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ABSTRACT 

 

 

In Humanoid robotics field, capability to perform any task that imitates human movement 
has been the major research focus. Sit to stand (STS) is a very challenging motion for any 
humanoid robotic system. In the field of rehabilitation, it is difficult for the physiotherapist 
technician to readjust prosthetic leg to fit all the patient without proper knowledge and not 
all of them has the basic knowledge involving robotic system. Thus from several model of 
STS including telescopic inverted pendulum, single-link, two-link and three-link (3L), we 
choose to emphasize more on 3L since it is having a similar segment with human body and 
it fit most of the current prosthetic leg in rehabilitation centre. Current studies involving 
torque analysis was using a dynamic model, which is complicated and requires high 
computational resource to compute. Hence, the purpose of this thesis is to study the effect 
of mass and length’s link changes to each joint torque and much simpler equation to estimate 
the torque needed in short time is proposed. Simulation model were run and torque 
information were collected. In order to validate the equation, experiments were carried out 
with three-link model. Having an error with ± 0.1% proof that the results shows that there is 
a possibility to estimate maximum torque needed by each link with equation derive from 
both simulation and experiment .
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ABSTRAK 

 

 

Dalam bidang kajian robotik humanoid, keupayaan untuk melaksanakan pelbagai tugas 
yang dijalankan oleh manusia merupakan satu fokus utama. Duduk-berdiri (STS) adalah 
satu pergerakan yang mencabar bagi sistem robot humanoid. Dalam proses pemulihan 
pesakit yang kehilangan upaya,seorang fisioterapis yang tidak mempunyai asas ilmu robotik 
agak sukar untuk melaras keupayaan motor pada kaki palsu dan hampir kesemuanya tidak 
mempunyai asas tersebut dan menyukarkan lagi proses pemulihan. Maka daripada 
beberapa model pergerakan duduk berdiri  (STS) termasuk teleskopik bandul terbalik (TIP), 
satu-sambungan, dua-sambungan dan tiga sambungan (3L) kami memutuskan untuk 
menumpukan kepada 3L kerana ciri-ciri persamaan yang hampir dengan tubuh badan 
manusia dan kebanyakan kaki palsu hanya tertumpu kepada bahagian bawah abdomen 
pesakit. Kajian masa kini menggunakan 3L, melibatkan pergerakan dinamik dan perkiraan 
yang kompleks. Maka, tujuan thesis ini adalah untuk mengkaji kesan berat dan panjang 
keatas kuasa motor yang terlibat dan di penghujung kajian, persamaan matematik yang 
lebih mudah untuk menggangarkan daya kuasa maksima yang diperlukan motor dapat 
dicadangkan. Simulasi dijalankan terlebih dahulu dan data yang terbabit dikumpul.  Untuk 
mengesahkan model ini, eksperimen menggunakan 3L model di laksanakan. Dengan ralat   
± 0.1% keputusan menunjukkan, kita boleh menganggarkan nilai maksima daya yang 
diperlukan oleh setiap sambungan melalui persamaan yang terhasil di akhir eksperimen dan 
simulasi. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 Research Background 

The purpose of this thesis is to analyse the torque involved during Sit to stand (STS) 

motion using a three link ( 3L ) model. STS is defined as the movement of human or 

humanoid robot to standing up from the chair. (Banerjee et al., n.d.;  Mughal and Iqbal, 

2008;  Shen et al., 2008). Some researchers also called this as chair rise motion (Marcello et 

al., 1994). The study of this motion particularly in humanoid robotics gives high impact in 

the robotic field especially in the rehabilitation process. (Jr et al., 2006;  Xiong et al., 

2007;  Saint-Bauzel et al., 2009). 

