

Faculty of Electronic and Computer Engineering

OPTIMIZED FAST FOURIER TRANSFORM ARCHITECTURE USING INSTRUCTION SET ARCHITECTURE EXTENSION IN LOW-END DIGITAL SIGNAL CONTROLLER

Sani Irwan bin Md Salim

Doctor of Philosophy

2018

C Universiti Teknikal Malaysia Melaka

OPTIMIZED FAST FOURIER TRANSFORM ARCHITECTURE USING INSTRUCTION SET ARCHITECTURE EXTENSION IN LOW-END DIGITAL SIGNAL CONTROLLER

SANI IRWAN BIN MD SALIM

A thesis submitted in fulfilment of the requirements of the degree of Doctor of Philosophy

Faculty of Electronic and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "Optimized Fast Fourier Transform Architecture Using Instruction Set Architecture Extension In Low-End Digital Signal Controller" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:
Name	: Sani Irwan B. Md Salim
Date	:

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in term of scope and quality for the award of Doctor of Philosophy.

Signature	:
Supervisor Name	: Assoc. Prof. Dr. Soo Yew Guan
Date	:

DEDICATION

To my beloved mother, father and my family

Sharatul Izah Shahirah Ilyana Shafiqah Irdina

Shahir Irsyad

C Universiti Teknikal Malaysia Melaka

ABSTRACT

Smart microgrids have emerged as a viable solution in case of emergency situations occurred at the main electricity grid. The main concern of a smart microgrid is the degradation of the power quality caused by harmonic distortion originated from the nonlinear equipment. With the rapid development of power electronic technology, the increased of harmonic-producing loads in the smart microgrids necessitating a new digital signal controller architecture for the harmonic measurement system. While the current system configurations are directed towards the 32-bit architecture, it shows higher requirements in area footprint and multi-core setup. This thesis presents the design of a low-end digital signal controller architecture using instruction set architecture (ISA) extension for the implementation of the harmonic measurement system in a smart microgrid. A new architecture, called UTeMRISC, is developed from the baseline 8-bit microcontroller with the capability to perform signal processing applications such as Fast Fourier Transform (FFT). The architecture is improved using the Application-Specific Instruction Set Processor (ASIP) approach by extending the instruction set architecture to 16-bit length. Instruction set customization is implemented to enable the execution of computationally intensive tasks. The entire architecture is described in Verilog Hardware Description Language (HDL) and implemented on the Virtex-6 FPGA board. From the test programs, UTeMRISC has demonstrated faster execution times and higher maximum operating frequency while not significantly increased the core's resource utilization. Compared to the initial processor architecture, the support of extended ISA has increased the UTeMRISC core by 21.8% but at the same time allows to execute Fast Fourier Transform algorithm up to 5× faster. The combine effort of ISA extension and optimized instruction set generation results in up to 1 Mega sample per second, which translated to 66.8% increase of data throughput in the FFT algorithm when compared to a 32-bit architecture. This research proves that with comprehensive ASIP methodology and ISA extension, a low-end digital signal controller architecture is feasible and effective to be implemented in a harmonic measurement system for a smart microgrid.

