

Faculty of Electrical Engineering

PROTON EXCHANGE MEMBRANE FUEL CELL MODEL VALIDATION USING EQUIVALENT ELECTRICAL CIRCUIT

Ayu Nurfatika binti Abdul Mubin

Master of Science in Electrical Engineering

2018

🔘 Universiti Teknikal Malaysia Melaka

PROTON EXCHANGE MEMBRANE FUEL CELL MODEL VALIDATION USING EQUIVALENT ELECTRICAL CIRCUIT

AYU NURFATIKA BINTI ABDUL MUBIN

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Electrical Engineering

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

DECLARATION

I declare that this thesis entitled "Proton Exchange Membrane Fuel Cell Model Validation Using Equivalent Electrical Circuit" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	AYU NURFATIKA BINTI ABDUL MUBIN
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electrical Engineering.

Signature	:
Supervisor Name	. DR. MAASPALIZA BINTI AZRI
Date	·

DEDICATION

To my beloved family

ABSTRACT

Fuel cell is one of the most preferable renewable energy power sources nowadays due to its simplicity, capability, high efficiency, quick start-up, is environmentally friendly and has no geographical limitations. PEMFC is effective in the transformation of input energy into electrical energy and has been seen as being a great potential power source for the future. Because of its potential, there have been many experiments and empirical studies which have been carried out in both the academic and industrial fields. The focus of most research has been on the steady-state analysis of PEMFC. It is important to consider PEMFC reactions within this research as well. The processes of the PEMFC were implemented by modelling mathematical and electrical models using Matlab/Simulink simulation software. Both of the models were developed as two types of models which were steady-state and dynamic model to provide a comparison of the consideration of charge-double layer capacitance (CDL) and thermodynamic effect. Apart from that, to develop a more accurate model, both of the models were modelled by following the realstack specification of the 500-W PEMFC system which was manufactured by Horizon Pte. Ltd. Both models showed a different output response and the parameter of the losses was dependent on the duration of the simulation, temperature and the hydrogen pressure. The output of both models which differed in the stack output voltage, rated power, efficiency and time response of the model, were discussed. The parameters used were verified by testing the model with different values of reference temperature and the input hydrogen pressure. From that, the PEMFC emulator was also designed and built to verify the use of the parameter values in the modelling. The output obtained was analysed and discussed. The model produced an output with an efficiency higher than 30% compared with the H-500 PEMFC specification efficiency of 40% which makes the model eligible for further development purposes. The parameters of reference temperature and input hydrogen pressure were suitable for the model and were verified.

ABSTRAK

Sel bahan api adalah salah satu tenaga yang paling baik berbanding dengan sumbersumber yang boleh diperbaharui lain yang wujud pada masa kini disebabkan oleh kesederhanaannya, keupayaannya, kecekapan yang tinggi, permulaan yang cepat, mesra alam dan tiada batasan geografi. PEMFC adalah efektif dalam mentransformasi sumber kuasa masukan kepada tenaga elektrik dan dilihat mempunyai potensi yang baik dalam sumber tenaga pada masa akan datang. Atas sebab potensinya, telah banyak eksperimen dan pembelajaran empirikal dilakukan di dalam bidang akademik dan industri. Proses PEMFC telah dilaksanakan dengan memodelkan model matematik dan elektrik menggunakan perisian simulasi Matlab/Simulink. Kedua-dua model dimodelkan dengan dua kategori model iaitu model keadaan mantap dan juga model berkeadan dinamik untuk mempelajari perbezaan dalam melibatkan efek caj lapisan kapasitor berganda (CDL) dan juga kesan termodinamik. Disamping itu, bagi membangunkan model yang lebih tepat, kedua-dua model ini dimodelkan mengikuti spesifikasi sebenar bagi sistem 500-W PEMFC vang dihasilkan oleh Horizon Pte. Ltd.. Kedua-dua model menunjukkan tindak balas pengeluaran yang berbeza dan parameter kerugian bergantung pada tempoh masa simulasi, suhu dan tekanan hidrogen adalah diperhatikan. Keluaran kedua-dua model akan berbeza dalam voltan keluaran stak, kuasa undian, kecekapan dan tindak balas masa model adalah dibincangkan dalam penyelidikan ini. Justeru itu, parameter yang digunakan disahkan dengan menguji model dengan nilai suhu rujukan yang berbeza dan tekanan kemasukan hidrogen. Dari situ, emulator PEMFC direka dan dicipta untuk mengesahkan penggunaan parameter dalam permodelan ini. Keluaran yang diperolehi dianalisis dan dibincangkan. Model ini menghasilkan pengeluaran dengan kecekapan lebih tinggi daripada 30% jika dibandingkan dengan spesifikasi kecekapan H-500 PEMFC iaitu 40% dimana ia membuatkan model ini layak untuk digunakan bagi tujuan pembangunan selanjutnya. Parameter rujukan suhu dan tekanan hidrogen adalah sesuai untuk model dan ianya telah disahkan.

