

Faculty of Manufacturing Engineering

FLEXIBLE ROBOT CONFIGURATION CELL IN MANUFACTURING INDUSTRY

Nor Suriyanti binti Osman

Master of Science in Manufacturing Engineering

2018

C Universiti Teknikal Malaysia Melaka

FLEXIBLE ROBOT CONFIGURATION CELL IN MANUFACTURING INDUSTRY

NOR SURIYANTI BINTI OSMAN

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Manufacturing Engineering

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "Flexible Robot Configuration Cell in Manufacturing Industry" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	Nor Suriyanti binti Osman
Date	:	

APPROVAL

I hereby declare that I have read this dissertation and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Manufacturing Engineering.

Signature	·
Supervisor Name	: Ir. Dr. Muhamad Arfauz bin A. Rahman
Date	:

DEDICATION

I dedicate this thesis :

To my beloved husband, Muhammad Nur Hilmi bin Mohammad Hatta To my supportive father, Osman bin Talib To my lovely and caring parents, Rosidah binti Ramli And to my beloved sisters and brothers. Who always picked me up on time and encouraged me to go on every adventure, especially this one.

ABSTRACT

Manufacturing configuration work is a very tedious process that relies on the way a system is determined and the experience of the person involved. This work is also based on the requirements set by the user. In this research work, the development of flexible approach for configuring robot work cell in manufacturing industry is presented. An articulated robot with six (6) degree of freedom (DOF) is taken as reference to represent the configuration layout because it is one of the most widely used robot in industries. The purpose of this research is to develop a new flexible approach for easy configuring robot work cell with minimal configuration time, less human or expert involvement and at little or no further investment. The different emerging strategies which focus on the configuration work has been highlighted and reviewed. In this work, a variant-shaped configuration concept with its mathematical equation for both workspace area, A_w and the manufacturing throughput time, MTT of each configuration layout have been developed. Later, a configuration framework with a set of rule selection has been created for further development of a graphical user interface (GUI) of flexible configuration model (FlexCoM). The developed FlexCoM would be used in determining the ideal robot work cell while satisfying the user requirements. Matlab and CATIA V5 software where it involves the CATIA VBA and macro tools were used in this research work. The developed FlexCoM has been tested and evaluated by three (3) different industries where the outcome of this research showed that the developed FlexCoM could assist design engineers in minimizing the configuration time, optimizing the human and expert involvement as well as capitalizing the available resource for investment while conducting robot work cell configuration work in the future. This research hopes that the industry will benefit from the outcome by having the ability to optimize the configuration system and to minimize the risk of investment.

ABSTRAK

Kerja konfigurasi pembuatan adalah satu proses yang memerlukan ketelitian yang sangat tinggi di mana kerja ini bergantung pada cara sistem ditentukan dan pengalaman orang vang mengendalikan sistem yang terlibat. Kerja ini juga berdasarkan keperluan yang ditetapkan oleh pengguna. Dalam laporan ini, kerja mengenai pembangunan kaedah yang fleksibel untuk mengkonfigurasi sel kerja robot dalam industri pembuatan dibentangkan. Articulated Robot dengan enam (6) darjah kebebasan diambil sebagai rujukan untuk mewakili susun atur konfigurasi kerana ia adalah salah satu robot paling banyak digunakan dalam industri. Tujuan penyelidikan ini adalah untuk membangunkan kaedah konfigurasi vang baru dan fleksibel vang dapat mengkonfigurasi sel kerja robot dengan masa konfigurasi yang minimum, penglibatan manusia atau pakar yang kurang dan risiko pelaburan yang minimum. Strategi baru yang menumpukan pada kerja-kerja konfigurasi telah diserlahkan dan dikaji semula. Dalam kerja ini, satu konsep konfigurasi yang terdiri dari pelbagai bentuk bersama ayat matematik seperti kawasan ruang kerja dan masa pembuatan pemprosesan untuk setiap susun atur konfigurasi telah dibagunkan. Kemudian, satu rangka konfigurasi bersama satu set pilihan peraturan telah dicipta untuk digunakan dalam pembentukan satu grafik perantraan sistem dan pengguna untuk model konfigurasi *yang fleksibel (FlexCoM). FlexCoM yang dibangunkan akan digunakan dalam menentukan* sel kerja robot vang ideal sambil memenuhi keperluan pengguna. Matlab dan perisian CATIA V5 di mana ia melibatkan CATIA VBA dan alat makro telah digunakan dalam kerja-kerja penyelidikan ini. FlexCoM yang telah dibangunkan ini, telah diuji dan yang dinilai oleh tiga (3) industri yang berbeza dimana hasil kajian ini menunjukkan bahawa FlexCoM yang dibangunkan dapat membantu jurutera rekaan dalam meminimumkan masa konfigurasi, mengoptimalkan penglibatan manusia dan pakar serta memanfaatkan sumber yang tersedia untuk pelaburan ketika melakukan konfigurasi sel kerja robot bekerja di masa depan. Kajian ini berharap bahawa industri akan mendapat manfaat daripada hasil kerja ini dengan mempunyai keupayaan untuk mengoptimumkan sistem konfigurasi dan meminimumkan risiko pelaburan.