ABSTRAK

Mikrogrid pintar telah menjadi penyelesaian yang berdaya maju andai berlaku kecemasan pada grid elektrik utama. Antara isu utama pada mikrogrid pintar adalah pengurangan kualiti kuasa disebabkan herotan harmonik yang bermula daripada peralatan tidak linear. Dengan perkembangan pesat teknologi elektronik kuasa, peningkatan beban yang menjana harmonik memerlukan satu senibina pengawal isyarat digital yang baharu untuk sistem pengukuran harmonik. Walaupun konfigurasi sistem semasa beralih kepada senibina 32bit, sistem ini memerlukan ruang yang besar dan persiapan berbilang-teras. Tesis ini membentangkan rekabentuk pengawal isyarat digital bawahan menggunakan perluasan senibina set arahan (ISA) bagi perlaksanaan sistem pengukuran harmonik dalam mikrogrid pintar. Senibina baharu ini, dipanggil UTeMRISC, dibangunkan daripada dasar mikropengawal 8-bit dengan kemampuan untuk melaksanakan aplikasi pemprosesan isyarat seperti Jelmaan Fourier Cepat (FFT). Senibina ini ditambahbaik dengan menggunakan Pemproses Set Arahan Spesifik-Aplikasi (ASIP) dan meluaskan senibina set arahan kepada 16-bit. Penyesuaian set arahan dilaksanakan untuk membolehkan pelakuan tugas-tugas pengiraan yang intensif. Keseluruhan senibina dibangunkan dalam bahasa perihalan perkakasan (HDL) Verilog dan dilaksanakan pada papan FPGA Virtex-6. Berdasarkan program-program ujian, UTeMRISC menunjukkan masa pelakuan yang lebih pantas dan frekuensi operasi yang lebih tinggi di samping tidak menaikkan penggunaan sumber dengan nyata. Berbanding dengan senibina pemproses permulaan, sokongan perluasan ISA telah meningkatkan teras UTeMRISC sebanyak 21.8% tetapi pada masa yang sama perlaksanaan algoritma FFT adalah 5× lebih pantas. Gabungan perluasan ISA dan penjanaan set arahan yang optimum menghasilkan daya pemprosesan data sehingga 1 juta sampel per saat, bersamaan dengan kenaikan 66.8% daya pemprosesan data dalam algoritma FFT apabila dibandingkan dengan senibina 32-bit. Kajian ini membuktikan bahawa dengan kaedah ASIP yang komprehensif dan perluasan ISA, senibina pengawal isvarat digital bawahan adalah senibina tersaur dan efektif untuk dilaksanakan dalam sistem pengukuran harmonik bagi mikrogrid pintar.

ACKNOWLEDGEMENTS

First and foremost, I would like to take this opportunity to express my sincere acknowledgement to my supervisor Associate Professor Dr. Soo Yew Guan from the Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM) for his essential supervision, support and encouragement towards the completion of this thesis.

I would also like to express my greatest gratitude to Dr. Ahmad Jamal bin Salim, cosupervisor of this research for his advice and suggestions in soft-core processor configuration and assembler design techniques. Special thanks to UTeM short-term grant funding and the Ministry of Education of Malaysia for the financial support throughout this project.

Special thanks to all my colleagues, my beloved mother, father and families for their moral support in completing this research. Lastly, thank you to everyone who had been associated with the crucial parts of the realization of this research.

TABLE OF CONTENTS

	11101
DECLARATION	
APPROVAL	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xii
LIST OF PUBLICATIONS	xiii

CHAPTER

1.	INT	RODUCTION	1
	1.1	Power Quality on Smart Microgrid System	1
		1.1.1 Power System Harmonic Measurement	3
	1.2	Simple FFT Algorithm for Microcontrollers	4
	1.3	Processor Architecture	5
	1.4	RISC Architecture	6
	1.5	ISA Extension	8
	1.6	Research Overview	9
	1.7	Research Question and Problem Statement	11
	1.8	Objectives	13
	1.9	Scopes	13
	1.10	Original Contribution Presented in This Thesis	14
	1.11	Thesis Organization	15
2.	LIT	ERATURE REVIEW	17
	2.1	Introduction	17
	2.2	Smart Microgrid System	18
	2.3	Harmonic Measurement Techniques	20
	2.4	Overview of Digital Signal Controller Design	23
		2.4.1 Microchip dsPIC	25
		2.4.2 NXP Semiconductor	27
		2.4.3 Texas Instruments	28
		2.4.4 Renesas Electronics	29
		2.4.5 Reconfigurable DSC Development	29
	2.5	Soft-core Processors	31
	2.6	Overview of Softcore Processors	33
		2.6.1 Manufacturers-backed Soft-core Processors	34
		2.6.2 Open-source Soft-core Processors	36
	2.7	Overview of 8-bit Soft-core Processors	37
		2.7.1 AX8	38
		2.7.2 AVR8	38
		2.7.3 LatticeMico8	39
		2.7.4 8051 IP Core	39