ACKNOWLEDGEMENTS

The completion of this undertaking could not have been possible without the participation and assistance of so many people. Their contributions are sincerely appreciated and gratefully acknowledged. I would like to express my deep appreciation and gratitude particularly to the following:

Dr. Maaspaliza bini Azri, my supervisor from the Faculty of Electrical Engineering Universiti Teknikal Malaysia Melaka (UTeM) for her attentive supervision, kind support and continuous encouragement towards the completion of this thesis.

Prof. Dr. Zulkifilie bin Ibrahim, my co-supervisor also from the Faculty of Electrical Engineering UTeM for his advice and suggestions.

Special thanks to UTeM grant funding, titled Power Control Technology for Fuel Cell Vehicles, for the financial support throughout this project, LRGS/2014/FKE/TK01/02/R0000.

Special thanks to my beloved family members and all colleagues for their moral support in completing this degree. Lastly, thank you to all who had in one way or another shared support, either morally, financially or physically and were associated with the crucial parts of realization of this project.

iii

TABLE OF CONTENTS

DEC	CLAR	ATION	
APF	PROV	VAL	
DEI	DICA	TION	
ABS	STRA	CT	i
ABS	STRA	K	ii
ACI	KNOV	WLEDGEMENTS	iii
TAI	BLE (DF CONTENTS	iv
LIS	T OF	TABLES	vii
LIS	T OF	FIGURES	viii
LIS	T OF	APPENDICES	xiii
LIS	T OF	ABBREVIATIONS	xiv
LIS	T OF	PUBLICATIONS	xvii
CHA	APTE	CR	
1.	INT	TRODUCTION	1
	1.1	Background of Research	1
	1.2	Research Motivation	4
	1.3	Problem Statement	5
	1.4	Research Objectives	6
	1.5	Scope of Research	7
	1.6	Significant of Contributions	7
	1.7	Outline of the Thesis	8
2.	LIT	ERATURE REVIEW	9
	2.1	Introduction	9
	2.2	Conventional Energy	10
		2.2.1 Natural Gas	11
		2.2.2 Crude Oil	13
		2.2.3 Coal	14
		2.2.4 Hydropower	15
		2.2.5 Nuclear Energy	17
	2.3	Renewable Energy	18
		2.3.1 Solar Energy	20
		2.3.2 Wind Energy	22
		2.3.3 Geothermal Energy	24
		2.3.4 Biomass Energy	25
		2.3.5 Fuel Cell	27
		2.3.5.1 PEMFC	29
		2.3.5.2 DMFC	30
		2.3.5.3 SOFC	31
		2.3.5.4 AFC	34
		2.3.5.5 MCFC	35
		2.3.5.6 PAFC	36
	2.4	PEMFC Working Process	37
	2.5	Review of PEMFC Mathematical Modelling	40

