

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Faculty of Electrical Engineering

THE CONSTANT SWITCHING FREQUENCY AND TORQUE RIPPLE REDUCTION OF DIRECT TORQUE CONTROLLED INDUCTION MACHINE WITH NEUTRAL POINT CLAMPED INVERTER

Huzainirah binti Ismail

Master of Science in Electrical Engineering

2018

THE CONSTANT SWITCHING FREQUENCY AND TORQUE RIPPLE REDUCTION OF DIRECT TORQUE CONTROLLED INDUCTION MACHINE WITH NEUTRAL POINT CLAMPED INVERTER

HUZAINIRAH BINTI ISMAIL

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Electrical Engineering

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

DECLARATION

I declare that this thesis entitled "The Constant Switching Frequency and Torque Ripple Reduction of Direct Torque Controlled Induction Machine with Neutral Point Clamped Inverter" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree,

Signature	£	Holan.
Name	ŝ	HUZAINIRAH BINTI ISMAIL
Date	ž	12/ 11/2018

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electrical Engineering.

Signature : DR FAZLLI BIN PATKAR Supervisor Name ÷ 12/11/2018 Date 1.1

C Universiti Teknikal Malaysia Melaka

DEDICATION

To:

My inspiring parents,

Ismail bin Bujang and Azizah binti Salleh.

My beloved husband.

Azim bin Md Kasim.

My lovely siblings.

Hawa, Haikal. Hafiszullah, Hurmazan, Haziq. Hazim and Hamizah.

For their love, sacrifice, endless support and encouragement to complete this research.

ABSTRACT

Direct Torque Control (DTC) of induction motor drives are widely accepted in variable speed drive applications because it offers high performance in terms of fast torque response as well as simplicity of control structure. However, conventional DTC drives which utilize two-level inverter and hysteresis controllers inherently suffer from two major drawbacks which are large torque ripple and variable switching frequency particularly at low speed operation. This is because the torque is unable to restricted within the hysteresis band (commonly happened in digital implementation of hysteresis controller) that leads to condition of overshoot and undershoot which result in large torque ripple. Secondly, inappropriate selection of voltage vectors for different speed operation as two-level inverter provides only limited numbers of voltage vectors. This research aims to improve the performance of the DTC drives by utilizing a three-level Neutral Point Clamped (NPC) inverter as appropriate voltage vectors can be utilized for different speed operations due to availability of larger number of voltage vectors. Nevertheless, the utilisation of NPC inverter lead to imbalance of upper and lower capacitor voltage due to application of short amplitude of voltage vectors which have two redundant switching states and each switching state produces different effect towards the capacitor voltage. Therefore, a simple capacitor voltage balancing strategy is also proposed to select the appropriate switching states based on capacitor voltage status. Next, the selection of appropriate voltage vectors according to speed operation are determined to produce reduction of torque ripple and switching frequency. Furthermore, a constant switching frequency operation is obtained by replacing the hysteresis torque controller with constant switching frequency (CSF) torque controller. The proposed improvement method was conducted experimentally using DTC-NPC inverter drives with CSF torque controller (with acronym DTC-NPC-CSF) and was compared with conventional DTC drives as well as DTC drives with NPC inverter and hysteresis torque controller (with acronym DTC-NPC-HTC) for performance analysis. The performance result showed that the torque ripple was minimized and the switching frequency was remained constant for all range of speeds.