2.7.4 8051 IP Core

		2.7.5 Zilog Z8	40
		2.7.6 RISC8	41
		2.7.7 Review of 8-bit Soft-Core Processors	41
	2.8	Application-Specific Instruction Set Processor (ASIP)	43
		2.8.1 Overview ASIP Design Methodology	47
		2.8.2 Review of ASIP Design	53
	2.9	Overview of Instruction Set Architecture (ISA) Extension	53
	2.10	Instruction Set Extension	57
	2.11	Retargetable Assembler Design	59
	2.12	Summary	60
3.	DES	IGN METHODOLOGY	61
	3.1	Introduction	61
	3.2	Comprehensive Workflow for ASIP	61
		3.2.1 Application and Design Constraints	63
		3.2.2 Processor Architecture Exploration	64
		3.2.3 Instruction Set Generation	65
		3.2.4 Code Synthesis	67
		3.2.5 Hardware Synthesis	68
	3.3	Design of UTeMRISC Architecture	68
		3.3.1 Direct Addressable Memory	73
		3.3.2 Status register modification	74
		3.3.3 Stack Level Expansion	74
		3.3.4 FPGA Implementation	74
	3.4	Design of UTeMRISC's ISA Extension	76
		3.4.1 12-bit ISA	76
		3.4.2 12-bit ISA to 16-bit ISA	77
		3.4.3 UTeMRISC 16-bit ISA	78
	<u> </u>	3.4.4 Further Expansion: 12-bit ISA to 22-bit ISA	80
	3.5		81
		3.5.1 Customization Techniques	81
	2.6	3.5.2 Modified and New Instructions	82
	3.6	Design of Retargetable Assembler	84
		3.6.1 Two-pass Assembling Techniques	86
		3.6.2 One-pass Assembling Techniques	89
	27	3.6.2.1 Forward Referencing	89
	3.7	Test Programs	91 92
		3.7.1 Bubble Sort Algorithm	92 94
		3.7.2 Moving Average Filter3.7.3 Fast Fourier Transform (FFT)	94 96
		3.7.3.1 FFT program	100
		3.7.3.2 Hardware Accelerator for Multiply-Accumulate (MAC)	100
	3.8	Summary	101
4.	A DD	LICATION ANALYSIS	104
т.	4 .1	Introduction	104
	4.2	Workflow and Related Tools	104
	1.4	4.2.1 Virtex-6 FPGA Board	104
			100

REFERENCES 1		156	
	6.2	Future Work	154
6.	6.1	Conclusions	153 153
6	CO	NCLUSION	152
	5.6	Summary	152
		5.5.4 Maximum Allowable Frequency	150
		5.5.3 Data Throughput	147
		5.5.2 Execution Time	143
	5.5	5.5.1 Resource Utilization	144
	5.5	Overall Discussion	142
		5.4.1 Discussion	139 142
	5.4	Result of FFT Program 5.4.1 UTeMRISC Implementation	138
	5 /	5.3.2 Discussion Result of EET Program	136
		5.3.1 UTeMRISC Implementation	133
	5.3	Results of Moving Average Filter	133
	5 3	5.2.2 Discussion	130
		5.2.1 UTeMRISC Implementation	128
	5.2	e	127
	5.1		127
5.		SULT AND DISCUSSION	127
	4.7	-	126
	4.6	-	124
		4.5.5 Hardware Synthesis	121
		4.5.4 Code Synthesis	121
		4.5.3 Instruction Set Generation	120
		4.5.1 Application and Design Constraint4.5.2 Processor Architecture Exploration	120
	4.5	FFT 4.5.1 Application and Decign Constraint	120 120
	15	4.4.5 Hardware Synthesis	120
		4.4.4 Code Synthesis	118
		4.4.3 Instruction Set Generation	118
		4.4.2 Processor Architecture Exploration	118
		4.4.1 Application and Design Constraint	117
	4.4	Moving Average Filter	117
		4.3.5 Hardware Synthesis	117
		4.3.4 Code Synthesis	116
		4.3.3 Instruction Set Generation	115
		4.3.2 Processor Architecture Exploration	115
		4.3.1 Application and Design Constraint	114
	4.3	Bubble Sort Program	114
		4.2.2 Retargetable Assembler Validation	108

