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ABSTRACT 

 

 

Smart microgrids have emerged as a viable solution in case of emergency situations 
occurred at the main electricity grid. The main concern of a smart microgrid is the 
degradation of the power quality caused by harmonic distortion originated from the non-
linear equipment. With the rapid development of power electronic technology, the 
increased of harmonic-producing loads in the smart microgrids necessitating a new digital 
signal controller architecture for the harmonic measurement system. While the current 
system configurations are directed towards the 32-bit architecture, it shows higher 
requirements in area footprint and multi-core setup. This thesis presents the design of a 
low-end digital signal controller architecture using instruction set architecture (ISA) 
extension for the implementation of the harmonic measurement system in a smart 
microgrid. A new architecture, called UTeMRISC, is developed from the baseline 8-bit 
microcontroller with the capability to perform signal processing applications such as Fast 
Fourier Transform (FFT). The architecture is improved using the Application-Specific 
Instruction Set Processor (ASIP) approach by extending the instruction set architecture to 
16-bit length. Instruction set customization is implemented to enable the execution of 
computationally intensive tasks. The entire architecture is described in Verilog Hardware 
Description Language (HDL) and implemented on the Virtex-6 FPGA board. From the test 
programs, UTeMRISC has demonstrated faster execution times and higher maximum 
operating frequency while not significantly increased the core’s resource utilization. 
Compared to the initial processor architecture, the support of extended ISA has increased 
the UTeMRISC core by 21.8% but at the same time allows to execute Fast Fourier 
Transform algorithm up to 5× faster. The combine effort of ISA extension and optimized 
instruction set generation results in up to 1 Mega sample per second, which translated to 
66.8% increase of data throughput in the FFT algorithm when compared to a 32-bit 
architecture. This research proves that with comprehensive ASIP methodology and ISA 
extension, a low-end digital signal controller architecture is feasible and effective to be 
implemented in a harmonic measurement system for a smart microgrid. 
 

 

 

  



 

ii 

 

 

ABSTRAK 

 

 

Mikrogrid pintar telah menjadi penyelesaian yang berdaya maju andai berlaku kecemasan 
pada grid elektrik utama. Antara isu utama pada mikrogrid pintar adalah pengurangan 
kualiti kuasa disebabkan herotan harmonik yang bermula daripada peralatan tidak linear. 
Dengan perkembangan pesat teknologi elektronik kuasa, peningkatan beban yang menjana 
harmonik memerlukan satu senibina pengawal isyarat digital yang baharu untuk sistem 
pengukuran harmonik. Walaupun konfigurasi sistem semasa beralih kepada senibina 32-
bit, sistem ini memerlukan ruang yang besar dan persiapan berbilang-teras. Tesis ini 
membentangkan rekabentuk pengawal isyarat digital bawahan menggunakan perluasan 
senibina set arahan (ISA) bagi perlaksanaan sistem pengukuran harmonik dalam 
mikrogrid pintar. Senibina baharu ini, dipanggil UTeMRISC, dibangunkan daripada dasar 
mikropengawal 8-bit dengan kemampuan untuk melaksanakan aplikasi pemprosesan 
isyarat seperti Jelmaan Fourier Cepat (FFT). Senibina ini ditambahbaik dengan 
menggunakan Pemproses Set Arahan Spesifik-Aplikasi (ASIP) dan meluaskan senibina set 
arahan kepada 16-bit. Penyesuaian set arahan dilaksanakan untuk membolehkan pelakuan 
tugas-tugas pengiraan yang intensif. Keseluruhan senibina dibangunkan dalam bahasa 
perihalan perkakasan (HDL) Verilog dan dilaksanakan pada papan FPGA Virtex-6. 
Berdasarkan program-program ujian, UTeMRISC menunjukkan masa pelakuan yang lebih 
pantas dan frekuensi operasi yang lebih tinggi di samping tidak menaikkan penggunaan 
sumber dengan nyata. Berbanding dengan senibina pemproses permulaan, sokongan 
perluasan ISA telah meningkatkan teras UTeMRISC sebanyak 21.8% tetapi pada masa 
yang sama perlaksanaan algoritma FFT adalah 5× lebih pantas. Gabungan perluasan ISA 
dan penjanaan set arahan yang optimum menghasilkan daya pemprosesan data sehingga 1 
juta sampel per saat, bersamaan dengan kenaikan 66.8% daya pemprosesan data dalam 
algoritma FFT apabila dibandingkan dengan senibina 32-bit. Kajian ini membuktikan 
bahawa dengan kaedah ASIP yang komprehensif dan perluasan ISA, senibina pengawal 
isyarat digital bawahan adalah senibina tersaur dan efektif untuk dilaksanakan dalam 
sistem pengukuran harmonik bagi mikrogrid pintar.       
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CHAPTER 1 