ABSTRAK

Kawalan dayakilas langsung (DTC) hagi pemacu motor induksi telah diterima secara meluas dalam aplikasi pemacu laju berubah-ubah kerana ia menawarkan prestasi tinggi dari segi kawalan dayakilas yang cepat serta struktur kawalan yang ringkas. Walau bagaimanapun, DTC konvensional vang menggunakan sebuah penyongsang dua peringkat dan pengawal histerisis sememangnya mengalami dua kekurangan yang utama iaitu riak dayakilas yang besar dan frekuensi pensuisan berubah-ubah terutamanya pada operasi kelajuan yang rendah. Kekurangan ini disebabkan oleh dayakilas tidak dapat dihadkan dalam jalur histeresis (kebiasaannya berlaku dalam implementasi pengendali histerisis secara digital) yang menyebabkan keadaan dayakilas yang terlajak naik dan turun sehingga menghasilkan riak dayakilas yang besar. Selain itu, pemilihan vektor voltan yang tidak sesuai untuk keadaan operasi kelajuan yang berlainan kerana penyongsang dua peringkat menyediakan bilangan vektor voltan yang terhad. Kajian ini bertujuan untuk meningkatkan prestasi pemacu DTC dengan menggunakan penyongsang Apitan Titik Neutral (NPC) tiga peringkat di mana vektor voltan yang sesuai dapat digunakan untuk operasi kelajuan yang berbeza-beza kerana terdapat bilangan vektor voltan yang lebih banyak. Walau bagaimanapun, penggunaan penyongsang NPC menyebabkan ketidakseimbangan voltan atas dan bawah kapasitor disebabkan oleh penggunaan vektor voltan beramplitud pendek yang mempunyai dua keadaan pensuisan berulang dan setiap keadaan pensuisan menghasilkan kesan yang berbeza ke atas voltan kapasitor. Oleh itu, strategi pengimbang voltan kapasitor yang mudah juga dicadangkan untuk memilih keadaan pensuisan yang sesuai mengikut keadaan voltan kapasitor. Seterusnya, pemilihan vektor voltan yang sesuai mengikut operasi kelajuan ditentukan supaya dapat menghasilkan dayakilas dan frekuensi pensuisan yang minimum. Selain itu, operasi frekuensi pensuisan yang tetap diperolehi dengan menggantikan pengawal histerisis davakilas dengan pengawal davakilas frekuensi pensuisan tetap (CSF). Kaedah penambahbaikan yang dicadangkan dijalankan secara eksperimen menggunakan pemacu penyongsang DTC-NPC dengan pengawal dayakilas CSF (dengan singkatan DTC-NPC-CSF) dan dibandingkan dengan pemacu DTC konvensional serta pemacu DTC dengan penyongsang NPC dan pengawal histerisis dayakilas (dengan singkatan DTC-NPC-HTC) untuk menganalisis prestasi. Keputusan prestasi menunjukkan bahawa riak dayakilas dapat diminimumkan dan frekuensi pensuisan kekal untuk tetap bagi semua julat kelajuan.

ACKNOWLEDGEMENTS

First and foremost, I am grateful to Allah s.w.t for giving me chance and strength to complete this research. Nothing can be done except by the permission of Allah Almighty.

I would like to express my gratitude to my main supervisor. Dr Fazlli bin Patkar who gives continuous supervision, guidance and patience during my study especially in completing this thesis.

I am deeply thankful to my co-supervisor which is Dr Auzani bin Jidin for his advice, immense knowledge and provide equipment for experimental works in order to accomplish my master study.

My sincere thanks goes to my colleagues which is Khairi. Faezah, Sundram. Ayu. Lina and Dayah as they always share ideas, understanding, gives encouragement and opinion.

A special thanks and appreciation to my beloved parents and husband that always gives loves, motivation and financial support throughout all my studies. Thank you for staying by my side when I needed the most. Not forgotten my sister Hawa who continuously gives moral support and unending inspiration to finish this study.

