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ABSTRACT 

 

 

Thin Small Leadless Packages (TSLP) have been manufactured to cater the current 
industry demand for a smaller electronic apparatus with a higher electrical performance. 
Previous studies showed the solder joint strength of leadless package with the printed 
circuit board (PCB) using Ni-P/Sn-0.5 Ag solder were influenced by soldering and reflow 
parameters. Nevertheless, scattered studies have been reported on the effect of surface 
roughness (Ra) of leadless package on its solder joint strength. The current study 
investigated effect of Ra of TSLP on the solder joint strength between the TSLP and PCB. 
In the current study, Ra of package’s contact pad were varied using different Cu alloy 
leadframe materials (i.e. C194 and EFTECH-64) and etching process parameters (i.e. pH, 
specific Cu density and conveyor speed). This study also investigated the effect of Ni-P 
plating thickness and solder reflow conditions (i.e. temperature and duration) on the solder 
joint strength. Shear test was conducted on the soldered samples using Dage Series 4000 
Bond Tester as per Infineon’s Control Plan Specifications, with the shear strength data 
represented the solder strength values. Subsequently, the discussion of solder strength 
results were supported by the failure mode results of the shear test samples, generated by 
scanning electron microscopy (SEM, JOEL JSM-6360A) images and energy dispersive X-
ray (EDX, JOEL JSM-6360A) analysis. An increase of Ni-P thickness on the etched 
samples reduced their Ra, thus resulted in a higher solder joint strength and smaller 
strength variation. Porous solder region in the soldered samples contributed to Mode 1 
failure (i.e. fracture at solder region), which were exhibited by more than 80% of shear test 
samples. Only small percentages of shear samples showed Mode 2 (i.e. fracture at IMC 
and Ni-P layer interface) and Mode 3 (i.e. fracture at Ni-P and Ni bump interface). The 
percentage of Mode 2 and 3 failures were lower (i.e. composed of less than 5% of shear 
test samples) in low Ra samples. This could be explained by the improved solder 
wettability and strengthening of the IMC layer on the low Ra Ni-P plated samples. 
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ABSTRAK 

 

 

Thin Small Leadless Packages (TSLP) telah dihasilkan untuk memenuhi permintaan 
industri semasa bagi peralatan elektronik yang lebih kecil dengan prestasi elektrik yang 
lebih tinggi. Kajian terdahulu menunjukkan kekuatan gabungan pateri dengan papan litar 
bercetak (PCB) menggunakan pateri Ni-P/Sn-0.5 Ag dipengaruhi oleh parameter 
pematerian dan reflow. Walau bagaimanapun, kajian bertaburan telah dilaporkan 
mengenai kesan kekasaran permukaan (Ra) Leadless Packages pada kekuatan sendi 
soldernya. Kajian semasa menyiasat kesan Ra TSLP pada kekuatan sendi solder antara 
TSLP dan PCB. Dalam kajian semasa, pad sentuh pek pakej berbeza-beza menggunakan 
bahan api utama aloi Cu (contohnya C194 dan EFTECH-64) dan parameter proses etsa 
(iaitu pH, kepadatan Cu tertentu dan kelajuan penghantar). Kajian ini juga menyiasat 
kesan ketebalan plating Ni-P dan keadaan reflow solder (iaitu suhu dan durasi) pada 
kekuatan sendi pateri. Ujian shear dilakukan pada sampel yang dipateri menggunakan 
Dage Series 4000 Bond Tester seperti Spesifikasi Rancangan Kawalan Infineon, dengan 
data kekuatan ricih mewakili nilai kekuatan solder. Selepas itu, perbincangan keputusan 
kekuatan solder disokong oleh keputusan mod kegagalan sampel ujian ricih, yang 
dihasilkan oleh pengimbasan mikroskop elektron (SEM, JOEL JSM-6360A) dan analisis 
sinaran sinaran-X (EDX, JOEL JSM-6360A) . Peningkatan ketebalan Ni-P pada sampel 
teruk dikurangkan Ra mereka, sehingga menghasilkan kekuatan bersama solder yang lebih 
tinggi dan variasi kekuatan yang lebih kecil. Wilayah pateri pori-pori dalam sampel yang 
dipateri menyumbang kepada kegagalan Mode 1 (iaitu fraktur di kawasan solder), yang 
dipamerkan oleh lebih daripada 80% sampel ujian ricih. Hanya peratusan kecil sampel 
ricih menunjukkan Mode 2 (iaitu fraktur pada IMC dan antara muka lapisan Ni-P) dan 
Mode 3 (iaitu fraktur di antara Ni-P dan Ni bump). Peratusan mode 2 dan 3 kegagalan 
adalah lebih rendah (iaitu terdiri daripada kurang daripada 5% sampel ujian ricih) dalam 
sampel Ra rendah. Ini dapat dijelaskan dengan kelembapan pateri yang lebih baik dan 
pengukuhan lapisan IMC pada sampel plated Ra Ni-P rendah. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

