that this thesis entitled "Design of Hybrid RF Diplexer and Triplexer for Multiband WiMAX Application" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature :

Name : Muhammad Aizat Bin Sazali Date : $\frac{13}{3}$

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electronic Engineering.

Signature Supervisor Name : Dr. Noon Azwan Bin Shairi 13 Mac 2018 Date

DEDICATION

The sake of Allah, my Creator and my Master,

My great messenger, Mohammad S.A.W who taught us the purpose of life,

My beloved parent Sazali and Rohani,

My beloved supervisors Dr. Noor Azwan and Assoc. Prof. Dr. Zahriladha,

My beloved families,

My beloved friends and all the people in my life who touched my heart and soul.

C Universiti Teknikal Malaysia Melaka

ABSTRACT

Radio frequency (RF) diplexer and triplexer are widely used in wireless communication system. The development of RF diplexer and triplexer are very competing in multiband Worldwide Interoperability for Microwave Access (WiMAX) application. This is due to the high demands of wireless communication system to support multi-services simultaneously. Many RF diplexer and triplexer are designed using common type of the filter. Besides, the preliminary designs are for multi-applications not specifically for multiband WiMAX application. The multiband WiMAX has been implemented around the globe as allocated by the International Telecommunication Union (ITU). Bandwidth of the multiband WiMAX application are varies depending on the countries. Therefore, the proposed RF diplexer and triplexer are developed to cope with the multiband WiMAX bandwidth. This is because of the bandwidth is purposely to allow the data to be transmitted or received based on the frequencies assigned. The proposed RF diplexer and triplexer were designed with three different resonators as to cover the multiband WiMAX bandwidth which were at 2.3, 2.6 and 3.5 GHz. The resonator types were selected based on the bandwidth achieved by the resonator. In addition, the resonators used were based on the coupled lines technique on a microstrip structure due to the flexibility during development processes such as open loop, parallel and folded structures. The proposed RF diplexer and triplexer are based on the hybrid structure which more flexible for the resonators to match with the matching network. By synthesis and analysis on the overall performances of the proposed RF diplexer and triplexer, the specific bandwidths were achieved for multiband WiMAX application. Results showed that the resonators produced bandwidths of 100 MHz for the narrow band with minimum 4 % fractional bandwidth, and 200 to 700 MHz with 10 - 20 % fractional bandwidth for the moderate band. These results showed that the resonators were achieved good agreements to be implemented in multiband WiMAX application.

î.

ABSTRAK

Frekuensi Radio (RF) pendipleks dan triplexer digunakan secara meluas dalam sistem komunikasi tanpa wayar. Pemajuan RF pendipleks dan triplexer adalah sangat berkompetisi dalam perkembangan aplikasi jalur berbilang Worldwide Interoperability for Microwave Access (WiMAX). Ini adalah disebabkan oleh permintaan yang tinggi dalam sistem komunikasi tanpa wayar ke pelbagai perkhidmatan sokongan secara serentak. Banyak RF pendikpleks dan triplexer direka untuk pelbagai aplikasi yang tidak umumnya untuk aplikasi jalur berbilang WiMAX. Jalur berbilang WiMAX telah dilaksanakan di seluruh dunia seperti yang diperuntukkan oleh pihak International Telecommunication Union (ITU). Lebar jalur untuk jalur berbilang WiMAX berbeza bergantung kepada sesebuah negara. Oleh yang demikian, RF pendipleks dan triplexer yang dicadangkan dibentuk untuk menadaptasi lebar jalur untuk jalur berbilang WiMAX. Ini adalah kerana lebar jalur adalah membolehkan data yang dihantar atau diterima mengikut pada frekuensi yang ditetapkan. RF pendipleks dan triplexer yang dicadangkan telah direka dengan tiga resonator yang berbeza untuk meliputi lebar jalur WiMAX pada 2.3, 2.6 dan 3.5 GHz. Jenis bahantara dipilih berdasarkan pada lebar jalur yang dicapai oleh bahantara itu. Di samping itu, resonator yang digunakan adalah berasaskan teknik garisan berganding pada struktur microstrip, hal ini disebabkan oleh fleksibiliti di sepanjang proses pembangunan seperti gelung terbuka, selari dan struktur dilipat. RF pendipleks dan triplexer yang dicadangkan adalah berdasarkan struktur hibrid dimana lebih fleksibel untuk resonator sesuai dengan rangkaian sepadan. Dari sintesis dan analisis, prestasi keseluruhan cadangan RF pendipleks dan triplexer, Lebar jalur tertentu dicapai jalur berbilang aplikasi WiMAX. Hasil kajian menunjukkan bahawa resonator ini menghasilkan jalur lebar sebanyak 100 MHz untuk jalur sempit dengan minimum lebar jalur pecahan 4%, dan 200 hingga 700 MHz dengan lebar jalur pecahan 10-20% bagi jalur sederhana. Keputusan ini menunjukkan resonator ini mencapai kesesuaianuntuk dilaksanakan dalam aplikasi jalur berbilang WiMAX.