iii

TABLE OF CONTENTS

DU	CLADA	TION	or over e
DEC	DOVA	TION	
API	ROVA		
DEI	DICATI	UN .	4
AB	STRAC		
AB	STRAK		n
ACI	KNOWI	LEDGEMENTS	m
TA	BLE OF	CONTENTS	iv
LIS	T OF T.	ABLES	vi
LIS	T OF FI	IGURES	viii
LIS	T OF A	PPENDICES	xv
LIS	T OF A	BBREVIATIONS	XVI
LIS	T OF P	UBLICATIONS	XX
CH.	APTER		
1.	INTI	RODUCTION	1
	1.1	Research Background	1
	1.2	Problem Statements	4
	1.3	Research Objectives	8
	1.4	Scopes of Work	8
	1.5	Research Methodology	9
	1.6	Thesis Contributions	10
	1.7	Thesis Outlines	11
2	LITE	RATURE REVIEW	13
	21	Introduction	13
	2.2	Principle of DTC of Induction Motor Drives	13
		2.2.1 Three-Phase Voltage Source Inverter (VSI)	14
		2.2.2 Control of Stator Flux	15
		2.2.3 Control of Torque	18
		2.2.4 Estimation of Stator Flux and Torque	21
		2.2.5 Structure of Conventional DTC Drives	23
	23	Major Problem of Conventional DTC Drives	24
	2.4	Performance Improvements of DTC Drives	26
	2.1	2.4.1 DTC Drives using Carrier Based Modulation	26
		2.4.2 DTC using Space Vector Modulation (DTC-SVM)	29
		2.4.3 Application of Multilevel Inverter	34
	2,5	Summary	41
3.	RES	EARCH METHODOLOGY	43
	3.1	Introduction	43
	3.2	Modelling of Induction Motor	44
	3.3	Mapping of Voltage Vectors Produced by Three-Level NPC	48
	4.0	Inverter	10
		3.3.1 Three-Level Neutral Point Clamped (NPC) Inverter	49
		3.3.2 Space Voltage Vector	51
		3.3.3 Voltage Vectors of Three-Level NPC on $d - q$ Voltage Vector Plane	52

PAGE

4.1 Analysis of Torque Slope	55
	22
.4.2 Proposed Constant Switching Frequency (CSF) Torque Controller of Three-Level NPC Inverter	65
3.4.2.1 Principle of Proposed CSF Torque Controller	65
3.4.2.2 Design of Proposed CSF Torque Controller	69
3.4.2.3 Parameters of Induction Motor and CSF Torque Controller for Various Speed Operation	76
.4.3 Balancing Control Strategy of NPC Multilevel Inverter	78
.4.4 Definition of Two Flux Sectors	80
.4.5 Look-up Table	81
roposed DTC Drives Control Structure	83
Summary	84
ATION AND EXPERIMENTAL SET UP	86
ntroduction	86
imulation Model of Proposed DTC Control of Induction Motor	86
.2.1 Three-Phase Induction Motor	87
.2.2 Calculation of Stator Voltage Components	90
.2.3 Calculation of Stator Current Components	90
.2.4 Estimations of Stator Flux and Electromagnetic Torque	91
.2.5 Detection of Flux Sectors	92
.2.6 Torque Proposed Controller	93
.2.7 Balancing Control Strategy	94
.2.8 Look-up Table for Selecting Voltage Vectors	95
.2.9 Three-Level NPC Inverter	96
Description of Experimental Setup	97
.3.1 dSPACE DSP DS1104 R&D Controller Board	99
.3.2 Field-Programmable Gate Array (FPGA) Board	100
.3.3 Current and Voltage Sensor	101
.3.4 Gate Driver	102
.3.5 Power Circuit or Voltage Source Inverter	103
.3.6 Induction Motor	103
Summary	104
T AND DISCUSSION	105
ntroduction	105
Minimization of Switching Frequency	105
Constant Switching Frequency Operation	114
Reduction of Torque Ripple	118
Effect of Small and Large Restriction Error towards DTC drives	128
Summary	129
LUSION AND RECOMMENDATIONS	131
Conclusion	131
Recommendations	132
S	134
	147
v	
	 4.2 Proposed Constant Switching Frequency (CSF) Torque Controller of Three-Level NPC Inverter 3.4.2.1 Principle of Proposed CSF Torque Controller 3.4.2.3 Parameters of Induction Motor and CSF Torque Controller for Various Speed Operation 4.3 Balancing Control Strategy of NPC Multilevel Inverter 4.4 Definition of Two Flux Sectors 4.5 Look-up Table roposed DTC Drives Control Structure ammary ATION AND EXPERIMENTAL SET UP troduction imulation Model of Proposed DTC Control of Induction Motor 2.1 Three-Phase Induction Motor 2.2 Calculation of Stator Voltage Components 2.3 Calculation of Stator Voltage Components 2.4 Estimations of Stator Flux and Electromagnetic Torque 2.5 Detection of Flux Sectors 2.6 Torque Proposed Controller 2.7 Balancing Control Strategy 2.8 Look-up Table for Selecting Voltage Vectors 2.9 Three-Level NPC Inverter Description of Experimental Setup 3.1 dSPACE DSP DS1104 R&D Controller Board 3.2 Field-Programmable Gate Array (FPGA) Board 3.3 Current and Voltage Sensor 3.4 Gate Driver 3.5 Power Circuit or Voltage Source Inverter 3.6 Induction Motor 3.6 Torque Ripple 3.7 AND DISCUSSION ntroduction Minimization of Switching Frequency Constant Switching Frequency Co