INTRODUCTION 

1  

1.1 Power Quality on Smart Microgrid System 

In the power distribution field, microgrids are small-scale versions of the 

centralized electricity system. The main functions of microgrids are to generate, distribute 

and regulate the electricity to the end-users. Microgrids are defined as interconnected 

networks of distributed energy systems (loads and resources) that can function whether 

they are connected to or separate from the electricity grid (Farhangi, 2010). The flexibility 

in the implementation provides increase capacity, reliability and efficiency in the power 

distribution. In terms of deployment, microgrid is rapidly taking hold worldwide (Patel, 

2018). Reportedly, there are 1,869 projects are currently operating, under development, or 

proposed across 123 countries in the fourth quarter of 2017. These projects representing a 

total capacity of 20.7 GW worldwide, and increase from 18GW recorded in the second 

quarter of 2016. The increase in power capacity indicated that the microgrid system is 

relevant and in demand for global deployment.   

Microgrids have emerged as a powerful platform in power system community as a 

viable solution in case of emergency situations occurred at the main grid. Naturally, under 

critical or unforeseen circumstances where the main grid is unable to meet the demands 

because of catastrophes or uncertainties, a microgrid can be operated for reliable and 

continuous power supply. During normal operations, the microgrid enables load sharing 

with the main grid to offer efficient performance (Hare et al., 2016). The microgrids also 



 

2 

function as a complement to the existing electricity grid and coexist to provide more 

capabilities, functionalities and capacities.   

Power quality has been instrumental in our understanding of improving the 

microgrid system. Power quality can be defined as a set of electrical boundaries allowing 

equipment to function in its intended manner with no significant loss of performance or life 

expectancy (Durdhavale and Ahire, 2016). In relation to the continuous demand for 

electricity, there is pressure on the utility to set up more generating plants and distribution 

capacity. Fundamentally, the power quality is compromised when any deviation from the 

perfect sinusoidal waveform occurred at the loads-end hence causing harmonic distortion. 

The issue of harmonic distortion that affects the power quality has received considerable 

critical attention as the number of harmonics-producing loads has increased in recent years 

(Sinha et al., 2016, Reddy and Barai, 2016, Durdhavale and Ahire, 2016, Bo and Jinhui, 

2016, ZhiHui and JianShe, 2013). 

A key aspect of micro-grids is the incorporation of sensing, control and 

communication technologies which lead to the emergence of smart microgrids. Mostly all 

micro-grids have a large penetration of renewable energy sources and power electronics 

converters. Non-linear loads such as computers, chargers, current limiters and various 

power electronics devices that are added to the smart microgrids contributed to the 

degradation in the quality of power supply. These components are the source of harmonics 

due to their non-linear property. The detection of harmonic components is conductive to 

the assessment of power quality (Ming and Jing, 2011). Therefore, it is important to 

monitor the total distortion level of these sources as faults and failures can occur in the 

microgrids without early warnings. 

A primary concern of harmonics is that it is difficult to reduce. However, the power 

quality deteriorated because of the existence of the harmonics. Earlier failure of equipment 
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and losses in distribution systems could be impacted by the harmonics. Therefore, the 

harmonics should be detected at early stages (Durdhavale and Ahire, 2016). Moreover, 

with the number of harmonics-producing components in the smart microgrid setup is 

increasing from year to year, it is important to analyse the influence of these devices (in 

terms of harmonics) when making any additions or changes to a smart microgrid. 

1.1.1 Power System Harmonic Measurement 

In recent years, researchers have shown an increased interest in harmonic 

measurement to improve the power system. Proper detection and mitigation of power 

quality issues such as voltage sags, swell and harmonics have also been researched in 

recent times. The main target is to improve the computation to be more reliable and 

performed quick analysis (Sinha et al., 2016). 

