

Faculty of Electronic and Computer Engineering

NEW POWER CONVERTER TOPOLOGY FOR LOW POWER ROTARY CAPACITIVE POWER TRANSFER SYSTEM

Yusmarnita binti Yusop

Doctor of Philosophy

2018

NEW POWER CONVERTER TOPOLOGY FOR LOW POWER ROTARY CAPACITIVE POWER TRANSFER SYSTEM

YUSMARNITA BINTI YUSOP

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Faculty of Electronic and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

DECLARATION

I declare that this thesis entitled "New Power Converter Topology for Low Power Rotary

Capacitive Power Transfer System" is the result of my own research except as cited in the

references. The thesis has not been accepted for any degree and is not concurrently

submitted in candidature of any other degree.

Signature :

Name : Yusmarnita Binti Yusop

Date : 23 October 2018

APPROVAL

I hereby	declare	that	I have	read	this	thesis	and	in	my	opinion	this	thesis	is	sufficient	ir
terms of	scope ar	nd qua	ality fo	r the	awaı	rd of D	octo	r o	f Ph	ilosophy					

Signature :

Supervisor Name : Assoc. Prof. Dr. Mohd Shakir Bin Md. Saat

Date : 23 October 2018

DEDICATION

To my loving parents, Yusop Saat and Mariah Othman, my husband, Major Aziezi Ishak (Rtd), my son, Muhammad Farhan Aziezi, and my daughters, Anis Farhana Aziezi, Dhiya Alisha Aziezi and Alisha Safiya Aziezi

&

In memory of Abdul Hamid Hamidon, your kindness and advice should never be forgotten

ABSTRACT

Since the past decade, many researchers have taken interest to investigate the capacitive power transfer (CPT) as an alternative to achieve contactless power transfer. By employing the electric field as the energy transfer medium, CPT has the advantages of the confined electric field between coupling plates, power transfer capability through metal barriers, low eddy current power losses associated with metal surroundings, as well as the potential to minimise circuit size and cost. This thesis mainly concentrates on the development of a fundamental theory of CPT system and its application for low power contactless charging. Initially, the thesis begins by analysing the Class-E resonant inverter performance to generate high frequency AC power source to drive the CPT system. Due to the sensitivity of components variation, the investigation of Class-E resonant inverter with feedback frequency controller unit is proposed to enhance the efficiency of CPT system by preserving the zero voltage switching (ZVS) condition over a longer distance. Second, the utilization of compensation network to serve as an impedance converter in order to enable efficient power transfer between two stages with non-matching impedances had been investigated. Here, mathematical analysis of the sensitivity of the system output power in respect to the load variation was introduced. Third, a Class-E combined with LCCL compensation network topology for both transmitter and receiver is proposed to provide impedance matching and hence, keeping the ZVS condition for wider load-range changes. Next, based on the proposed Class-E LCCL topology, a single plate rotary CPT system was developed to realize power transfer to the rotating load. Finally, in enhancing the capacitive coupler embedded in the rotary CPT system, the rotating capacitive coupler was upgraded with multiple plate structure approach to generate a small and compact capacitive coupler plate without the need of increasing electric field emission. This was controlled by a novel power flow control topology called cascaded Boost-Class-E. With the application of these proposed control methods, the output power of rotary CPT system could be adjusted. Overall, this thesis presents a fundamental study on CPT technology carried out by employing mathematical analysis, computer simulations, and practical experiments for validation purpose. A 10W prototype was constructed to verify the proposed circuit. The best experiment prototype of this work has demonstrated more than 90% efficiency at 2 mm working distance, which can be considered as an exceptional performance, when compared to the existing low power scale CPT system achievements. In conclusion, the research outcomes portray the feasibility and the potential of CPT as an emerging contactless power transfer solution, as well as the theory and the practical design methods that establish a solid foundation for future CPT research and development.