LIST OF TABLES

FABLE	TITLE	PAGE
1.1	Type of Switching State of Short Amplitude of Voltage Vectors	6
	and its Effect Toward Capacitor Voltage	
2.1	Selection of Voltage Vector Tabulated in Look-up Table	24
2.2	Advantages of Multilevel Inverter Compared with Two-Level	36
	Inverter	
3.1	Switching Status and Phase Voltage for Each Leg/Phase of	50
	NPC Inverter	
3.2	Classification of Voltage Vector of Three-Level NPC Inverter	54
3.3	Selection of Voltage Vectors at Different Speed Operation of	64
	Conventional DTC	
3.4	Selection of Voltage Vectors at Different Speed Operation of	64
	Proposed Strategy	
3.5	Parameters of Three-Phase Induction Motor	77
3.6	Parameters of CSF Torque Controller for Low. Medium and	77
	High Speed Operation	
3.7	Look-up Table of Three-Level NPC with Capacitor Voltage	82
	Balancing Strategy	
3.8	Comparison between Conventional DTC, DTC-NPC-HTC and	85

DTC-NPC-CSF

5,1	Switching Frequency for Different Torque and Flux Hysteresis	107
	Bandwidths at Low Speed Operation (300RPM) for (a)	
	Conventional DTC and (b) DTC-NPC-HTC	
5.2	Switching Frequency for Different Torque and Flux Hysteresis	108
	Bandwidths at Medium Speed Operation (650RPM) for (a)	
	Conventional DTC and (b) DTC-NPC-HTC	
5.3	Switching Frequency for Different Torque and Flux Hysteresis	109
	Bandwidths at High Speed Operation (1000RPM) for (a)	
	Conventional DTC and (b) DTC-NPC-HTC	
5.4	Value of Switching Frequency and Percentage Reduction of	110
	Switching Frequency for Different Speed Operation	
5.5	Summarization of Torque Ripple Obtained in Conventional	120
	DTC and DTC-NPC-HTC for Different Speed Operation Based	
	on Simulation Results	
5.6	Summarization of Torque Ripple Obtained in Conventional	121
	DTC, DTC-NPC-HTC and DTC-NPC-CSF for Different Speed	
	Operation Based on Experimental Results	

vîî

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Structure of FOC of Induction Motor Drives	2
1.2	Structure of DTC of Induction Motor Drives	3
1.3	Problem of Large Torque Ripple and Variable Switching	5
	Frequency in Conventional DTC Drives	
1.4	Imbalance of Capacitor Voltage due to Application of Short	7
	Amplitude of Voltage Vectors (i.e. $\bar{v}_{s,S6}$) for Switching State	
	(a) POP (b) ONO	
2.1	Three-Phase VSI Circuit	14
2.2	Voltage Vectors of Three-Phase VSI	15
2.3	Two-Level Flux Hysteresis Comparator	16
2.4	Typical Waveform of Stator Flux, Flux Error and Flux Error	16
	Status for Two-Level Hysteresis Comparator	
2.5	Selection of Suitable Two Active Voltage Vectors for Each	18
	Sectors to Control the Flux within its Hysteresis Band	
2.6	Three-Level Torque Hysteresis Comparator	19
2.7	Typical Waveforms of Torque. Torque Error and Torque Error	20
	Status of Three-Level Hysteresis Comparator	
2.8	Variation of θ_{sr} with Application of (a) Active Forward	22
	Voltage Vectors. (b) Zero Voltage Vectors. (c) Active Reverse	