PAGE

		2.5.1 Lumped-Parameter Mathematical Modelling	41
		2.5.2 Spatially-Distributed Mathematical Modelling	42
		2.5.3 Analytical Models	43
		2.5.4 Semi-Empirical Models	43
		2.5.5 Mehanistic Models	44
		2.5.5.1 Multi-Domain Approach	44
		2.5.5.2 Single-Domain Approach	45
	2.6	PEMFC Electrical Aspects Modeling Consideration	
		(Control System)	45
		2.6.1 Control System	45
		2.6.2 Common Industrial Controller	47
		2.6.2.1 Proportional-Integral Derivative Controller	
		(PID)	48
		2.6.2.2 Fuzzy Logic	50
	2.7	Summary	50
3.	RES	SEARCH METHODOLOGY	56
	3.1	Introduction	56
	3.2	Research Methodology	58
	3.3	Mathematical Modelling of PEMFC	60
		3.3.1 PEMFC Thermodynamic (Nernst Potential)	61
		3.3.2 PEMFC Reaction Kinetics(Activation)	70
		3.3.3 PEMFC Charge Transport Reaction(Ohmic)	76
		3.3.4 PEMFC Mass Transport Reaction (Concentration)	80
		3.3.5 Charge Double Layer Capacitance (Dynamic	
		Consideration)	82
		3.3.6 Hot-start and Cold-start Condition	84
		3.3.7 Overall PEMFC Mathematical Model	85
	3.4	Electrical Modelling of PEMFC	88
		3.4.1 Steady-state Electrical Model	90
		3.4.2 Dynamic Electrical Model	92
	~ -	3.4.3 Modelling of Electrical Model with PID Controller	93
	3.5	PEMFC Emulator	96
	3.6	PEMFC Efficiency and Efficiency Limit	98
	3.7	Summary	101
4.	RES	SULT AND DISCUSSION	103
	4.1	Introduction	103
	4.2	PEMFC Mathematical Model Results Performance	103
	4.3	PEMFC Electrical Model Results Performance	115
	4.4	PEMFC Emulator Results	117
	4.5	Analysis and Optimization Parameters Affects PEMFC Performance	119
		4.5.1 Charge-Double Layer Capacitance Model Analysis Results	119
		4.5.2 The Effect of Voltage Losses Due to Temperature Variation	121
		4.5.3 The Effect of Output Performance Due to Temperature	100
		Variation	122
	4 6	4.5.4 The Effect of Output Performance Due to Pressure Variation	126
	4.0	Comparison of Optimum Mathematical and Electrical Model Results	100
		with Real-Stack Horizon H-500	130

	4.7 Summary	139
5.	CONCLUSION AND RECOMMENDATIONS	141
	5.1 Conclusion	141
	5.2 Recommendations	143
REFERENCES		145
AP	PENDICES	156

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Summary for six types of fuel cells	52
2.2	Summary for types of modelling from previous researchers	53
3.1	Horizon H-500 Fuel Cell System specifications	57
3.2	ΔG , Maximum reversible open circuit voltage, and efficiency limit for	100
	PEMFC (HHV basis) (Larminie and Dicks, 2003).	
4.1	Comparison of emulator results	118
4.2	The relationship between temperature and stack voltage performance	123
4.3	The relationship between input hydrogen pressure and stack	126
	performance	
4.4	Comparison of model performance	133

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Number of fuel cell systems shipped globally from 2008 to 2015	5
	based on application	
2.1	Global conventional sources of energy	11
2.2	Processes involved in natural gas production and delivery	12
2.3	The different products produced from distillation of crude oil	13
2.4	Process of electricity generation from burning of coal	15
2.5	Electricity generation by means of hydropower	16
2.6	Control rods that are used to control the nuclear fission process	17
2.7	Conversion of solar energy into electricity	21
2.8	Schematic diagram showing how a wind turbine works	23
2.9	Process that takes place in a geothermal power station	25
2.10	Process involved in converting biomass into electricity	27
2.11	Operating principle of PEMFCs	29
2.12	Schematic diagram for DMFC operation	31
2.13	Operating principle of SOFCs	33
2.14	Schematic diagram of planar SOFC multi-cells array	33
2.15	Schematic diagram of SOFC with co-planar electrode	33
2.16	Schematic diagram of the micro-tubular SOFC	34