i

ABSTRAK

Sejak sedekad yang lalu, ramai penyelidik telah mengambil perhatian untuk mengkaji pemindahan kuasa kapasitif (CPT) sebagai alternatif untuk mencapai pemindahan kuasa tanpa sentuh. Dengan menggunakan medan elektrik sebagai medium pemindahan tenaga, CPT mempunyai kelebihan medan elektrik terkurung antara plat gandingan, keupayaan pemindahan kuasa melalui halangan logam, kehilangan kuasa arus pusar yang rendah apabila berkaitan dengan persekitaran logam, serta potensi untuk meminimumkan saiz litar dan kos. Tesis ini memberi tumpuan utama kepada perkembangan teori asas sistem CPT dan aplikasinya untuk pengecasan tanpa wayar berkuasa rendah. Pada peringkat awal, tesis ini dimulakan dengan menganalisis prestasi penyongsang resonans Class-E bagi menghasilkan sumber kuasa AC berfrekuensi tinggi untuk memacu sistem CPT. Disebabkan sensitiviti variasi komponen, penyiasatan keatas penyongsang resonans Kelas-E bersama unit suap balik pengawal frekuensi dicadangkan bagi meningkatkan kecekapan sistem CPT dengan memelihara keadaan penukaran voltan sifar (ZVS) pada jarak jauh. Kedua, penggunaan rangkaian impedans untuk berfungsi sebagai penukaran impedans bagi membolehkan pemindahan kuasa yang efisien antara dua peringkat yang impedansnya tidak sepadan telah disiasat. Di sini, analisis matematik berkaitan dengan kepekaan kuasa keluaran sistem terhadap perubahan beban diperkenalkan. Ketiga, gabungan Kelas-E dengan topologi rangkaian kompensasi LCCL untuk kedua-dua bahagian pemancar dan penerima dicadangkan bagi menyediakan padanan impedans dan oleh itu, keadaan ZVS untuk julat perubahan beban yang lebih luas dapat dikekalkan. Seterusnya, berdasarkan topologi Class-E LCCL yang dicadangkan, satu sistem CPT berputar plat tunggal telah dibangunkan untuk merealisasikan pemindahan kuasa kepada beban yang berputar. Akhir sekali, dalam meningkatkan plat gandingan kapasitif yang terdapat dalam sistem CPT berputar, pengganding kapasitif berputar ditambahbaik dengan menggunakan pendekatan struktur plat berganda bagi menghasilkan plat gandingan kapasitif yang kecil dan padat tanpa perlu meningkatkan pengeluaran medan elektrik. Ianya dikawal oleh topologi kawalan aliran kuasa baru yang dipanggil Cascaded Boost-Class E. Dengan penggunaan kaedah kawalan yang kuasa keluaran sistem CPT berputar boleh dicadangkan ini, Keseluruhannya, tesis ini membentangkan satu kajian asas mengenai teknologi CPT yang dijalankan dengan menggunakan analisis matematik, simulasi komputer, dan eksperimen praktikal untuk tujuan pengesahan. Prototaip 10W telah dibina untuk mengesahkan litar yang dicadangkan. Prototaip eksperimen terbaik dalam kajian ini telah menunjukkan kecekapan 90% pada jarak 2mm, yang boleh dianggap sebagai sangat baik prestasinya, berbanding dengan pencapaian sistem CPT skala kuasa rendah sedia ada. Sebagai kesimpulan, hasil penyelidikan menggambarkan kemungkinan dan potensi CPT sebagai penyelesaian kepada pemindahan kuasa tanpa wayar, serta teori dan kaedah reka bentuk praktikal yang menubuhkan asas kukuh untuk penyelidikan dan pembangunan CPT masa hadapan.

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful. All praises and thanks to Allah, as all the hard work and other helps have been prized by completing this thesis.

First and foremost, I wish to thank my supervisor Associate Professor Dr. Mohd Shakir bin Md. Saat for his kindly help, particularly for his great help in reading my draft writing, my conference/journal paper writing and his advice for my research. His deep insights and positive manner have always been helpful and encouraging.