	Voltage Vectors	
2.9	Structure of DTC of Induction Motor Drives	23
2.10	Large Torque Ripple in Conventional DTC Drives	25
2.11	Structure of Dithering Technique Implemented to Conventional	27
	DTC as Proposed in (Noguchi, Yamamoto, Kondo &	
	Takahashi, 1999)	
2.12	Structure of a New Switching Strategy with Proposed Torque	28
	Controller (Idris & Yatim, 2000)	
2.13	Structure of New Torque and Flux Controller as Proposed in	29
	(Toh. Idris & Yatim, 2003)	
2.14	Waveform of Torque Ripple Produced by (a) Conventional	30
	DTC (b) DTC-SVM	
2.15	Structure of DTC-SVM Approach (a) DTC-SVM with Closed	32
	Flux Control (b) DTC-SVM with Closed-Loop Torque Control	
	(c) DTC-SVM Operated in Polar Coordinates (d) DTC-SVM	
	Operated in Cartesian Coordinates (Stator Flux Oriented	
	Control)	
2.16	Structure of DTC-SVM (as Proposed in (Lascu, Boldea &	34
	Blaabjerg, 2000)	
2.17	Type of Multilevel Inverter (Three-Level) (a) CHMI (b) FC (c)	35
	NPC	
2.18	Sector I of Space Vector in $\alpha - \beta$ plane with Four Sub-Sectors	39
2.19	Sector I of Space Vector in $\alpha - \beta$ plane with Five Sub-Sectors	40
	and Virtual Vector	
3.1	Cross-section of Single Pole-Pair Three-Phase Induction Motor	45

3.2	Dynamic <i>d-q</i> Equivalent Circuits of Three-Phase Induction	47
	Motor (a) <i>d</i> -axis (b) <i>q</i> -axis	
3.3	Structure of Three-Level of NPC Multilevel Inverter	49
3.4	Space Voltage Vector on <i>d-q</i> Axis Component of Voltage	52
	Vector Plane	
3.5	Voltage Vectors of Three-Level NPC Multilevel Inverter	53
3.6	Control of Torque using Proposed Method (Dotted Line) and	59
	the Conventional DTC (Solid Line) at Low Speed Operations	
	(a) Torque Waveforms (b) Torque Error Status	
3.7	Control of Torque using Proposed Method (Dotted Line) and	61
	the Conventional DTC (Solid Line) at Medium Speed	
	Operations (a) Torque Waveforms (b) Torque Error Status	
3.8	Control of Torque using Proposed Method (Dotted Line) and	63
	the Conventional DTC (Solid Line) at High Speed Operations	
	(a) Torque Waveforms (b) Torque Error Status	
3.9	A Proposed CSF Torque Controller for DTC with Three-Level	66
	NPC Inverter	
3.10	Structure of PI Controller	66
3.11	Torque Error Status of Proposed Method (σ_{CSF}) according to	68
	Condition of T_{pi} and Triangular Carrier Waveform	
3.12	Triangular Carrier Waveform for Proposed Method	70
3.13	Imbalance of Capacitor Voltage When P-type of Short	78
	Amplitude of Voltage Vector is Applied	
3.14	Imbalance of Capacitor Voltage When N-Type of Short	79

	Amplitude of Voltage Vector is Employed	
3,15	Capacitor Voltage Balancing Strategy using Hysteresis	80
	Controllers	
3.16	Definition of Flux Sector for (a) Long and Short Amplitude of	81
	Voltage Vector (b) Medium Amplitude of Voltage Vector	
3.17	Proposed Structure of DTC of Induction Motor Drives utilizing	83
	Three-Level NPC Multilevel Inverter with CSF Torque	
	Controller and Balancing Control Strategy	
4.1	Simulation Model of Control Strategy of DTC of Induction	88
	Motor Drives with NPC Inverter	
4.2	Simulation Model of Three-Phase Induction Motor (Induction	89
	Motor in Figure 4.1)	
4.3	Calculation of Stator Voltage Components (Calculation of	90
	Stator Voltage in Figure 4.1)	
4.4	Calculation of Stator Current Components (Calculation of	91
	Stator Current in Figure 4.1)	
4.5	Estimation of Stator Flux and Electromagnetic Torque (Flux	91
	and Torque Estimators in Figure 4.1)	
4.6	Flowchart of Detection of Flux Sectors (Sector Detection block	93
	in Figure 4.1)	
4.7	CSF torque controller (TPC in Figure 4.1)	94
4.8	Balancing Control Strategy of Three-Level NPC Inverter	95
	(Balancing Strategy block in Figure 4.1)	
4.9	Simulation Model of Three-Level NPC Inverter (3-Level NPC	96
	XI	

block in Figure 4.1)