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful. Alhamdulillah, all praises to Allah for the strengths and His blessing in completing this research.

First of all, I would like to thank to the Universiti Teknikal Malaysia Melaka (UTeM) for providing an opportunity for me to continue my highest degree in Master of Science in Manufacturing Engineering (Robotics and Automation). Also, thanks for providing fund for me under MyBRAIN UTeM with the materials support and useful information. This work is also a collaborative work with the Department of Occupational Safety & Health (DOSH) Malaysia.

I would also like to take this opportunity to express my sincere acknowledgement to my supervisor Ir. Dr. Muhamad Arfauz bin A. Rahman from the Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka (UTeM) for essential supervision, support and encouragement towards the completion of this research. In addition, I would also like to express my greatest gratitude to Dr.-Ing. Azrul Azwan bin Abdul Rahman from Faculty of Manufacturing Engineering, co-supervisor of this project for his advice and suggestions.

Particularly, I would also like to express my deepest gratitude to Profesor Dr. Bashir Mohamad bin Bali Mohamad, Puan Silah Hayati binti Kamsani senior lecturers from Faculty of Manufacturing Engineering Universiti Teknikal Malaysia Melaka (UTeM) for their assistance and efforts towards this research. My appreciation also extends to Mr. Azuan, the technicians from Integrated Manufacturing System (IMS) laboratory for their assistance.

Special thanks to my beloved husband, lovely mother and supportive father, siblings and all my peers for their moral support during my graduate study. Lastly, thank you to everyone who had been to the crucial parts of realization of this project.

TABLE OF CONTENTS

DECLARATION APPROVAL DEDICATION ABSTRACT ABSTRAK ACKNOWLEDGEMENTS TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF FIGURES LIST OF APPENDICES LIST OF ABBREVIATIONS LIST OF SYMBOLS LIST OF PUBLICATIONS	i ii iii iv vii iv vii ix xiii xiii xii
CHAPTER 1 INTRODUCTION	1
1. INTRODUCTION 1.1 Research Background	1 1
1.2 Problem Statement	3
1.2 Research Objectives	5
1.4 Research Scope	5
1.5 Thesis Outline	6
2. LITERATURE REVIEW	8
2.1 Introduction	8
2.2 Manufacturing Industry	8
2.3 Manufacturing Work Cell	9
2.3.1 Manufacturing Work Cell Environment	10
2.3.1.1 Traditional Fuctional Manufacturing	
Environment	10
2.3.1.2 Cellular Manufacturing Environment	10
2.3.2 Manufacturing Work Cell Category	11
2.3.2.1 Assembly Work Cell	11
2.3.2.2 Machining Work Cell	12
2.3.3 Manufacturing work Cell Design Layout	12
2.3.3.1 U-snaped work cell layout	13
2.3.3.2 I-shaped work cell layout	13
2.3.5.5 Thoating design, Z-shaped work cell layout	14
2.3.4 Manufacturing Work Cell Configuration	14
2.1 Manual Reconfiguration	15
2.4.2 Reconfiguration by Artificial Intelligence	17
2.4.3 Reconfigurable Assembly System by Design	18
2.4.4 Reconfiguration Design by Petri Net	19