ACKNOWLEDGEMENTS

First and foremost, I would like to take this opportunity to express my sincere acknowledgement to my supervisor Dr. Noor Azwan Shairi and my co-supervisor Assoc. Prof. Dr. Zahriladha Zakaria from the Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM) for their essential supervisions, supports and encouragements towards the completion of this thesis.

I would also like to express my greatest gratitude to all who have support me during completing my Master of Science in Electronic Engineering. Special thanks to all my friends who have provided assistance at various occasions. I would like to acknowledge the Ministry of Higher Education (MOHE), Universiti Teknikal Malaysia Melaka (UTeM), Faculty of Electronic and Computer Engineering (FKEKK) for scholarships and the research grants.

Special thanks to my beloved mother, Rohani Harun, my beloved father, Sazali Kamarudin, my sister, Nur Hidayah Sazali for their unconditional love, continuous moral supports, encouragement and prayers during completing this project. Last but least, thank you to everyone who had been directly and indirectly involved in the crucial parts of realization of this project. Thank you very much!

iii

TABLE OF CONTENTS

	IA	BLE OF CONTENTS	DACE
DE	CLARATION		PAGE
AP	PROVAL		
DE	DICATION		
AB	STRACT		4
AB	STRAK		ii
AC	KNOWLEDGEMENTS		iii
TA	BLE OF CONTENTS		iv
LIS	ST OF TABLES		vii
LIS	ST OF FIGURES		ix
LIS	ST OF APPENDICES		xvi
LIS	ST OF ABBREVIATIONS		xvii
LIS	ST OF SYMBOLS		xviii
LIS	ST OF PUBLICATIONS		xix
LIS	ST OF AWARD		XX
СН	IAPTER		
1.	INTRODUCTION		1
	1.1 Research Background		1
	1.2 Problem Statement		6
	1.3 Research Objectives		8
	1.4 Research Scope		9
	1.5 Contribution of Research	Work	9
	1.6 Thesis Outline		11
2.	LITERATURE REVIEW		13
	2.1 Introduction		13
	2.2 Overview of Diplexer an	id Triplexer	13
	2.3 Overview of Resonator		15
	2.4 Theory of Microstrip Cou	ipling	17
	2.5 Relevant Types of Reson	ator	22
	2.0 Literature of Diplexer		39
	2.7 Enterature of Thiplexer		40
	2.9 Summary		56
	2.9 Summary		50
3.	RESEARCH METHODOLO	OGY	57
	3.1 Introduction		57
	3.2 Flow of Project		57
	3.2.1 Flow of the Band	pass Filters Design	59
	3.2.2 Flow of the Circu	it Simulation	60
	3.2.3 Flow of The Proto	otype Measurement	61
	3.3 Design of Bandpass filter		62
	3.3.1 Design of the Bar	idpass Filter Using	
	Open Loop Coupl	led Line Resonator	63
	3.3.2 Design of the Bar	lapass Filter Using	64
	Parallel Coupled	Line Resonator	64