Secondly, I would like to thank my second supervisor Dr. Zamre bin Abdul Ghani who has involved in this research and providing me so many valuable advices in the field of power electronics. I would also like to thank Professor Sing Kiong Nguang from the University of Auckland for introducing me into the field of CPT and giving me valuable guidance throughout the course of my Ph.D study.

In addition, my appreciation should be given to my colleagues and technicians in the laboratory, especially Siti Huzaimah binti Husin, Hafizah binti Adnan, Mohamad Effendy bin Abidin, Imran bin Mohamed Ali and others for their kind help and supports me directly or indirectly in completing this research. Besides, I would like to thank Faculty of Electronic and Computer Engineering (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM) and Ministry of Education (MOE) for providing me equipment facilities and financial support. Their support is gratefully acknowledged.

My deepest appreciation to my lovely father, Yusop bin Saat and my lovely mother, Mariah binti Othman for their 'dua', love motivation, support and encouragement. I pray to Allah to place all of you into 'Jannah'. Not to forget to my siblings. Thank you very much for everything.

Finally, I would like to express my special thanks and appreciation to my lovely husband, Major Aziezi Ishak (Rtd) for your love, understanding, support, motivation and sacrifice. Thank you very much for always being at my side and always motivating me in my study. When I am experiencing hard time in my Ph.D journey, you are always there to advise me and support me to stand up and face the challenge. Alhamdulillah, finally it has almost come to an end. Thank you for your understanding of my study life. I love you so much. I hope that Allah will bring us together to His paradise. To our charming son, Muhammad Farhan, and our adorable princess, Anis Farhana, Dhiya Alisha and Alisha Safiya, I love them very much. They are my joy and tears. They are everything for me.

Thank you once again to everyone.

TABLE OF CONTENTS

DE	CLAR	ATION	PAGE
AP	PROV	AL	
DE	EDICAT	ΓΙΟΝ	
	STRAC		i
	BSTRAI		ii
		VLEDGEMENTS	iii
		OF CONTENTS	iv
		TABLES	vii
		FIGURES	viii
		APPENDICES	xiii
		ABBREVIATIONS	xiv
LIS	ST OF	PUBLICATIONS	xvi
	APTER		1
1.		RODUCTION Introduction	1
	1.1	Introduction	1
	1.2 1.3		2 3
			5
	1.4	Objectives Research Score	
	1.5 1.6	Research Scope Organisation of the Thesis	6 7
2.	I ITI	ERATURE REVIEW	10
۷.	2.1		10
	2.2	Wireless Power Transfer Technology	10
	2.3	Capacitive Power Transfer Technologies	17
	2.5	2.3.1 Capacitive Coupling Plates	18
		2.3.1.1 Coupling Structure	20
		2.3.1.2 Capacitance of Coupling Plate	22
		2.3.1.3 Dielectric Material	24
	2.4	Power Converter for CPT	27
		2.4.1 Switching Mode Regulator	27
		2.4.2 Resonant Inverter	28
		2.4.2.1 Voltage Fed Inverter	29
		2.4.2.2 Current Fed Inverter	31
		2.4.2.3 Class-E Power Amplifier	33
		2.4.3 Secondary Power Management	36
	2.5	Compensation Circuit	38
	2.6	Applications of the CPT Systems	41
		2.6.1 Biomedical Applications	42
		2.6.2 Household Apparatus	43
		2.6.3 Electric Vehicles	44
		2.6.4 Rotating Application	45
	2.7	Present CPT Design Issues	47

