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ABSTRACT 

 

 

Electromyography (EMG) signal is a biomedical signal which measures physical activity of 
human muscle. It has been acknowledged to be widely used in rehabilitation or recovery 
application system assisting physiotherapist to monitor a patient’s physical strength, 
function, motion and overall well-being by addressing the underlying physical issues. In 
application system associated with rehabilitation, a signal processing and classification 
techniques are implemented to classify EMG signal obtained. For real time application in 
the rehabilitation, the classification is crucial issue. The success of the signal classification 
depends on the selection of the features that represent a raw EMG signal in the signal 
processing. Therefore, a robust and resilient denoising method and spectral estimation 
technique have been acknowledged as necessary to distinguish and detect the EMG pattern. 
The present study was undertaken to determine the characteristic of EMG features using 
denoising method and spectral estimation technique for assessing the EMG pattern based on 
a supervised classification algorithm. In the study, the combination of time-frequency 
domain (TFD) and time domain (TD) were identified as the preferred denoising method and 
spectral estimation techniques. In the first part of study, the recorded EMG signal filtered 
the contaminated noise by using wavelet transform (WT) approach which implemented 
discrete wavelet transform (DWT) method of the wavelet-denoising signal. Subsequently, 
the filtered signal containing useful information was extracted by three methods  root mean 
square (RMS), mean absolute value (MAV), and autoregressive (AR) covariance, all of 
which are commonly used in TD. A comparative analysis of the three different techniques 
was performed based on the accuracy performance of the EMG pattern classification using 
linear vector quantization (LVQ) neural network. In the experimental work undertaken, six 
healthy subjects comprised of males and females were selected.  Three sets of resistance 
band loads, namely 5 kg, 9 kg, and 16 kg, were used as a force during the biceps brachii 
muscle contraction in the rehabilitation exercise. Each of the subject was required to perform 
three levels of the arm angle positions (30˚, 90˚, and 150˚) for each set of resistance band 
load. The results of the experiment showed that Daubechies6 (db6) was the most appropriate 
DWT method including a 6-level decomposition, upholding soft rigrsure and heursure 
threshold rules, and a single-level threshold rescaling for the wavelet denoising signal 
analysis.  From the three different techniques in extract feature vector as an input for LVQ 
classifier, the study concluded that the best system performance was the AR covariance 
method, where it obtained the average percentage of 95.56% for all classes in the EMG 
pattern recognition.  
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ABSTRAK 

 

 