		3.3.3	Design o	f the Bandpass Filter Using	
			Folded C	Coupled Line Resonator	68
	3.4	Design	n of Hybri	d Matching Network	71
	3.5	Design	of Diple	xer	72
		3.5.1	Diplexer	Design A	72
		3.5.2	Diplexer	Design B	76
		3.5.3	Diplexer	Design C	79
	3.6	Design	of Triple	exer	80
	3.7	Summ	ary		82
4.	RES	SULT A	ND DISC	CUSSION	83
	4.1	Introd	uction		83
	4.2	Result	s of Filter	Design	83
		4.2.1	Bandpas	s Filter Using Open Loop	
			Coupled	Line Resonator	84
			4.2.1.1	Analysis of the Resonator Gap	84
			4.2.1.2	Simulation and Measurement	
				Results for Verification	86
		4.2.2	Bandpas	s Filter Using Parallel	
			Coupled	Line Resonator	89
			4.2.2.1	Analysis of the Resonator Gap	89
			4.2.2.2	Simulation and Measurement	
				Results for Verification	92
		4.2.3	Bandpass	s Filter Using Folded	
			Coupled	Line Resonator	94
			4.2.3.1	Analysis of the Resonator Gap	94
			4.2.3.2	Simulation and Measurement	
				Results for Verification	96
	4.3	Result	s of Hybri	d Matching Network	98
		4.3.1	Analysis	of Matching Network Using Hybrid	98
	4.4	Result	s of Diple	xer Design	100
		4.4.1	Design A	A (2.3 and 3.5 GHz)	100
			4.4.1.1	Initial Results of Diplexer Design A	100
			4.4.1.2	Optimization Results of Diplexer Design A	101
		4.4.2	Design B	8 (2.3 and 2.6 GHz)	103
			4.4.2.1	Initial Results of Diplexer Design B	103
			4.4.2.2	Optimization Results of Diplexer Design B	105
		4.4.3	Design C	C (2.6 and 3.5 GHz)	107
			4.4.3.1	Initial Results of Diplexer Design C	107
	°U		4.4.3.2	Optimization Results of Diplexer Design C	108
	4.5	Result	s of Triple	exer Design	111
		4.5.1	Intial Re	sults of Triplexer Design	111
	18	4.5.2	Optimiza	ation Results of Triplexer Design	112
	4.6	Comp	arison of I	Diplexer and Triplexer Design with Other Designs	116
	4.7	Summ	ary		120
5.	CO	NCLUS	ION ANI	D FUTURE WORK	122
	5.1	Conch	usion		122
	5.2	Future	Work		124

REFERENCES APPENDICES

125 138

LIST OF TABLES

TAB	LE TITLE	PAGE	
1.1	WiMAX Spectrum Allocation (Churchill, 2007)	6	
2.1	The 3dB ripple response for N=5	30	
2.2	Studies of preliminary diplexer design	45	
2.3	Bandpass microwave passive triplexers design	58	
3.1	Final dimension of the open loop coupled line resonator	63	
3.2	Summarized calculation of the angular frequency, ω	65	
3.3	Inductance and capacitance values	65	
3.4	Finalized values of bandpass filter impedance	66	
3.5	Dimension of the transmission lines	67	
3.6	The finalized transmission line of the parallel coupled lines resonator	68	
3.7	The dimension of diplexer design A	74	
3.8	Dimension of first bandpass filter in diplexer design A	74	
3.9	Dimension of second bandpass filter in diplexer design A	75	
3.10	The dimension of diplexer design B	77	
3.11	Dimension of second bandpass filter in diplexer design B	77	