2.8	Summary
/ A	Summary

_	-
^	ч

	E DESIGN OF CAPACITIVE POWER TRANSFER USING CLASS-E	53
	SONANT INVERTER	52
3.1	Introduction Class E Research Inverter Analysis and Design	53
3.2	Class-E Resonant Inverter Analysis and Design	55 55
	3.2.1 Analysis of Class-E Resonant Inverter	
	3.2.2 Maximum Current and Voltage	59
	3.2.3 Input Impedance of the Resonant Circuit	60
	3.2.4 Output Power and Component Equations	62
	3.2.5 Design and Discussion	64
	3.2.5.1 Analysis of Class-E Resonant Inverter for Optimum	<i>(</i> 7
	Operation	67
	3.2.5.2 Analysis of Class-E Resonant Inverter with Load	<i>(</i> 0
	Variation	69
	3.2.5.3 Analysis of Class-E Resonant Inverter with Duty	70
2.2	Cycle Variation at 1MHz	72
3.3	Capacitive Power Transfer Using Class-E Resonant Inverter Circuit	72
	3.3.1 Circuit Design and Implementation	72
	3.3.2 Analysis of Capacitive Power Transfer	74
3.4	Capacitive Power Transfer System with Feedback Controller Unit	76
3.5	Summary	80
	PACITIVE POWER TRANSFER WITH IMPEDANCE MATCHING CUIT	82
4.1	Introduction	82
4.2	Impedance Matching for Class-E Resonant Inverter	84
	4.2.1 Class-E with π 1a Impedance Matching	85
	4.2.1.1 Power Output Mathematical Analysis for π 1a	88
	4.2.2 Class-E with π 1b Impedance Matching	91
	4.2.2.1 Power Output Mathematical Analysis for π 1b	95
4.3	Simulation Analysis	98
т.5	4.3.1 Performance Comparison	99
4.4	Experimental of Modified Class-E π 1b for CPT System	104
4.4	4.4.1 Performance Analysis	108
4.5	Summary	112
CIN	GLE PLATE ROTATING CAPACITIVE POWER TRANSFER	114
5.1	Introduction	114
5.2	Modelling of Rotary CPT System	116
3.4	5.2.1 Class-E LCCL Working Principle	116
	5.2.2 Circuit Design Equations	
5 2	<u> </u>	118
5.3	Simulation Studies of Modelling Rotary CPT System	122
	5.3.1 Comparison Between Class-E π 1b and Class-E LCCL CPT	107
	Systems	125
	5.3.1.1 Zero Voltage Switching	125
<i>-</i> .	5.3.1.2 Input Power, Output Power and Efficiency Analysis	127
5.4	Experimental Work of Single Plate Rotary CPT System	131
	5.4.1 System Prototype Development	131

		5.4.2 Rotary Coupler Design	133
		5.4.3 Experimental Results	135
	5.5	Summary	137
6.	ROT	CARY CAPACITIVE POWER TRANSFER SYSTEM WITH	139
	MUI	LTIPLE CAPACITIVE COUPLER APPROACH	
	6.1	Introduction	139
	6.2	Multiple Coupling Plate Structure	141
	6.3	Multiple Plates Rotary CPT System Design	147
	6.4	Optimisation of Output Power for Multiple Rotary CPT System with	
		Boost Converter	150
		6.4.1 Continuous Current Mode (CCM) Boost Converter Topology	151
		6.4.2 Boost Converter Implementation	153
		6.4.3 Boost Converter Simulation and Experimental Results	155
	6.5	A Cascaded Boost-Class-E Rotary CPT System Development	158
	6.6	Summary	161
7.	CON	ICLUSION AND FUTURE RESEARCH	163
	7.1	Conclusion	163
	7.2	Contributions of the Work	165
	7.3	Future Works	167
REF	EREN	CES	170
APP	ENDIC	ES	189

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Relative permittivity for different materials	25
2.2	Comparison of past research for low power CPT system	47
3.1	Values of Class-E resonant inverter components	65
3.2	Class-E resonant inverter results	69
3.3	Results of Class-E resonant inverter at varied loads	71
3.4	The CPT system with FCU output parameters	80
4.1	Design specifications and performance comparison at $R_L = 50\Omega$	100
4.2	System performance parameters	107
5.1	System specifications and circuit parameters	124
5.2	Performance comparison at $R_L = 50\Omega$	124
5.3	System specifications and circuit parameters	132
6.1	Design parameters	154
6.2	Duty cycle analysis	155