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Available Digital Signal Controllers in the Market	25
2.2	Comparison of the 8-bit Soft-Core Processors	41
2.3	Review of Processor Architecture with ISA Extension	56
3.1	Original Instruction Set based on the RISC8 Microcontroller	67
3.2	List of Specification of RISC8 and UTeMRISC	71
3.3	Device Utilization Summary for RISC8	75
3.4	Static Timing Analysis Report for RISC8	75
3.5	Instruction Set Opcode Re-alignment	79
3.6	Original versus Modified Instructions	82
3.7	New Instructions	83
4.1	Results of the Average Execution Times	113
4.2	New Instruction for Bubble Sort	116
4.3	New Instruction for Moving Average Program	118
4.4	New Instruction for FFT program	121
5.1	Device Utilization Summary for Bubble Sort Program in UTeMRISC	128
5.2	Propagation Delay for Bubble Sort Program in UTeMRISC	130
5.3	Post-PAR Report for Bubble Sort Program in UTeMRISC	130
5.4	Device Utilization Comparison for Bubble Sort Program	131

5.5	Device Utilization Summary for Moving Average Filter in UTeMRISC	134
5.6	Execution Times for Moving Average Filter in UTeMRISC	135
5.7	Post-PAR Report for Moving Average Filter in UTeMRISC	136
5.8	Device Utilization Comparison for Moving Average Filter	137
5.9	Device Utilization Summary for FFT Program in UTeMRISC	140
5.10	Execution Time for FFT Program in UTeMRISC	141
5.11	Post-PAR Report for FFT Program in UTeMRISC	142
5.12	Device Utilization Comparison for FFT Program	142
5.13	Architectural Complexity Between All Test Programs	144
5.14	Execution Times of FFT Program	149
5.15	Data Throughput Comparison Between All Architectures	150

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	K-chart of the Research Work	10
2.1	Smart Microgrid Infrastructure (Hare et al., 2016)	18
2.2	Categories of Processing Devices	23
2.3	The Evolution of Processor Application (Ienne and Leupers, 2006)	44
2.4	Flowchart of the ASIP Design Methodology (Jain et al., 2001)	48
2.5	LISAtek based Processor Architecture Design (Nicola et al., 2005)	49
2.6	Hardware/Software Co-design Workflow (Liu, 2008).	51
2.7	Retargetable Compiler Workflow (Jain et al., 2001)	52
3.1	ASIP Methodology Implementation in Xilinx ISE Environment	62
3.2	Block Diagram of RISC8 Architecture	69
3.3	Block Diagram for UTeMRISC	71
3.4	General Instruction Format for 12-bit ISA	76
3.5	General Instruction Format of 16-bit ISA	77
3.6	General Instruction Format for 22-bit ISA	80
3.7	Instruction Modification Flow	84
3.8	Block Diagram for Retargetable Assembler Development	86
3.9	Two-pass Assembling Techniques Flowchart (First Pass)	87
3.10	Two-pass Assembling Techniques Flowchart (Second Pass)	88

3.11	One-pass Assembling Techniques Flowchart	90
3.12	Flowchart of Bubble Sort Algorithm	93
3.13	Flowchart for the Moving Average Filter	96
3.14	Flowchart of the FFT Program	99
3.15	FFT Program Code Development	101
3.16	MAC Hardware Implementation	102
4.1	Flowchart for Design Implementation of ASIP Processor Architecture	107
4.2	Graphical User Interface of the Assembler	108
4.3	Processor Opcode File (left) and Assembly Program File (right)	109
4.4	Sample of the Listing File (left) and The COE File (right)	110
4.5	Error List File	111
4.6	COE file with Error (blank) Instruction Code	111
4.7	Simulation Result using the Generated COE File	112
4.8	The ISA Modification for the New swap Instruction	115
4.9	Machine Instruction Editing in CPUSim	116
4.10	ISA Modification for the New Barrel Shifter Instruction	118
4.11	Machine Instruction Edit for 'bsr' in CPUSim	119
4.12	Machine Instruction Edit for 'bsl' in CPUSim	119
4.13	ISA Modification for The New Multiply-Accumulate Instruction	121
4.14	Machine Instruction Edit for 'macwf' in CPUSim	122
4.15	Results of MAC Instruction Implementation	123
4.16	Results of MAC Instruction Implementation with Overflow Status Bit	123
5.1	ISim Simulation Waveform for Bubble Sort Program	129
5.2	Execution Time for Bubble Sort Program	132