Some researchers have been known to study STS using humanoids. M. Mistry used 

human volunteer to perform STS motion and recorded it before mapping it to humanoid 

robotic system (Mistry et al., 2010), motion planning and generation for humanoid robots 

based on the concept of virtual holonomic constraints (Mettin et al., 2007). S.Pchelkin 

analysed a constructive procedure for planning human-like motions of humanoid robots on 

finite-time intervals (Pchelkin et al., 2010) and X.Gu et al. had proposed how to compose 

complex movements in 33 DOF humanoid using three different ways of motor synergies 

over multiple motor routines (Gu and Ballard, 2006). 

In the field of rehabilitation (Jr. et al., 2006), exoskeleton (Strausser and Kazerooni, 

2011) as well as humanoid robotics (Ali et al., 2013;  Shaari et al., 2013) STS motion were 

most popular area where most researches run their study and experiment. The characteristic 

of STS motion itself has not been given emphasis until recently.  
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In robotics field, several works on STS were done using model of three link (3L) 

(Hemami and Jaswa, 1978;  Musić et al., 2008), two-link elastic inverted pendulum 

(Aissaoui et al., 2011) as well as single rigid pendulum (Pai et al., 1997) and telescopic 

inverted pendulum (TIP) (Papa and Cappozzo, 1999).  The main purpose of the study 

includes the structural stability, balance and energy transfer during STS task. From all the 

model mentioned, 3L model was found to be the most similar structure as human body 

segment and it is easy for planning and analysing humanoid or exoskeleton robot since it 

directly represents the whole body motion or the CENTER OF MASS ( CoM ) of the robot 

in Cartesian space (Bahar et al., 2014;  Robotics, 2014;  Miskon et al., 2015) 

Mainly in rehabilitation facility there were some issues with prosthetic leg  (Legro et 

al., 1999). Some patient loss their leg due to accident, war or even become paralyzed. Being 

different in body mass and height, it is hard for single prosthetic leg to be used by many 

patients. With this analysis, perhaps, it is plausible to make a simple calculation to estimate 

the maximum torque needed for each motor for each link involved. Thus, it can be used for 

all patients of varied mass and height. 

However, the characteristic of STS motion using 3L robotic system has never been 

investigated with different mass and length before thus; it is not clear whether simple 

calculation can be used to estimate the torque needed by the joint motor. For 3L model, it 

consist of 3 link segments represent each humanoid body, leg, thigh and upper-body (Wada 

and Matsui, 2013). For this particular reason, this thesis presents a study to see the detailed 

analysis of torque for each segment joints via simulation and experimental setup. 
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1.2 Problem Statement 

 
The problem of torque estimation of a three link system ( 3L ) for STS Motion is in 

how to estimate the appropriate torque required to perform STS motion particularly in the 

case of the rehabilitation and assistive technology application. By far, no researcher has 

come out with a simple way to estimate the torque. The cost for the leg itself is high and 

some patient in the rehabilitation cannot afford to have it even with donation and sponsor. It 

would be helpful if the rehabilitation centre have a single prosthetic leg can be used for every 

patient. Since each patient has different measurements of mass and height, it is complicated 

for physician or technician to adjust the walking suit to fit all the patient. The therapist 

involved also do not have any knowledge in robotic, dynamic, motor or even they do not 

have a proper set of computer to perform complicated computational just to get the required 

amount of torque needed by patient. Most of the calculation involved either complicated 

dynamic or need a highly computational method which take a long time to complete. Thus 

a simple method of estimation is needed.  

 User of this assistive device varies in terms of height and weight. Thus, the robot 

designer needs a simple approach to estimate the required maximum torque in the motor 

joint to prevent any error to the motor or injuries to the user. A 3L system is the closest 

approach that mimics human joint. The current model system is too complex and involves a 

lot of dynamic parameters including inertia, gravity, angular velocity, Coriolis and 

Centrifugal Vector and many more (Wada and Matsui, 2013). With this approach, it is hoped 

that the parameter is being reduce to mass and length of link only. Most of the user affected 

below the waist. So this study focused on joint ankle, knee and hip. Of all this three joint, 

highest torque are found in knee joint (Bakar and Abdullah, 2011). Dynamic equation may 

get the precise torque needed by the user but it will take longer time to compute and analyse.  