vii

LIST OF FIGURES

FIGURE	TITLE	PAGI
1.1	WPT applications	2
2.1	Tesla experimental station (a) Artificial lightning through high frequency	11
	electrostatic field experiment at Tesla's Laboratory (b) Wardenclyffe	
	Tower	
2.2	Typical structure of a wireless power transfer system	12
2.3	A typical structure of AET	13
2.4	Optical coupling power transfer principle	14
2.5	Structure of the IPT system	15
2.6	CPT system structure (a) Unipolar structure (b) Bipolar structure	17
2.7	CPT block diagram	18
2.8	The simplified CPT system	19
2.9	Coupling structures	21
2.10	Capacitive coupler model (a) Normal model (b) Generalized model	21
2.11	Parallel plate capacitor	23
2.12	An equivalent model of the coupling plate	24
2.13	CPT system based on buck-boost converter	28
2.14	VFI (a) Half-bridge (b) Full-bridge	30
2.15	CPT system using half-bridge VFI topology	31
2.16	CPT system using full-bridge VFI topology	31

2.17	CPT system using CFI topology	32
2.18	Class-E resonant inverter circuit	34
2.19	Switching waveform at $D = 05$	34
2.20	Full-bridge rectifier	37
2.21	Compensation circuit topologies in the IPT System (a) SS (b) SP (c) PS	39
	(d) PP	
2.22	Series L compensation	40
2.23	LCL compensation	41
2.24	IPT technology for artificial heart	42
2.25	Examples of wireless technology appliances	44
2.26	EV charging	45
2.27	Rotating CPT	47
3.1	Research flowchart for CPT system based on Class-E	54
3.2	Equivalent circuit of a basic Class-E	55
3.3	Equivalent circuit of series-resonant circuit above resonance at the	60
	operating frequency	
3.4	Class-E resonant inverter with MOSFET driver circuit	66
3.5	Class-E resonant inverter experimental setup	66
3.6	Input, switching voltage and output voltage waveforms for the first	68
	design at 1MHz frequency	
3.7	Simulation and experimental waveforms of capacitor and switching	70
	voltage	
3.8	Plot of output power capability when varied duty cycles	72
3.9	CPT system based on Class-E	73
3.10	Proposed CPT system experimental set-up	74

3.11	Experimental waveforms of receiver plate voltage, V_{RL} and switch	15
	voltage, V_{DS} at different coupling plate distances	
3.12	Capacitance vs distance	76
3.13	The proposed CPT system with FCU block diagram	77
3.14	Experimental waveforms of switching voltage at difference coupling gap	79
	distance	
3.15	Efficiency vs coupling gap distance with and without FCU	80
4.1	Research flowchart for CPT system with impedance matching	83
4.2	Class-E with impedance matching (a) Class-E with impedance matching	84
	block diagram (b) π matching network	
4.3	Analysis of Class-E with $\pi 1a$ matching equivalent circuit (a) Class-E	86
	with π 1a matching network (b) Equivalent circuit of the matching circuit	
	$\pi 1a$	
4.4	Class-E with $\pi 1b$ matching circuit	92
4.5	Analysis of Class-E with $\pi 1b$ matching equivalent circuit (a) Matching	92
	resonant circuit $\pi 1b$, (b) Series impedance R_L - C_3 converted to parallel	
	impedance R_p - C_p , (c) Parallel impedance R_p - C_p converted to series	
	impedance R_s - C_s	
4.6	CPT system based on Class-E with impedance matching simulation	99
	circuit (a) Class-E with $\pi 1a$ (b) Class-E with $\pi 1b$	
4.7	π 1a matching network simulation results	101
4.8	π 1b matching network simulation results	101
4.9	Load and frequency variations analysis	102
4.10	Block diagram of the proposed CPT system	104

