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ABSTRACT 

 

 

Fuel cell is one of the most preferable renewable energy power sources nowadays due to 
its simplicity, capability, high efficiency, quick start-up, is environmentally friendly and 
has no geographical limitations. PEMFC is effective in the transformation of input energy 
into electrical energy and has been seen as being a great potential power source for the 
future. Because of its potential, there have been many experiments and empirical studies 
which have been carried out in both the academic and industrial fields. The focus of most 
research has been on the steady-state analysis of PEMFC. It is important to consider 
PEMFC reactions within this research as well. The processes of the PEMFC were 
implemented by modelling mathematical and electrical models using Matlab/Simulink 
simulation software. Both of the models were developed as two types of models which 
were steady-state and dynamic model to provide a comparison of the consideration of 
charge-double layer capacitance (CDL) and thermodynamic effect. Apart from that, to 
develop a more accurate model, both of the models were modelled by following the real-
stack specification of the 500-W PEMFC system which was manufactured by Horizon Pte. 
Ltd. Both models showed a different output response and the parameter of the losses was 
dependent on the duration of the simulation, temperature and the hydrogen pressure. The 
output of both models which differed in the stack output voltage, rated power, efficiency 
and time response of the model, were discussed. The parameters used were verified by 
testing the model with different values of reference temperature and the input hydrogen 
pressure. From that, the PEMFC emulator was also designed and built to verify the use of 
the parameter values in the modelling. The output obtained was analysed and discussed. 
The model produced an output with an efficiency higher than 30% compared with the H-
500 PEMFC specification efficiency of 40% which makes the model eligible for further 
development purposes. The parameters of reference temperature and input hydrogen 
pressure were suitable for the model and were verified. 
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ABSTRAK 

 

 

Sel bahan api adalah salah satu tenaga yang paling baik berbanding dengan sumber-
sumber yang boleh diperbaharui lain yang wujud pada masa kini disebabkan oleh 
kesederhanaannya, keupayaannya, kecekapan yang tinggi, permulaan yang cepat, mesra 
alam dan tiada batasan geografi. PEMFC adalah efektif dalam mentransformasi sumber 
kuasa masukan kepada tenaga elektrik dan dilihat mempunyai potensi yang baik dalam 
sumber tenaga pada masa akan datang. Atas sebab potensinya, telah banyak eksperimen 
dan pembelajaran empirikal dilakukan di dalam bidang akademik dan industri. Proses 
PEMFC telah dilaksanakan dengan memodelkan model matematik dan elektrik 
menggunakan perisian simulasi Matlab/Simulink. Kedua-dua model dimodelkan dengan 
dua kategori model iaitu model keadaan mantap dan juga model berkeadan dinamik untuk 
mempelajari perbezaan dalam melibatkan efek caj lapisan kapasitor berganda (CDL) dan 
juga kesan termodinamik. Disamping itu, bagi membangunkan model yang lebih tepat, 
kedua-dua model ini dimodelkan mengikuti spesifikasi sebenar bagi sistem 500-W PEMFC 
yang dihasilkan oleh Horizon Pte. Ltd.. Kedua-dua model menunjukkan tindak balas 
pengeluaran yang berbeza dan parameter kerugian bergantung pada tempoh masa 
simulasi, suhu dan tekanan hidrogen adalah diperhatikan. Keluaran kedua-dua model 
akan berbeza dalam voltan keluaran stak, kuasa undian, kecekapan dan tindak balas masa 
model adalah dibincangkan dalam penyelidikan ini. Justeru itu, parameter yang 
digunakan disahkan dengan menguji model dengan nilai suhu rujukan yang berbeza dan 
tekanan kemasukan hidrogen. Dari situ, emulator PEMFC direka dan dicipta untuk 
mengesahkan penggunaan parameter dalam permodelan ini. Keluaran yang diperolehi 
dianalisis dan dibincangkan. Model ini menghasilkan pengeluaran dengan kecekapan 
lebih tinggi daripada 30% jika dibandingkan dengan spesifikasi kecekapan H-500 PEMFC 
iaitu 40% dimana ia membuatkan model ini layak untuk digunakan bagi tujuan 
pembangunan selanjutnya. Parameter rujukan suhu dan tekanan hidrogen adalah sesuai 
untuk model dan ianya telah disahkan. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background of Research 

One of the prevailing global issues nowadays is the escalating increase in energy 

demand and power consumption in tandem with the growth of the world population. 

However, most power generators are operated based on the combustion of fossil fuels, 

which release carbon dioxide, carbon monoxide, sulphur dioxide, nitrogen oxide and 

particulate matter, resulting in a host of environmental problems such as air pollution, acid 

rain, and the greenhouse effect. Fossil fuels such as coal and petroleum are non-renewable 

sources of energy. Therefore, there is growing concern about the depletion of fossil fuels 

over the years, which will eventually reach a stage where the availability of fossil fuels will 

be unable to fulfil the ever-increasing global energy demand. In addition, there is 

increasing awareness of the environmental impact resulting from the combustion of fossil 

fuels, and this is one of the primary concerns of environmental protection agencies 

throughout the world. This has even been highlighted in an article by the Union of 

Concerned Scientists, titled “The Hidden Costs of Fossil Fuels” (Union of Concerned 

Scientists, 2016).  

For these reasons, there is a critical need to explore alternative sources of energy 

which are renewable and sustainable, with minimum impact on the environment. This is 

the one of the key areas explored by the scientific community for many years with 
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promising results, indicating that alternative sources of energy such as biomass, geothermal 

sources, solar radiation, wind, and water (i.e. ocean waves and tides, as well as water 

stored in large reservoirs such as dams) have great potential to substitute fossil fuels. All of 

the aforementioned sources of energy are dependent on geographical location, and 

therefore, systems which are based on these renewable energy sources are impractical for 

use in the transportation sector, where portability is of utmost importance. In addition, 

renewable energy sources such as solar radiation and wind will vary depending on climate 

conditions (which are unpredictable in nature) and this will cause disruption to the 

performance of solar and wind energy-based systems. 

In this regard, hydrogen fuel cells are a more feasible alternative particularly in the 

transportation sector because these systems are more efficient in converting chemical 

energy into electrical energy, compared with internal combustion engines. In addition, 

these systems are portable and independent of climate conditions (Erdinc and Uzunoglu, 

2012). More importantly, hydrogen fuel cells are environmentally friendly since these 

systems do not release harmful pollutants into the environment. Hydrogen fuel cells have 

been studied extensively over the years in order to enhance power output, reduce costs, and 

extend the service life of these systems to suit a wide variety of applications. 

Nowadays, there is growing interest in proton exchange membrane fuel cells 

(PEMFCs), which is a special type of hydrogen fuel cell, because of their high power 

density (3.8–6.5 kW/m3) and these systems can be operated at low temperatures (50 °C – 

100 °C) (Balasubramanian et al., 1999;  Shah, 2007;  Kunusch et al., 2012). In addition, 

PEMFCs are operated based on electrochemical reaction between hydrogen (H2) and 

oxygen (O2), which are both renewable and sustainable sources. It is anticipated that 