5.3	Maximum Frequency for Bubble Sort Program	133
5.4	ISIM simulation for Moving Average Filter	135
5.5	Execution Time for Moving Average Filter	137
5.6	Maximum Operating Frequency for Moving Average Filter	138
5.7	Output waveform from ISim simulation for FFT Program	140
5.8	Execution Time for FFT Program	143
5.9	Maximum Frequency for FFT Program	144
5.10	Resource utilization Summary for All Test Programs	147
5.11	Execution Time for All Test Programs	148
5.12	Maximum Frequency for All Test Programs	151

LIST OF ABBREVIATIONS

- ALU Arithmetic Logic Unit
- ASIC Application Specific Integrated Circuit
- ASIP Application Specific Instruction Set Computer
- DSC Digital Signal Controller
- DSP Digital Signal Processing
- FPGA Field Programmable Gate Array
- HDL Hardware Description Language
- LUT Look-up Table
- MAC Multiply-Accumulate
- PC Program Counter
- RISC Reduced Instruction Set Computer

LIST OF PUBLICATIONS

The research papers published during the course of this research are as follows: -

- Salim, S. I. M., Soo, Y. & Samsudin, S. I., 2018. Instruction Set Extension of a Low-End Reconfigurable Microcontroller in Bit-Sorting Implementation. *International Journal of Electrical and Computer Engineering (IJECE)*, 8, pp. 2595-2601.
- Salim, S. I. M., Soo, Y. & Samsudin, S. I. 2018. Application Specific Instruction Set Processor (ASIP) Design in an 8-bit Softcore Microcontroller. *Journal of Telecommunication, Electronic and Computer Engineering (JTEC)*, 10, pp. 57-61.
- Salim, S. I. M., Sulaiman, H. A., Zainudin, M. N. S., Jamaluddin, R. & Salahuddin, L. One-pass assembler design for a low-end reconfigurable RISC processor. *International Symposium on Technology Management and Emerging Technologies* (ISTMET), 2014, pp. 492-496.
- Salim, S. I. M., Sulaiman, H. A., Jamaluddin, R., Salehuddin, L., Zainudin, M. N. S. & Yewguan, S. 2014. Assembler Design Techniques for A Reconfigurable Soft-Core Processor. *Journal of Theoretical and Applied Information Technology*, 64, pp. 461-469.
- Salim, S. I. M., Sulaiman, H. A., Jamaluddin, R., Salahuddin, L., Zainudin, M. N. S. & Salim, A. J., 2013. Two-pass assembler design for a reconfigurable RISC processor. *IEEE Conference on Open Systems (ICOS)*, pp. 77-82.

C) Universiti Teknikal Malaysia Melaka

- Salim, A. J., Samsudin, N. R., Salim, S. I. M., and Yewguan, S., 2013. Modification of Instruction Set Architecture in a UTeMRISCII Processor. *International Journal of Computer Trends and Technology (IJCTT)*, 4, pp. 1196-1201.
- Salim, A. J., Samsudin, N. R., Salim, S. I. M. & Yewguan, S., 2013. Modification of Instruction Set Architecture in a UTeMRISCII Processor. *International Journal* of Computer Trends and Technology (IJCTT), 4, pp. 1196-1201.
- Salim, A. J., Salim, S. I. M., Samsudin, N. R. & Soo, Y. 2013. Conversion of an 8bit to a 16-bit Soft-core RISC Processor. *International Journal of Electronics Communication and Computer Technology*, 3, pp. 393-397.
- Samsudin, N. R., Salim, S. I. M. & Salim, A. J., 2012. Designing UTeMRISCII Processor for Multiply-Accumulate Operation. *3rd International Conference on Engineering and ICT (ICEI2012)*, pp. 88-91.
- Salim, A. J., Samsudin, N. R., Salim, S. I. M. & Yewguan, S., 2012. Multiplyaccumulate instruction set extension in a soft-core RISC Processor. *10th IEEE International Conference on Semiconductor Electronics (ICSE)*, pp. 512-516.
- 11. Salim, A. J., Salim, S. I. M., Samsudin, N. R. & Soo, Y., 2012. Customized instruction set simulation for soft-core RISC processor. *IEEE Control and System Graduate Research Colloquium (ICSGRC)*, pp. 38-42.