4.11	Circuit simulation using MATLAB software	106
4.12	Experimental setup	107
4.13	Zero voltage switching waveforms	108
4.14	Waveforms of output current and voltage	109
4.15	Output power and efficiency analysis	111
4.16	Performance analysis when $R_L = X_{C3}$	113
5.1	Research flowchart of single plate rotary CPT system	115
5.2	Class-E LCCL circuit	117
5.3	Design topology of the proposed Class-E LCCL rotary CPT system	117
5.4	MATLAB simulation modelling of rotary CPT system	123
5.5	ZVS conditions waveforms	126
5.6	Output voltage analysis	127
5.7	Input and output power waveforms at $R_L = 50\Omega$	128
5.8	Input and output power waveforms at $R_L = 500\Omega$	128
5.9	Input and output power waveforms at $R_L = 1000\Omega$	129
5.10	Output power and efficiency analysis	130
5.11	The design of 10 W rotary CPT system	132
5.12	Rotary CPT system design	134
5.13	Experimental results	136
5.14	CPT based on Class-E LCCL efficiency vs load resistor	137
6.1	Research flowchart of multiple rotary CPT system	140
6.2	Multiple coupling plate equivalent circuit	142
6.3	Multiple coupling plate structure	144
6.4	Multiple rotary coupling design framework	144
6.5	Capacitance measurement setup	145
6.6	Multiple plates coupling capacitance measured value	146

6.7	The multiple rotary CPT system simulation circuit	147
6.8	Multiple rotary CPT system simulation results	148
6.9	The experimental setup of the multiple rotary CPT system	148
6.10	Multiple rotary CPT system experimental results	150
6.11	Block diagram of cascaded Boost-Class-E CPT system	151
6.12	Boost converter circuit topology	152
6.13	Boost hardware circuit	154
6.14	Simulation results of boost converter	156
6.15	Experimental results of boost converter	157
6.16	Experimental setup of cascaded Boost-Class-E rotary CPT	158
6.17	Experimental results of cascaded Boost-Class-E rotary CPT	159
6.18	Fixed load analysis	160
6 19	Fixed duty cycle analysis	161

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Summary of CPT research	189
В	Detail calculation for circuit components	191

LIST OF ABBREVIATIONS

AC - Alternating Current

AET - Acoustic Energy Transfer

BJT - Bipolar Junction Transistor

CCM - Continuous Current Mode

CFI - Current Fed Inverter

CPT - Capacitive Power Transfer

DC - Direct Current

ESL - Equivalent Series Inductance

ESR - Equivalent Series Resistance

EV - Electric Vehicle

FCU - Frequency Controller Unit

FEA - Finite Element Analysis

IEEE - Institute of Electrical and Electronics Engineers

IGBT - Insulated Gate Bipolar Transistor

IPT - Inductive Power Transfer

KCL - Kirchhoff Current Law

MOSFET - Metal Oxide Semiconductor Field Effect Transistor

PCB - Printed Circuit Board

PI - Proportional Integral

PIC - Programmable Intelligent Computer

xiv

PM - Permanent Magnet

PWM - Pulse Width Modulation

PP - Parallel-Parallel

PS - Parallel-Series

PV - Photovoltaic

PZT - Lead Zirconate Titanate

RF - Radio Frequency

SAR - Specific Absorption Rate

SP - Series-Parallel

SS - Series-Series

VCO - Voltage Control Oscillator

VFI - Voltage Fed Inverter

WFSM - Wound Field Synchronous Machine

WIFI - Wireless Fidelity

WPT - Wireless Power Transfer

ZVS - Zero Voltage Switching

LIST OF PUBLICATIONS

List of Journals:

- Yusop, Y., Saat, S., Ghani, Z., Husin, H. and Nguang, S.K., A Cascaded Boost-Class-E for Rotary Capacitive Power Transfer System. *IET – The Journal of Engineering*. (Has been accepted – August 2018)
- Yusop, Y., Md. Saat, M.S., Husin, S.H., Kiong Nguang, S. and Hindustan, I.,
 2017. Performance assessment of class-E inverter for capacitive power transfer system. COMPEL-The international journal for computation and mathematics in electrical and electronic engineering, 36(4), pp.1237-1256.
- 3. Saat, S., Yusop, Y., Ghani, Z., Husin, H. and Rahman, F.K.A., 2017. A Modified Class-Eπ1b for Capacitive Power Transfer System. *Journal of Telecommunication, Electronic and Computer Engineering (JTEC)*, 9(2-13), pp.87-92.
- Yusop, Y., Saat, M.S.M., Husin, S.H., Nguang, S.K. and Hindustan, I., 2016.
 Design and Analysis of 1MHz Class-E Power Amplifier for Load and Duty Cycle
 Variations. *International Journal of Power Electronics and Drive Systems* (IJPEDS), 7(2), pp.358-368.