A lot of researches have been done on harmonic analysis, measurement and its 

mitigation techniques within the smart microgrid. Within these systems, one of the widely 

used algorithms harmonic analysis is the Fast Fourier Transform (FFT). Through FFT 

calculations, the amplitude of the fundamental frequency and the nth order harmonic are 

identified. The harmonic distortion also can be calculated using the ratio of the amplitude 

of the measured harmonic to the fundamental frequency.     

The FFT algorithm is can be executed on the various platforms either by using 

general-purpose processors, dedicated microcontrollers or digital signal processors. 

Between these platforms, the execution of FFT algorithms produced a varying degree of 

accuracy and output throughput, depending on the processor’s architecture and their 

programming capability. For example, a general-purpose processor would be able to run 

the FFT algorithm but at much lower speed when compared to digital signal processor’s 

execution. The lack of speed is mainly due to the non-existence of complex-computational 

units, such as multiply-and-accumulate module, which is the main feature in the digital 
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signal processor’s architecture. Nonetheless, the FFT algorithms still workable on the 

general-purpose processor but with the certain limitation that can be tolerated depending 

on the target application. 

However, recent developments in ubiquitous devices have heightened the need for a 

low-cost and compact hardware to implement the signal processing needed to perform the 

harmonic measurements, especially in a smart microgrid system. The emergence of 

Internet-of-Things (IoT) has accelerated the integration of multiple sensors to a node in the 

smart microgrid. Therefore, the processor that powered the node needs to have the capacity 

to integrate various sensors and communication modules. The architecture also must 

handle the pre-processing task for the input signals while at the same time maintaining a 

small footprint and acceptable output performance.  

The processing architecture limits the performance of the harmonic measurements. 

Deploying full-blown hardware in the smart microgrid field is impractical while 

implementing the intensive processing task on the low-end hardware would jeopardize the 

execution speed. It is favourable to have an architecture that supports computational tasks, 

and at the same time, it needs to be optimized in term of output accuracy, board size and 

data throughput. Recent trends in processor architecture have led to a proliferation of 

studies that enable such complex calculation to be performed in an embedded system. 

However, focusing on the smart micro-grids applications, specific configurations must be 

adhered to optimize the system’s solution.  

1.2 Simple FFT Algorithm for Microcontrollers 

FFT is one of the most important algorithms in the world because it efficiently 

calculates the frequency components of time-varying signals. Even a small acceleration of 

the FFT algorithm greatly speed up the whole application. In most cases, the digital signal 

processor and other high-end platform are used as the executed platform to perform the 
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FFT algorithm periodically. Executing FFT in a high-end platform is acceptable if the 

targeted applications do not confine itself to the certain time-response requirement, 

accuracy points and board size limitation. However, for the smart microgrid application, 

several constraints need to adhere to the system. According to Sinha et al. (2016), a power 

system harmonic measurement device should have the three functions; (i) signal can be 

sampled in power at any time, (ii) it can quickly and accurately analyse parameters 

including voltage and current in the power, and, (iii) the analysis result can be displayed 

directly. In general, operating as a remote system from the main electricity grid, a smart 

microgrid system is beneficial in having a stand-alone and comprehensive main controller 

that is capable of processing and analysing real-time signal locally. These functions 

required optimum processor architecture that can execute complex calculation with 

minimal resource utilization. 

Apart from hardware optimization, the FFT algorithm itself must be enhanced to 

match the low-end architecture that will be deployed in the smart microgrid. Suto et al. 

(2014) presented an algorithm of FFT which contains a reduced number of logical and 

elementary (addition, subtraction, multiplication) operations. It is also optimized to the 

low-level programming and hardware description language. The algorithm is well 

applicable in FPGAs, microcontrollers, digital signal controllers and any mini-computers 

which requires fewer resources but capable of delivering good performance in harmonic 

measurement. The customized algorithm opens up new possibilities in improving the FFT 

algorithm within limited resources, which suited to the requirement of the smart microgrid. 

1.3 Processor Architecture 

In order to accurately monitor real-time power harmonics and precisely grasp the 

harmonic wave, the harmonic measurement system mostly based on the combination of 

DSP and Advanced RISC Machine (ARM) processor (Rajagopal and Singaravelu, 2015, 