2.17	Operating principle of AFCs	35
2.18	Operating principle of MCFCs	36
2.19	Operating principle of PAFCs	37
2.20	Internal structure of a fuel cell	39
2.21	Illustration of an open loop system	46
2.22	Illustration of a closed loop system	46
2.23	Illustration of a PID system controller	48
2.24	Illustration of a proportional controller	48
2.25	Illustration of an integral controller	49
2.26	Illustration of a derivatives controller	49
3.1	Process flow for PEMFC modelling	59
3.2	Equivalent circuit of PEMFC	61
3.3	Block diagram of the thermodynamic potential (E) of the fuel cell	64
3.4	Block diagram used to determine the partial pressure	66
3.5	Block diagram of water concentration	66
3.6	Water concentration function block parameter	67
3.7	Block diagram of temperature model	68
3.8	Input ramp for temperature block parameter	69
3.9	Temperature limiter block parameter	69
3.10	Temperature integrator block parameter	70
3.11	Block diagram of concentration of oxygen	73
3.12	Block diagram of input current	74
3.13	Current limiter function block parameter	74
3.14	Ramp source current block parameter	75

3.15	Activation subsystem	75
3.16	Block diagram used to determine the activation losses in PEMFC	76
3.17	Charge transport illustration	78
3.18	Ohmic subsystem	79
3.19	Block diagram used to determine the ohmic losses of PEMFC	79
3.20	Concentration subsystem	81
3.21	Block diagram used to determine the concentration losses in PEMFC	81
3.22	Block diagram of dynamic activation loss	83
3.23	Dynamic integrator block parameter	84
3.24	The overview of hydrogen reactant flow through the cell	85
3.25	Overall subsystem for a single cell mathematical model of PEMFC	87
3.26	PEMFC mathematical stack model overall subsystem	88
3.27	Block diagram of the steady-state electrical model	91
3.28	Block diagram of the dynamic electrical model	93
3.29	The emulator circuit with PID controller	95
3.30	Function block parameter for the value of PID	95
3.31	Simulation for PEMFC emulator	97
3.32	Experimental PEMFC emulator	97
4.1	Single cell voltage performance	104
4.2	Activation potential and losses in a cell of PEMFC	106
4.3	Ohmic potential and losses in a single cell of PEMFC	107
4.4	Concentration potential and losses in a cell of PEMFC	108
4.5	Thermodynamic potential	110
4.6	Temperature behaviour inside the cell	110

4.7	Hydrogen partial pressure behaviour inside the cell	110
4.8	Oxygen partial pressure behaviour inside the cell	111
4.9	Partial pressure for water concentration behaviour inside the cell	111
4.10	PEMFC single cell power delivered	112
4.11	PEMFC mathematical model of stack power delivered	113
4.12	PEMFC mathematical stack of voltage delivered	113
4.13	Comparison between steady-state and dynamic performances	114
4.14	Ideal and actual voltage on a single cell of PEMFC	115
4.15	PEMFC electrical model stack voltage and power output	116
4.16	Experimental emulator results	118
4.17	Implementation of voltage build up for small and large area of cell	120
4.18	Response from different cell stacks at temperature of 303.15K	120
4.19	Relationship between voltage losses and temperature in a single	122
	cell	
4.20	Relationship between resistance and temperature in a single cell	122
4.21	The relationship between temperature and stack voltage	124
	performance	
4.22	The output voltage against variation of the cell temperature for the	125
	electrical model	
4.23	The relationship between temperature and output power	125
4.24	The relationship between the performance of the PEMFC stack	127
	voltage with the variation of input hydrogen pressure	
4.25	The relationship between the performance of the PEMFC stack	128
	power with the variation of input hydrogen pressure	