- 5. Yusop, Y., Saat, S., Nguang, S.K., Husin, H. and Ghani, Z., 2016. Design of capacitive power transfer using a class-E resonant inverter. *Journal of Power Electronics*, 16(5), pp.1678-1688.
- 6. Yusop, Y., Shakir Saat, H.H., Hindustan, I., Rahman, F.A., Kamarudin, K.H. and Nguang, S.K., 2016. A Study of Capacitive Power Transfer Using Class-E Resonant Inverter. *Asian Journal of Scientific Research*, *9*, pp.258-265.
- Yusmarnita, Y., Saat, S., Hamidon, A.H., Husin, H., Jamal, N. and Hindustan, I.,
 2015. Design and Analysis of 1MHz Class-E Power Amplifier 2 Circuit
 Description. WSEAS Trans. Circuits Syst, 14, pp.373-379.

List of Conferences:

- Yusop, Y., Saat, S., Ghani, Z., Husin, H. and Nguang, S.K., 2018, April. A
 Cascaded Boost-Class-E for Rotary Capacitive Power Transfer System. In , Power
 Electronics, Machines and Drives (PEMD), IET International Conference. (Has
 been presented 17 April 2018)
- 2. Yusop, Y., Husin, H., Saat, S., Nguang, S.K. and Ghani, Z., 2016, November. Class-E LCCL for capacitive power transfer system. In *Power and Energy* (PECon), 2016 IEEE International Conference on (pp. 428-433). IEEE.
- 3. Yusop, Y., Saat, S., Husin, H., Nguang, S.K. and Hindustan, I., 2016. Analysis of Class-E LC Capacitive Power Transfer System. *Energy Procedia*, 100, pp.287-290.

xvii

- 4. Yusop, Y., Saat, S., Ghani, Z., Husin, H. and Nguang, S.K., 2016, March. Capacitive power transfer with impedance matching network. In *Signal Processing & Its Applications (CSPA)*, 2016 IEEE 12th International Colloquium on (pp. 124-129). IEEE.
- 5. Yusop, Y., Shakir Saat, H.H., Hindustan, I., Rahman, F.A., Kamarudin, K.H. and Nguang, S.K., 2016. A Study of Capacitive Power Transfer Using Class-E Resonant Inverter. In *International Conference on Engineering Technologies and Entrepreneurship 2015 (ICETE)*.

CHAPTER 1

INTRODUCTION

1.1 Introduction

Cables and wires used to be the preferred choice during conventional times to connect a source to a load. This appears to be a simple and efficient method to transfer electrical energy and also suitable for most applications found to date since the loads are motionless. Nevertheless, with advancement of technology, products have taken smaller and portable shapes. Hence, relying on a cable connected to a power outlet to obtain energy may not be a practical solution any more. A direct cable connection limits one's freedom of movement and in some cases, may not be a safe option. For example, due to the increase in oil prices and to environmental concerns, electrical vehicles have a key impact for future research and development. These vehicles are installed with an on-board battery that provides power partially or entirely for the entire trip duration. Although a direct cable connection to a power outlet suits to a certain degree to provide power and recharge the batteries, more options would be made available if power is supplied without any cable and contact. As such, an electric vehicle can be charged 'on-the-go' while in motion. The risk of electric shock and sparks is highly reduced as no physical contact exists between the vehicle and the power supply. Furthermore, regular maintenance, such as changing the battery electrolytes and cleaning the contact parts can be minimised. Other instances of applications that demonstrate the need of contactless energy transfer to ease and to facilitate everyday life are illustrated in Figure 1.1.

Contactless energy transfer can be achieved through Wireless Power Transfer

1