3.12	The dimension of diplexer design C	80
3.13	The dimension of triplexer design	82
4.1	Summary of simulation and measurement of bandpass filter using	
	open loop coupled line resonator	88
4.2	Summary of simulation and measurement of bandpass filter using	
	parallel coupled lines resonator	93
4.3	Summary of simulation and measurement of bandpass filter using	
	folded coupled lines resonators	98
4.4	Summary of simulation and measurement of diplexer design A	103
4.5	Summary of simulation and measurement of diplexer design B	103
4.6	Summary of simulation and measurement of diplexer design C	110
4.7	The summarize of simulation and measurement responses	
	of triplexer design	116
4.8	Comparison between proposed diplexers with another diplexers	
	based on the Fractional bandwidth (FBW) over multiband	
	WiMAX application	117
4.7	Comparison between proposed triplexer with another triplexer	
	based on the Fractional bandwidth (FBW) over multiband	
	WiMAX application	119

viii

LIST OF FIGURES

FIGU	URE TITLE	PAGE
1.1	IEEE 802.16/ WiMAX network architecture (Carvalho et al., 2013)	2
1.2	Simplified RF front-end (Hunter 2001)	3
1.3	Example of diplexer system (Yatsenko et al., 2007)	4
1.4	Example of the diplexer integration with antenna (H. Oweis et al., 2017)	4
1.5	Example of diplexer system on LTCC (Kim et al., 2009)	5
2.1	An overview of current RF wireless standards and their applications	
	(Ganslandt et al., 2009)	14
2.2	Lumped-element of the basic circuit (a) series circuit (b) parallel circuit	
	(David M. Pozar 2005)	16
2.3	Structure of microstrip resonator (a) high-impedance line (b)	
	meander line (c) circular spiral (d) square spiral	
	(Hong & Lancaster, 2001)	17
2.4	Example of transmission line on microstrip substrate (Mongia et al., 2007)) 18
2,5	Edge coupled microstrip transmission line condition (a) microstrip	
	lines (b) inverted microstrip lines (c) suspended microstrip lines	

ix

	(d) coplanar waveguide (Mongia et al., 2007)	19
2.6	Broadside-coupled microstrip transmission line condition	
	(a) broadside-coupled microstrip lines (b) broadside-coupled	
	inverted microstrip lines (c) broad-coupled suspended microstrip lines	
	(Mongia et al., 2007)	20
2.7	Coupled dielectric wave guide condition (a) image (b) insular	
	(c) inverted strip (Mongia et al., 2007)	20
2.8	Dual mode of field configuration in coupled microstrip lines	
	(a) even-mode (b) odd-mode (Mongia et al., 2007)	22
2.9	Ring resonator (a) layout of the resonator (b) simulation and	
	measurement of the response (Salleh et al., 2010)	23
2.10	Basic of shut circuit (Kai Chang & Lung-Hwa Hsieh, 2004)	24
2.11	Folded open loop resonator (Kai Chang & Lung-Hwa Hsieh, 2004)	26
2.12	Ring resonator (a) layout of the ring resonator (b) simulation and	
	measurement of the responses (Zeng et al., 2011)	27
2.13	Basic parallel coupled-line structure (Hong & Lancaster, 2001;	
	David M. Pozar, 2005)	28
2.14	Equivalent circuit in block form (Hong & Lancaster, 2001;	
	David M. Pozar, 2005)	28
2,15	Lowpass prototype of the filter design (Hong & Lancaster, 2001,	
	David M. Pozar, 2005)	29