CHAPTER 1

INTRODUCTION

1.1 Power Quality on Smart Microgrid System

In the power distribution field, microgrids are small-scale versions of the centralized electricity system. The main functions of microgrids are to generate, distribute and regulate the electricity to the end-users. Microgrids are defined as interconnected networks of distributed energy systems (loads and resources) that can function whether they are connected to or separate from the electricity grid (Farhangi, 2010). The flexibility in the implementation provides increase capacity, reliability and efficiency in the power distribution. In terms of deployment, microgrid is rapidly taking hold worldwide (Patel, 2018). Reportedly, there are 1,869 projects are currently operating, under development, or proposed across 123 countries in the fourth quarter of 2017. These projects representing a total capacity of 20.7 GW worldwide, and increase from 18GW recorded in the second quarter of 2016. The increase in power capacity indicated that the microgrid system is relevant and in demand for global deployment.

Microgrids have emerged as a powerful platform in power system community as a viable solution in case of emergency situations occurred at the main grid. Naturally, under critical or unforeseen circumstances where the main grid is unable to meet the demands because of catastrophes or uncertainties, a microgrid can be operated for reliable and continuous power supply. During normal operations, the microgrid enables load sharing with the main grid to offer efficient performance (Hare et al., 2016). The microgrids also

function as a complement to the existing electricity grid and coexist to provide more capabilities, functionalities and capacities.

Power quality has been instrumental in our understanding of improving the microgrid system. Power quality can be defined as a set of electrical boundaries allowing equipment to function in its intended manner with no significant loss of performance or life expectancy (Durdhavale and Ahire, 2016). In relation to the continuous demand for electricity, there is pressure on the utility to set up more generating plants and distribution capacity. Fundamentally, the power quality is compromised when any deviation from the perfect sinusoidal waveform occurred at the loads-end hence causing harmonic distortion. The issue of harmonic distortion that affects the power quality has received considerable critical attention as the number of harmonics-producing loads has increased in recent years (Sinha et al., 2016, Reddy and Barai, 2016, Durdhavale and Ahire, 2016, Bo and Jinhui, 2016, ZhiHui and JianShe, 2013).

A key aspect of micro-grids is the incorporation of sensing, control and communication technologies which lead to the emergence of smart microgrids. Mostly all micro-grids have a large penetration of renewable energy sources and power electronics converters. Non-linear loads such as computers, chargers, current limiters and various power electronics devices that are added to the smart microgrids contributed to the degradation in the quality of power supply. These components are the source of harmonics due to their non-linear property. The detection of harmonic components is conductive to the assessment of power quality (Ming and Jing, 2011). Therefore, it is important to monitor the total distortion level of these sources as faults and failures can occur in the microgrids without early warnings.

A primary concern of harmonics is that it is difficult to reduce. However, the power quality deteriorated because of the existence of the harmonics. Earlier failure of equipment

and losses in distribution systems could be impacted by the harmonics. Therefore, the harmonics should be detected at early stages (Durdhavale and Ahire, 2016). Moreover, with the number of harmonics-producing components in the smart microgrid setup is increasing from year to year, it is important to analyse the influence of these devices (in terms of harmonics) when making any additions or changes to a smart microgrid.