 Semiconductor has been one of the rapid growing manufacturing industries. Year 

after year, main improvement to meet customers’ demand is to shrink package dimension, 

pad size and pitches towards nano technologies. Therefore, the challenges for interconnect 

and assembly technology, which interface between semiconductor chip and external world, 

have steadily increased. Various Infineon Technologies’ components are packed in 

advanced Quad Flat No-lead packages (QFN) for new application that emphasize size and 

weight reduction, good thermal and electrical properties as well. These platforms offer a 

versatility which allows either a single or multiple semiconductor devices to be connected 

together within a leadless package (Goh et al., 2014; Mario, 2006).  

The company currently manufactures QFN-type Thin Small Leadless Packages 

(TSLP). Assembly process of TSLP (illustrated in Figure 1.1) is started with Ni bump on 

copper (Cu) alloy carrier. Later, the silicon chip is directly attached on Ni bump via 

eutectic, glue, or flip chip bonding process. If wire bonds are employed, it will bond to the 

remaining contact pads.  Next, the chip and interconnect structures are encapsulated with 

halogen-free mold compound before the Cu alloy carrier is completely etched away. The 

remaining exposed nickel bumps are surface treated with electroless nickel immersion gold 
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(ENIG) for assembly purposes. Finally, the packages are singulated and undergone 

electrical testing (Goh et al., 2014; Mario, 2006). 

 

Figure 1.1: Conventional TSLP assembly process (Mario, 2006) 

Electroless Nickel, EN is the first step of a two-step Electroless Nickel Immersion 

Gold (ENIG), i.e. surface finishing plating process for second level interconnection of 

TSLP packages. The ENIG has been extensively employed to protect copper circuit due to 

its excellent mechanical, electrical, corrosion and wear resistance properties (Tian et al., 

2013; Kuo et al., 2006). EN process is an autocatalytic reduction reaction, where reducing 

agents are oxidized and Ni2+ ions are deposited onto the substrate surface. There are 

varieties of reduction agents involved in the EN plating and each reduction agent provides 

a special application need. According to Taheri (2003), the EN process is initiated on the 
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substrate in three-dimension (3-D) growth process, and its deposition rate depends on 

diffusion of chemicals to the deposited surface and by-product (i.e. Hydrogen).  

In semiconductor manufacturing, more than 90 % of the QFN packages use 

leadframe carrier as the main interconnection (Goh et al., 2014). In TSLP packages, 

EFECTH-64 Cu alloy carrier had been used as reliable interconnects between internal 

semiconductor chip and Ni bumps (as shows in Figure 1.1). EFTECH-64 Cu alloy carriers 

were used since introduction of innovation TSLP packages (Goh et al., 2014). Surface 

roughness, Ra set target during manufacturing TSLP packages were defined as 0.11 µm 

(since started manufacturing of TSLP). However, cost down of leadframe in 

semiconductor manufacturing process from EFTEH-64 to C194 Cu alloy shows 

inconsistence Ra during manufacturing of TSLP packages on existing process parameter 

(i.e. Figure 1.1, Step 4 Cu removal and final plating). Therefore, control of Ra of C194 Cu 

alloy carrier is required due to its low cost and at the same time to meets the robust 

packages requirement. 