х

2.16	Finalized lowpass prototype circuit (David M. Pozar, 2005)	30
2.17	Transformation circuit forms (Hong & Lancaster, 2001;	
	David M. Pozar, 2005)	31
2.18	Immittance inverter of the bandpass filter (Hong & Lancaster, 2001;	
	David M. Pozar, 2005)	32
2.19	The folded coupled-line structure (a) the layout of the folded coupled-line	
	resonator (b) simulation and measurement response of the folded	
	coupled-line resonator (Nordin & Salleh, 2011)	33
2.20	Folded coupled line bandpass filter (Nordin & Salleh, 2011)	34
2.21	180° or rat-race matching network (Kai Chang and	
	Lung-Hwa Hsieh, 2004)	35
2.22	1800 equivalent circuit in block form (Kai Chang and	
	Lung-Hwa Hsieh, 2004)	35
2.23	Even- and odd- mode decomposition of the ring hybrid when port 1	
	is excited with unit amplitude incident wave (a) Even mode (b) Odd mode	
	(Kai Chang and Lung-Hwa Hsieh, 2004)	36
2.24	Even- and odd- mode decomposition of the ring hybrid when port 4 is	
	excited with unit amplitude incident wave (a) Even mode (b) Odd mode	
	(Kai Chang and Lung-Hwa Hsieh, 2004)	38
2.25	Configuration of Diplexer (a) configuration A (b) configuration B	
	(Deng et al., 2006)	40
2.26	Diplexer design (a) the layout of the diplexer (b) the passband response	

	(Chuang & Wu, 2014)	42
2.27	Diplexer design and performances (D. Chen et al., 2015)	43
2.28	Diplexer design (a) The layout and proposed Direct-feed coupled	
	line (b) the responses of the passband (Chen et al., 2016)	44
2.29	Triplexer configurations in multiband front-end system	
	(a) configuration A (b) configuration B (Deng et al., 2006)	47
2.30	Triplexer layout (Lai et al., 2013)	49
2.31	Triplexer designed (a) layout of the triplexer (b) response of the triplexer	
	(Wu et al., 2012)	51
2.32	Triplexer design (a) layout of the triplexer (b) response of the triplexer	
	(Taravati & Khalaj-Amirhosseini, 2013)	52
3.1	Flow chart of the work flow	58
3.2	Flow of the modelling process	59
3.3	Flow chart of the simulation process	60
3.4	Flow chart of the measurement process	62
3.5	Proposed open loop resonator (S. J. Zeng et al., 2011)	63
3.6	The structure of bandpass filter using open loop ring resonator	64
3.7	Proposed parallel coupled lines resonator	67
3.8	The analysis of the separation gap between resonators	68
3.9	The bandpass filter using folded coupled line resonators	69
3,10	Proposed folded coupled line bandpass filter	70

3.11	Proposed L-stubs into the bandpass filter	70
3.12	Proposed 180 ⁰ matching network	71
3.13	Scheme of the diplexer design A	72
3.14	The layout of the diplexer design A	73
3.15	The optimized diplexer design A	75
3.16	Scheme of the diplexer design B	76
3.17	The layout of the diplexer design B	78
3.18	The optimized diplexer design B	78
3.19	Scheme of the diplexer C	79
3.20	The layout of the diplexer design C	79
3.21	Scheme of the triplexer design	81
3.22	The layout of the triplexer design	81
4.1	The analysis of the separation of the resonator to the feeding line	84
4.2	The analysis of the distance length of the feeding line to the tapping	
	position	85
4.3	The analysis of the coupling gap between two resonators	86
4.4	The simulation and measurement response of the bandpass filter using	
	open loop resonator (a) The return loss, S_{11} (b) the insertion loss, S_{21}	87
4.5	The Initial response of the parallel coupled line resonators	89
4.6	The analysis of the separation gap between the transmission line of	
	the parallel coupled line resonators	90
	xiii	