1.1.1 Power System Harmonic Measurement

In recent years, researchers have shown an increased interest in harmonic measurement to improve the power system. Proper detection and mitigation of power quality issues such as voltage sags, swell and harmonics have also been researched in recent times. The main target is to improve the computation to be more reliable and performed quick analysis (Sinha et al., 2016).

A lot of researches have been done on harmonic analysis, measurement and its mitigation techniques within the smart microgrid. Within these systems, one of the widely used algorithms harmonic analysis is the Fast Fourier Transform (FFT). Through FFT calculations, the amplitude of the fundamental frequency and the *n*th order harmonic are identified. The harmonic distortion also can be calculated using the ratio of the amplitude of the fundamental frequency.

The FFT algorithm is can be executed on the various platforms either by using general-purpose processors, dedicated microcontrollers or digital signal processors. Between these platforms, the execution of FFT algorithms produced a varying degree of accuracy and output throughput, depending on the processor's architecture and their programming capability. For example, a general-purpose processor would be able to run the FFT algorithm but at much lower speed when compared to digital signal processor's execution. The lack of speed is mainly due to the non-existence of complex-computational units, such as multiply-and-accumulate module, which is the main feature in the digital

signal processor's architecture. Nonetheless, the FFT algorithms still workable on the general-purpose processor but with the certain limitation that can be tolerated depending on the target application.

However, recent developments in ubiquitous devices have heightened the need for a low-cost and compact hardware to implement the signal processing needed to perform the harmonic measurements, especially in a smart microgrid system. The emergence of Internet-of-Things (IoT) has accelerated the integration of multiple sensors to a node in the smart microgrid. Therefore, the processor that powered the node needs to have the capacity to integrate various sensors and communication modules. The architecture also must handle the pre-processing task for the input signals while at the same time maintaining a small footprint and acceptable output performance.

The processing architecture limits the performance of the harmonic measurements. Deploying full-blown hardware in the smart microgrid field is impractical while implementing the intensive processing task on the low-end hardware would jeopardize the execution speed. It is favourable to have an architecture that supports computational tasks, and at the same time, it needs to be optimized in term of output accuracy, board size and data throughput. Recent trends in processor architecture have led to a proliferation of studies that enable such complex calculation to be performed in an embedded system. However, focusing on the smart micro-grids applications, specific configurations must be adhered to optimize the system's solution.

1.2 Simple FFT Algorithm for Microcontrollers

FFT is one of the most important algorithms in the world because it efficiently calculates the frequency components of time-varying signals. Even a small acceleration of the FFT algorithm greatly speed up the whole application. In most cases, the digital signal processor and other high-end platform are used as the executed platform to perform the

FFT algorithm periodically. Executing FFT in a high-end platform is acceptable if the targeted applications do not confine itself to the certain time-response requirement, accuracy points and board size limitation. However, for the smart microgrid application, several constraints need to adhere to the system. According to Sinha et al. (2016), a power system harmonic measurement device should have the three functions; (i) signal can be sampled in power at any time, (ii) it can quickly and accurately analyse parameters including voltage and current in the power, and, (iii) the analysis result can be displayed directly. In general, operating as a remote system from the main electricity grid, a smart microgrid system is beneficial in having a stand-alone and comprehensive main controller that is capable of processing and analysing real-time signal locally. These functions required optimum processor architecture that can execute complex calculation with minimal resource utilization.

Apart from hardware optimization, the FFT algorithm itself must be enhanced to match the low-end architecture that will be deployed in the smart microgrid. Suto et al. (2014) presented an algorithm of FFT which contains a reduced number of logical and elementary (addition, subtraction, multiplication) operations. It is also optimized to the low-level programming and hardware description language. The algorithm is well applicable in FPGAs, microcontrollers, digital signal controllers and any mini-computers which requires fewer resources but capable of delivering good performance in harmonic measurement. The customized algorithm opens up new possibilities in improving the FFT algorithm within limited resources, which suited to the requirement of the smart microgrid.

1.3 Processor Architecture

In order to accurately monitor real-time power harmonics and precisely grasp the harmonic wave, the harmonic measurement system mostly based on the combination of DSP and Advanced RISC Machine (ARM) processor (Rajagopal and Singaravelu, 2015,