4.10	Experimental Set Up (a) Block Diagram (b) Actual Platform	98
4,11	FPGA Deo-Nano Controller Board	101
4.12	Current Sensor Implemented on the Hardware Set Up	101
4.13	Voltage Sensor Implemented on the Hardware Set Up	102
4.14	Gate Driver	103
4.15	Power Circuit of Experimentation Set Up for Three-Level NPC	103
	Inverter	
4.16	Three-Phase Induction Motor Connected to DC Generator and	104
	Resistive Load	
5.1	Switching Frequency for Different Hysteresis Bandwidths at	111
	Low Speed Operation for (a) Conventional DTC and (b) DTC-	
	NPC-HTC	
5.2	Switching Frequency for Different Hysteresis Bandwidths at	112
	Medium Speed Operation for (a) Conventional DTC and (b)	
	DTC-NPC-HTC	
5.3	Switching Frequency for Different Hysteresis Bandwidths at	113
	High Speed Operation for (a) Conventional DTC and (b) DTC-	
	NPC-HTC	
5.4	Experimental Result of FFT of Switching Frequency for	115
	(a) Conventional DTC (b) DTC-NPC-HTC and (c) DTC-NPC-	
	CSF at Low Speed Operation	
5.5	Experimental Result of FFT of Switching Frequency for	116
	(a) Conventional DTC (b) DTC-NPC-HTC and (c) DTC-NPC-	

xii

	CSF at Medium Speed Operation	
5.6	Experimental Result of FFT of Switching Frequency for	117
	(a) Conventional DTC (b) DTC-NPC-HTC and (c) DTC-NPC-	
	CSF at High Speed Operation	
5.7	Illustration of Torque Graph for Calculation of Torque Ripple	120
	Percentage	
5.8	Simulation Results of Torque Ripple Reduction for (a)	122
	Conventional DTC and (b) DTC-NPC-HTC at Low Speed	
	Operation	
5.9	Simulation Results of Torque Ripple Reduction for (a)	123
	Conventional DTC and (b) DTC-NPC-HTC at Medium Speed	
	Operation	
5.10	Simulation Results of Torque Ripple Reduction for (a)	124
	Conventional DTC and (b) DTC-NPC-HTC at High Speed	
	Operation	
5.11	Experimental Results of Torque Ripple Reduction for (a)	125
	Conventional DTC (b) DTC-NPC-HTC and (c) DTC-NPC-	
	CSF at Low Speed Operation	
5.12	Experimental Results of Torque Ripple Reduction for (a)	126
	Conventional DTC (b) DTC-NPC-HTC and (c) DTC-NPC-	
	CSF at Medium Speed Operation	
5.13	Experimental Results of Torque Ripple Reduction for (a)	127
	Conventional DTC (b) DTC-NPC-HTC and (c) DTC-NPC-	
	CSF at High Speed Operation	

xiii

129

xiv

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Derivation of torque equation in term of stator and rotor	147
	flux	
В	The derivation of angular frequency of stator flux	148
С	The averaging and linearization of torque equations	149
D	Matlab source coding listing to determine the proportional and	151
	integral gain for low, medium and high speed operation $(K_{pL},$	
	$K_{iL}, K_{pM}, K_{iM}, K_{pH}$ and K_{iH})	
E	Matlab source coding listing	154
F	VHDL source coding listing	160