4.7	The finalized response of the bandpass filter using parallel coupled line		
	resonator	91	
4.8	The simulation and measurement response of the bandpass filter using		
	parallel coupled line resonator (a) The return loss, S_{11} (b) the insertion		
	loss, S ₂₁	92	
4.9	The bandpass response using folded coupled line resonator	94	
4.10	The analysis of the separation gaps between the L-stubs and		
	the bandpass filter using folded coupled line resonator	95	
4.11	The finalized response of the bandpass filter using folded coupled		
	line resonator	96	
4.12	The simulation and measurement response of the bandpass filter		
	using folded coupled line resonator (a) the return loss, S_{11} (b) the insertion		
	loss, S_{21}	97	
4.13	The responses of the rat-race matching network	99	
4.14	Simulation of the diplexer A	100)
4.15	The simulation and measurement response of the diplexer design A		
	(a) the layout of the diplexer A (b) the return loss, S_{ll} (c) the		
	insertion loss of bandpass filter 1, S_{21} (d) the insertion loss of bandpass		
	filter 2, S_{31}	103	8
4.16	Simulation of the diplexer B	104	ł
4.17	The simulation and measurement response of the diplexer design B xiv		

	(a) the layout of the diplexer B(b) the return loss, $S_{1/}$ (c) the	
	insertion loss of bandpass filter 1, S_{21} (d) the insertion loss of bandpass	
	filter 2, S_{31}	106
4.18	Simulation of the diplexer C	108
4.19	The simulation and measurement response of the diplexer design C	
	(a) the layout of the diplexer C (b) the return loss, S_{ll} (c) the	
	insertion loss of bandpass filter 1, S_{21} (d) the insertion loss of bandpass	
	filter 2, S_{31}	110
4.20	Simulation of the triplexer	111
4.21	The simulation and measurement response of the triplexer	
	(a) the layout of the triplexer (b) the return loss, S_{II}	113
4.22	The simulation and measurement response of the triplexer in	
	insertion loss, S ₂₁	114
4.23	The simulation and measurement response of the triplexer in	
	insertion loss, S_{31}	115
4.24	The simulation and measurement response of the triplexer in	
	insertion loss, S41	115

XV

LIST OF APPENDICES

APP	PENDIX TIT	LE	PAGE
A	FR-4 Data Sheet		138
в	Calculation Details for bandpass	filter using parallel coupled lines	
	resonators		139

xvi

LIST OF ABBREVIATIONS

ADS	-	Advanced Design System
EBG	-	Electromagnetic Band-Gap
IEEE	÷.	Institute of Electrical and Electronic Engineers
ITU	÷	International Telecommunication Union
LTCC	4	Low Temperature Co-fired Ceramic
LTE	41	Long Term Evolution
RF	- 21	Radio frequency
WiFi	-	Wireless Fidelity
WiMAX	-	Worldwide Interoperability for Microwave Access
WLAN	÷ 1	Wireless Local Network Area Networking

xvii

LIST OF SYMBOLS

W	-	Width
L, l	6	Length
S	8	Separation
G	-	Gap
V	-	Voltage
Ι	-	Current
D	-	Diameter
ER	\sim	Dielectric constant
h	-	Thickness
λ	-	Quater wavelength
β	2	Propagation constant
Z	-	Characteristic Impedance
J	÷	imaginary part
Ω	-	Angular frequency
Δ	÷	Delta or Initialism
Γ	÷ .	Reflection coefficient
Т	-	Transmisssion coefficient

xviii

LIST OF PUBLICATIONS

- Sazali, M.A., Shairi, N.A. and Zakaria, Z., 2017. Microstrip Triplexer Design: A Review. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 9(2-13), pp.81-86.
- Sazali, M.A., Shairi, N.A. and Zakaria, Z., 2018. Hybrid Microstrip Diplexer Design for Multi-band WiMAX Application in 2.3 and 3.5 GHz Bands. International Journal of Electrical and Computer Engineering (IJECE), 8(1).
- N. A. Shairi, M. A. Sazali, Z. Zakaria, I. M. Ibrahim, M. K. Zahari, B. H. Ahmad, "Hybird Triplexer Design using Microstrip Coupled Line Resonators for Multiband WiMAX Front End," 7TH IEEE International Symposium on Microwave, Antenna, Propagation, and EMC Technologies (MAPE), 2017.