1.2 Problem Statements 

 Alkaline etching process is used to remove and expose Ni bump’s surface on TSLP 

(Figure 1.2). Alkaline etchant (Cupric chloride, CuCl3) from MacDermid Singapore PTE 

LTD was selected to etch Cu substrate (Figure 1.2, Step 2). The alkaline etchants have the 

capability of being chemically regenerated after reacting with targeted sites, thus ensuring 

a steady-state operation. However, the etching process (Figure 1.2, Step 2) produces rough 

bump surface. Previous studies argued that the substrate roughness had a profound impact 

on subsequent EN deposition of TSLP’s bump (Figure 1.2, Step 3) in terms of their 

hardness, wear and corrosion properties (Sahoo and Das, 2011). Nevertheless, the effects 
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of roughness on the shear strength of solder joint EN plated package have not been 

reported. It is believed that the substrate’s rough surface affects mechanical strength of EN 

coating because of different number of activation sites (Sahoo and Das, 2011). Low 

roughness can be achieved through optimizing etching parameters, such as etching speed, 

pH and Cu specific density for different Cu alloy carriers (i.e. EFTECH 64 and C194 

grades). 

Previous studies have shown that solder or Ni-P interface undergoes phase 

transformation during reflow and thermal ageing cycle. At extending ageing time up to 

1000 hours, mechnanical strength of Sn-Ag/Ni-P solder joint deteriorates  due to the 

growth of intermetallic compound (IMC), such as Ni3Sn4 (He et al., 2005; Kumar and 

Chen 2006). This phenomenon somehow affects failure mode of the solder joint in 

mechanical shear testing. However, the understanding of IMC formation on the solder joint 

and the influence of Ni-P surface roughness and the corresponding bump on the shear 

strength are still lacking.  

This work aims to assess shear strength of the Sn-Ag solder/Ni-P by varying 

surface roughness of TSLP’s bumps. These findings should indirectly benefit Infineon  in 

reducing manufacturing cost and further improve quality and product yield of its TSLP 

production. 
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Figure 1.2: Infineon’s finishing process flow of TSLP packages 

 

1.3 The Research Objectives  

i. To investigate the effects of cupric chloride etching parameters on surface 

roughness (Ra) of TSLP’s Ni bump on C194 and EFTECH-64 Cu alloy carriers. 

ii. To analyse the effect of surface roughness of Cu alloy carriers on the bonding 

capacity of Ni-bump in terms of determining interfacial shear strength. 
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1.4 The Scope of Research  

 Current research focuses on the improvement of surface finishing process (i.e. Step 

2 to 3 of Figure 1.2) of secondary interconnect of TSLP package. The surface roughness of 

Ni bump of TSLP was investigated in terms of four etching process factors: etching speed, 

etchant’s pH and Cu specific density and Cu alloy carrier grade. Surface roughnesses of 

0.11 µm from EFTECH-64 Cu alloy carrier were selected as benchmark target (studies 

done by Infineon). Next, product undergoes reflow process after solder ball dispensing (i.e. 

Step 5 and 6 of Figure 1.2).   

The TSLP’s solder joint shear strength correlations with Ni-P thickness and the 

bump’s surface roughnesses were assessed aiming to understand statistical distribution of 

the measured data. Cross sectional microstructure and chemical element analysis on the 

fracture surface of post shear-shear test samples were investigated in order to understand 

the relationship of the fracture mode with shear strength. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

Chapter 2 outlines the manufacturing process of TSLP process flow, namely the Cu 

etching and ENIG processes. Section 2.1 explains the fundamental of TSLP process flow. 

Then, Sections 2.2 and 2.3 describe the fundamental and mechanism of Cu etching and EN 

processes, respectively. Next, Section 2.4 gives a review and understanding of EN 

deposition influence at different surface roughness. Finally, shear strength mechanical 

studies done in Section 2.5. 

2.1 Semiconductor Packaging: TSLP 

  TSLP is a novel and innovative leadless package concept from Infineon 

Technologies. This package concept enables operation at high frequency and mm-wave 

regions. The package has several advantages, such as small dimensions (Figure 2.1), 

shorter interconnects, excellent radio frequency (RF) capabilities and good thermal 

properties (Wojnowski et al., 2008; Ng et al., 2015). The following terminologies used to 

investigate the Ni bump, such as foot print, contact pad, interconnect and pin count. 