LIST OF ABBREVIATIONS

AC	-	Alternating Current
ADC	÷	Analog to digital converter
В	-	Viscous friction
СНМІ	÷	Cascaded H-Bridge Multilevel Inverter
CSF	÷	Constant Switching Frequency
DAC	4	Digital to analogue converter
DC	-	Direct current
DSP	÷	Digital Signal Processor
DT	÷	Sampling Time
DTC	-	Direct Torque Control
DTC-NPC-CSF	÷.	Referred to DTC using NPC with Proposed Constant Switching
		Frequency Torque Controller
DTC-NPC-HTC	÷	Referred to DTC utilizing NPC with Hysteresis Torque Controller
DTC-SVM	-	Direct Torque Control using Space Vector Modulation
FC	•	Flying Capacitor
FOC	•	Field Oriented Control
FPGA	ē	Field Programmable Gate Arrays
IGBT	ΥÌ	Insulated Gate Bipolar Transistor
IM	e.	Induction Motor

xvi

1	- Moment of inertia
LB	- Lower Band
MB	- Middle Band
NP	- A point between two capacitors or neutral point
NPC	- Neutral Point Clamped
Р	- Number of pole pairs
Pl	- Proportional-Integral
SVM	- Space Vector Modulated
UB	- Upper Band
VHDL	- VHSIC hardware description language
VSI	- Voltage Source Inverter
VSC	- Variable-Structure Control
$C_{pp,H}$	Peak-to-peak carrier for high speed
$C_{pp,M}$	Peak-to-peak carrier for medium speed
$C_{pp,L}$	Peak-to-peak carrier for low speed
C_{upper}, C_{lower}	- Upper and lower carrier triangular waveform
d,q	- Direct and quadrature of the stationary reference frame
d^r, q^r	- Real and imaginary and real of the rotor
f	- Frequency
HB_{ψ}	- Flux hysteresis bandwidth
HB _{Te}	- Torque hysteresis bandwidth
\tilde{l}_s , \tilde{l}_r	- Stator and rotor current vector
i_a, i_b, i_c	Current of phase a. b and c
i_{sd}, i_{sq}	- Real and imaginary stator current in stationary reference frame

xvii

i_{rd}, i_{rq}	- Real and imaginary rotor current in stationary reference frame
K_p	- Proportional gain
κ_{i}	- Integral gain
N _c	- Number of commutation of switching state
Ns	- Number of Sample
L_m	- Mutual self-inductance
L_s, L_r	- Stator and rotor self-inductance
L_{ls}, L_{lr}	- Stator and rotor leakage-inductance
R_s, R_r	- Stator and rotor resistance
S_a, S_b, S_c	- Upper switching state of phase a. b and c
$\overline{S_a}, \overline{S_b}, \overline{S_c}$	- Lower switching state of phase a, b and c
S_{f}	- Switching Frequency
T_{ave}	- Average torque
$T_{e,ref}$	- Reference of electromagnetic torque
T_e	- Electromagnetic torque
Tload	- Torque load
T_{max}	- Maximum of torque
T_{min}	- Minimum of torque
T_{pi}	- Torque error from PI controller
T_r	- Torque ripple reduction
V_{dc}	- DC voltages
$\bar{\nu}_s$	- Voltage vectors
v_{c1}, v_{c2}	- Upper and lower capacitor voltage
v_{an}, v_{bn}, v_{cn}	- Phase voltage of stator winding using two-level inverter

xviii

v_{sd}, v_{sq}	- Real and imaginary stator voltage in stationary reference frame
V _{sd,ref} , V _{sq,ref}	- Reference of real and imaginary stator voltage in stationary
	reference frame
x	 Referred to voltage or current or flux linkage
$\psi_{s,ref}$	- Reference of flux
ψ_s	- Estimated of flux
$ar{\psi}_s,ar{\psi}_r$	- Stator and rotor flux linkage space vector in stationary reference
	frame
ψ_{sd},ψ_{sq}	- Real and imaginary stator flux linkage in stationary reference
	frame
σ	- Total flux leakage factor ($\sigma = 1 - L_m^2/L_s L_r$)
σ_B	- Balancing status
σ_{CSF}	- Torque error status from CSF torque controller
σ_ψ	- Flux error status
σ_T	- Torque error status for conventional DTC
$arepsilon_\psi$	- Flux error
$\varepsilon_{ au}$	- Torque error
ω	 Steady state synchronous frequency in rad/s
ω_r	- Rotor electrical speed in rad/s
ω_m	 Mechanical angular speed in rad/s
$ heta_{f}$	- Field angle
θ_{sr}	- Load angle or angle between stator flux and rotor flux linkage
θ^s	- The angle between d axis and \bar{x}
θ^r	- The angle between d^r axis and \bar{x}

xix