xi

4.26	The output voltage when varying the input pressure of hydrogen in	129
	the electrical model	
4.27	The relationship between input hydrogen pressure and output	129
	power	
4.28	Optimum steady-state power for mathematical model of PEMFC	131
	stack	
4.29	Optimum steady-state voltage for mathematical model of PEMFC	131
	stack	
4.30	Optimum dynamic power for mathematical model of PEMFC stack	132
4.31	Optimum dynamic voltage for mathematical model of PEMFC	132
	stack	
4.32	Comparison of stack temperature for Horizon H-500 Fuel Cell	134
	System, mathematical model and electrical model	
4.33	Comparison of input hydrogen pressure for the Horizon H-500 Fuel	135
	Cell System, mathematical model and electrical model	
4.34	Comparison of voltage performance for the Horizon H-500 Fuel	136
	Cell System, mathematical model and electrical model	
4.35	Comparison of current performance for the Horizon H-500 Fuel	137
	Cell System, mathematical model and electrical model	
4.36	Comparison of power performance for the Horizon H-500 Fuel Cell	137
	System, mathematical model and electrical model	
4.37	Comparison of efficiency performance for the Horizon H-500 Fuel	139
	Cell System, mathematical model and electrical model	

xii

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Mathematical modelling m.file coding	156

xiii

LIST OF ABBREVIATIONS

А	-	Active area of cell
a	-	Anode
AFC	-	Alkaline Fuel Cell
В	-	Semi-empirical constant
С	-	Capacitor
c	-	Cathode
C_{H_2O}	-	Concentration of water
C_{O_2}	-	Concentration of oxygen
C_t	-	Total thermal capacitance for all the volume or mass of fuel cell
$C_t \frac{dT}{dt}$	-	Rate of change for the capacitance value
CDL	-	Charge double layer capacitance
DC	-	Direct-current
DMFC	-	Direct Methanol Fuel Cell
Е	-	Thermodynamic voltage
F	-	Faraday's constant
G	-	Gibbs free energy
Н	-	Total heat transfer coefficient for all the surface of fuel cell
H_2	-	Hydrogen gas
H ₂ O	-	Water

xiv

HHV	-	Higher heating value
i	-	Current
i _{lim}	-	Current limit
IPCC	-	Intergovernmental Panel on Climate Change
j	-	Charge flux
K	-	Intrinsic rate constant
K _a °	-	Anode intrinsic rate constant
K _c °	-	Cathode intrinsic rate constant
l	-	Length
LHV	-	Lower heating value
m	-	Gradient
MCFC	-	Molten Carbonate Fuel Cell
n	-	Number of mole
O ₂	-	Oxygen gas
OCV	-	Open circuit voltage
Р	-	Pressure
PAFC	-	Phosphoric Acid Fuel Cell
PEMFC	-	Proton Exchange Membrane Fuel Cell
PID	-	Proportional-Integral-Derivative
PWM	-	Pulse Width Modulation
Q	-	Electrical work done by a moving charge
R	-	Ideal gas constant
R _{act}	-	Activation resistance
R _{conc}	-	Concentration resistance

Rohmic	-	Ohmic resistance
S	-	Entropy
SOFC	-	Solid Oxide Fuel Cell
Т	-	Temperature
T _f	-	Reference temperature
U	-	Internal energy
V	-	Volume
Vact	-	Activation voltage
V _{act0}	-	Initial activation voltage
V _{cell}	-	Cell voltage
V _{conc}	-	Concentration voltage
Vohmic	-	Ohmic voltage
W	-	Work
X1	-	Initial output voltage
X2	-	Peak output voltage
y 1	-	Initial desired current
y 2	-	Peak desired current
ξ	-	Semi-empirical coefficient
σ	-	Conductivity of material
ΔG°	-	Standard-state of Gibbs free energy of activation for chemisorption
ΔH	-	Change in enthalpy of formation
Ŋе	-	Efficiency of fuel cell
$\eta_{e,max}$	-	Maximum efficiency for fuel cell
μ_f	-	Utilization coefficient

xvi

LIST OF PUBLICATIONS

Journal Paper

 Maaspaliza Azri, Ayu Nurfatika Abdul Mubin, Zulkifilie Ibrahim, and Nasrudin Abd. Rahim, "Mathematical Modeling for Proton Exchange Membrane Fuel Cell (PEMFC)," Journal of Theoretical and Applied Information Technology (JATIT), vol. 86, no. 3, 2016.