Isyarat elektromiografi (EMG) adalah satu isyarat biomedikal yang mengukur aktiviti fisikal 
otot manusia. Ia telah diterima umum sebagai satu aplikasi yang digunakan secara meluas 
dalam sistem rehabilitasi atau pemulihan bagi membantu ahli fisioterapi memantau 
kekuatan fisikal, fungsi, pergerakan dan kesejahteraan umum dengan menangani isu semasa 
fizikal pesakit berkenaan. Dalam sistem aplikasi berkaitan dengan pemulihan, teknik 
pemprosesan isyarat dan pengkelasan dilaksanakan untuk mengkategorikan isyarat EMG 
yang diperolehi. Untuk aplikasi masa nyata dalam pemulihan, klafikasi adalah isu penting. 
Kejayaan pengiktirafan isyarat bergantung pada pemilihan ciri-ciri yang mewakili isyarat 
EMG asli dalam pemprosesan isyarat. Oleh itu, satu kaedah pengkhususan yang teguh dan 
bingkas adalah dianggap perlu untuk meminimumkan bunyi. Kajian ini dijalankan untuk 
mengenal pasti ciri-ciri EMG dengan menggunakan kaedah pembuangan gangguan bunyi 
dan teknik anggaran spektrum untuk menilai corak EMG berdasarkan algoritma klasifikasi 
yang dipantau. Teknik optimum yang diperolehi telah dilaksanakan dalam sistem pemulihan 
masa yang nyata. Dalam kajian ini, gabungan domain masa-frekuensi (TFD) dan domain 
masa (TD) adalah kaedah pilihan untuk pembuangan gangguan bunyi dan teknik anggaran 
spektrum. Di bahagian pertama kajian, isyarat EMG yang dirakam telah ditapis daripada 
bunyi yang tercemar dengan menggunakan pendekatan transformasi gelombang kecil (WT) 
yang melaksanakan kaedah transformasi gelombang kecil diskret (DWT) dalam isyarat 
pembuangan gangguan bunyi-wavelet. Selepas daripada itu, isyarat yang ditapis yang 
mengandungi maklumat yang berguna telah diekstrak dengan menggunakan tiga kaedah 
yang biasa digunakan dalam TD iaitu punca min kuasa dua (RMS), nilai mutlak min (MAV), 
dan kovarians autoregresif (AR). Analisis perbandingan keatas tiga teknik berbeza telah 
dilakukan berdasarkan prestasi ketepatan klasifikasi pola EMG dengan menggunakan 
rangkaian neutral linear vector quantization (LVQ). Dalam melaksanakan kajian ini, enam 
subjek yang sihat terdiri daripada lelaki dan perempuan telah dipilih.  Tiga set beban band 
rintangan, iaitu 5 kg, 9 kg, dan 16 kg, yang digunakan sebagai daya semasa pengecutan otot 
biseps brakii dalam latihan pemulihan berkenaan. Setiap subjek diperlukan untuk 
melaksanakan tiga peringkat posisi sudut lengan (30˚, 90˚, dan 150˚) bagi setiap set beban 
band rintangan. Keputusan eksperimen menunjukkan bahawa Daubechies6 (db6) adalah 
kaedah DWT yang paling sesuai bersama dengan tahap penguraian 6 dengan pengekalan 
tahap rigrsure lembut dan peraturan ambang batas, dan tahap tunggal ambang untuk 
analisis pembuangan gangguan bunyi isyarat gelombang kecil. Daripada tiga teknik yang 
berbeza dalam vektor ciri ekstrak sebagai input untuk pengkelasan LVQ, kajian mendapati 
hasil sistem yang terbaik adalah kaedah kovarians AR, di mana ia memperolehi peratusan 
purata 95.56% untuk semua kelas dalam pengenalpastian pola EMG. 
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CHAPTER 1 
 

INTRODUCTION 
 

The present chapter discusses the concept of biomedical signals, with emphasis on 

electromyography as a diagnosis process of the human muscle health and the problems 

occurred during electromyography signal processing and its rehabilitation applications. The 

chapter also covers the objectives of the study, its scopes and contribution of the research on 

spectral estimation and supervised classification technique for real time surface 

electromyography pattern recognition.  

 

1.1 Project Background 

With the advance of science and technology, there has been a quantum leap in the 

development of automated and semi-automated systems supporting physiotherapy and 

rehabilitation. The purpose of these system development is to assist patients' recovery from 

health issues and to return to their previous state of health. Rehabilitation treatments are 

usually used by patients after a major operation, chronic pain, stroke, or severe accident that 

caused injury to any body part. The human body consists of many component systems 

involving biomedical signals such as the nervous system, cardiovascular system, and 

musculoskeletal system.  

 The rehabilitation system for biomedical signal-based device generally contains a 

biomedical signal sensor to detect the different types of biomedical signals. Biomedical 

signal is an observation of physiological activities and is crucial as a collective electrical 
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signal of the human organ part.  Basically, the biomedical signals can be classified into four 

types: electroencephalography (EEG), electrocardiography (ECG), electronystagmography 

(ENG), and electromyography (EMG). Each of these biomedical signals has their own 

specifications that are used to measure the electrical signals for different types of organ parts. 

 The oldest technique in biomedical signal that had been practiced in clinical situation 

is the EEG as shown in Figure 1.1.  This is a method for recording the electrical activity of 

brain either in healthy or diseased conditions using small, flat metal discs or electrodes 

attached to the scalp (Millett et al., 2015). This method represents the graphics of the 

electrical potential generated by the cerebrum. Essentially, the brain is the major part which 

controls and coordinates the entire parts of the human body such as muscles and nerves. It 

is necessary to identify the function and cognitive behavior of the human brain in order to 

find out the good solution related to brain issues.  

 

 

Figure 1.1 Electroencephalography signal recording (Millett et al., 2015) 

 

 Basically, the brain is divided into two parts which are right part and left the part. 

The two parts mutually control each other, where the left part of the brain is liable for 