Conference Proceedings

- Maaspaliza Azri, Nur Hidayah Abu Khanipah, Ayu Nurfatika Abdul Mubin, Muhammad Zuhairi Che Zukeri, Zulkifilie Ibrahim, and Nasrudin Abd Rahim, 2017, November. Development of PEMFC emulator using electrical equivalent circuit. In Electrical Engineering and Informatics (ICEEI), 2017 6th International Conference on (pp. 1-6). IEEE.
- Ayu Nurfatika Abdul Mubin, Muhammad Haziq Bahrom, Maaspaliza Azri, Zulkifilie Ibrahim, Nasrudin Abdul Rahim, Siti Rohani Sheikh Raihan, "Analysis performance of proton exchange membrane fuel cell (PEMFC)", International Technical Postgraduate Conference. IOP Conf. Series: Materials Science and Engineering 210, 2017, 012052.
- Maaspaliza Azri, Ayu Nurfatika Abdul Mubin, Zulkifilie Ibrahim, and Nasrudin Abd. Rahim, "A Simulation Model for Proton Exchange Membrane Fuel Cell (PEMFC) using MATLAB/SIMULINK," International Conference on Power, Energy, and Communication (IPECS), pp. 430-435, 2015.

xvii

CHAPTER 1

INTRODUCTION

1.1 Background of Research

One of the prevailing global issues nowadays is the escalating increase in energy demand and power consumption in tandem with the growth of the world population. However, most power generators are operated based on the combustion of fossil fuels, which release carbon dioxide, carbon monoxide, sulphur dioxide, nitrogen oxide and particulate matter, resulting in a host of environmental problems such as air pollution, acid rain, and the greenhouse effect. Fossil fuels such as coal and petroleum are non-renewable sources of energy. Therefore, there is growing concern about the depletion of fossil fuels over the years, which will eventually reach a stage where the availability of fossil fuels will be unable to fulfil the ever-increasing global energy demand. In addition, there is increasing awareness of the environmental impact resulting from the combustion of fossil fuels, and this is one of the primary concerns of environmental protection agencies throughout the world. This has even been highlighted in an article by the Union of Concerned Scientists, titled "The Hidden Costs of Fossil Fuels" (Union of Concerned Scientists, 2016).

For these reasons, there is a critical need to explore alternative sources of energy which are renewable and sustainable, with minimum impact on the environment. This is the one of the key areas explored by the scientific community for many years with promising results, indicating that alternative sources of energy such as biomass, geothermal sources, solar radiation, wind, and water (*i.e.* ocean waves and tides, as well as water stored in large reservoirs such as dams) have great potential to substitute fossil fuels. All of the aforementioned sources of energy are dependent on geographical location, and therefore, systems which are based on these renewable energy sources are impractical for use in the transportation sector, where portability is of utmost importance. In addition, renewable energy sources such as solar radiation and wind will vary depending on climate conditions (which are unpredictable in nature) and this will cause disruption to the performance of solar and wind energy-based systems.

In this regard, hydrogen fuel cells are a more feasible alternative particularly in the transportation sector because these systems are more efficient in converting chemical energy into electrical energy, compared with internal combustion engines. In addition, these systems are portable and independent of climate conditions (Erdinc and Uzunoglu, 2012). More importantly, hydrogen fuel cells are environmentally friendly since these systems do not release harmful pollutants into the environment. Hydrogen fuel cells have been studied extensively over the years in order to enhance power output, reduce costs, and extend the service life of these systems to suit a wide variety of applications.

Nowadays, there is growing interest in proton exchange membrane fuel cells (PEMFCs), which is a special type of hydrogen fuel cell, because of their high power density (3.8–6.5 kW/m³) and these systems can be operated at low temperatures (50 °C – 100 °C) (Balasubramanian et al., 1999; Shah, 2007; Kunusch et al., 2012). In addition, PEMFCs are operated based on electrochemical reaction between hydrogen (H₂) and oxygen (O₂), which are both renewable and sustainable sources. It is anticipated that

2