		2.4.5 Reconfiguration Design by Function Modelling	20
		2.4.6 Reconfiguration Design by CAD Software	21
	2.5	Industrial Robot Work Cell	21
		2.5.1 Semi-Automatic Industrial Robot Work Cell	22
		2.5.2 Fully Automatic Industrial Robot Work Cell	23
		2.5.3 Types of Robot Work Cell Design Layout	23
		2.5.3.1 Robot Centered Work Cell	23
		2.5.3.2 Mobile Robot Work Cell	25
		2.5.5.5 Infine Robot Work Cell	20
	26	2.3.4 Robot Workspace Robot Work Coll Configuration	20
	2.0	2.6.1 Configuration Approach	31
		2.6.2 Future Recommendation of the Previous Approaches	34
		2.6.3 Persistent Issue for Future Configuration Approaches	36
	2.7	Summary	37
3.	ME	THODOLOGY	39
	3.1	Introduction	39
	3.2	Robot Work Cell Configuration Strategy	39
	3.3	Overall Methodology	41
	34	Phase 1. Investigate Current Configuration System	42
	0	3.4.1 Design of New Configuration Strategy	43
		3.4.2 Determination of Fundamental Theories of	
		Configuration Work	43
	3.5	Phase 2: Propose a New FCS	44
		3.5.1 Development of Robot Work Cell Configuration	
		Concept	44
		3.5.2 Development of Robot Work Cell Configuration	
		Concept	45
		3.5.3 Development of the Robot Work Cell Configuration	10
	2 (Model, FlexCoM	48
	3.6	Phase 3: Validate a New FCS	49
		3.6.1 Development Test	49
	- -	3.6.2 Evaluate and Analyze the Result of Test	50
	3.7	Summary	51
4.	DES	SIGN AND DEVELOPMENT	52
	4.1	Introduction	52
	4.2	Robot Work Cell Configuration Concept	53
	4.3	Robot Work Cell Specifications	53
	4.4	Determination of Configuration Constraints	54
		4.4.1 Complex Condition	54
		4.4.2 Number of Robot Use, Nr 4.4.2 Associations Environment	50 56
	15	4.4.5 Auxiliary Equipment	50 54
	4.3	4.5.1 Dual Condition	30 57
		4.5.2 Mirror Condition	57
	46	Robot Work Cell Configuration with Multi-Conditions	57
	1.0	4.6.1 Condition 1: Configuration with Both Dual and	50

API	KEFEKENCES APPENDICES			127
יתס	יידסיקי	NCES		107
	6.2	Future	e Recommendation	125
	6.1	Concl	lusion	124
6.	CON FOR	CLUS FUTU	ION AND RECOMMENDATIONS JRE RESEARCH	124
	3.4	Summ	lary	123
	5 1	5.5.5 Summer	industrial Survey from Company C	122
		5.5.2	Industrial Survey from Company B	121
		5.5.1	Industrial Survey from Company A	120
	3.3		are and Analyze the Result of Test	119
	53	Evalue	ate and Analyze the Result of Test	114
			Throughput Time	11/
		J.4.4	Minimum Workspace Area and Manufacturing	
		524	Test 4: Robot Work Cell Configuration with Roth	111
		5.4.5	Manufacturing Throughput Time	111
		522	Test 3: Robot Work Cell Configuration with Minimum	100
		5.4.4	Workspace Area	109
		522.1	Test 2: Robot Work Cell Configuration with Minimum	105
	5.2	521	Test 1: Normal Robot Work Cell Configuration	104
	5 2	Devel	opment Test	104
5.	RES 5 1	ULT A Introd	ND DISCUSSION	104 104
		C unin	j	102
	4.11	Summ	narv	102
	4 10	4.9.1 Robot	Selection Rule t Work Cell Configuration Model FleyCoM	90
	4.9		work Cell Configuration Framework	90
	4.0	D - 1 4	its Mathematical Models	76
		4.8.3	Probable Robot Work Cell Configuration Layout with	- c
			Time Robot Work Cell	74
		4.8.2	Fundamental Theories of the Manufacturing Throughput	12
		4.8.1	Robot Work Cell	72
		Mathe	Eurodemontal Theories of the Worksmann Area of	72
	4.8	Optim	um Robot Work Cell Configuration Layout with its	70
	4.7	Robot	t Work Cell Configuration with Optimum Condition	70
			Mirror Condition, C4	64
		4.6.4	Condition 4: Configuration without Both Dual and	-
		1.0.5	with Mirror Condition. C3	62
		463	Condition 3: Configuration without Dual and	01
		4.6.2	Condition 2: Configuration without Dual and	61
			Mirror Condition, C1	59

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	BNM Quarterly Bulletin	9
2.2	Comparison of Performance Measurement	34
2.3	Issue regarding the Future Improvement for the Earlier Works	
	on the Robot Work Cell Configuration	36
3.1	Set of Equipment of the Development	41
3.2	The Outcomes of the Investigation	44
3.3	The Outcomes of the Model	45
3.4	The Outcomes of the Development	49
3.5	The Outcomes of the Validation the developed Approach	50
4.1	Complex Arrangement Perspectives	55
4.2	Multi-Shaped Designed Layout with Condition 1	59
4.3	Multi-Shaped Designed Layout with Condition 2	61
4.4	Multi-Shaped Designed Layout with Condition 3	63
4.5	Multi-Shaped Designed Layout with Condition 4	64
4.6	Multi-Shaped Robot Work Cell Configuration Layout Data	65
4.7	Optimum Robot Work Cell Configuration Data	70
4.8	Evaluation Results of the Mathematical Model	72
4.9	First User form of the FlexCoM	94
4.10	Second User form of the FlexCoM	96
4.11	Third User form of the FlexCoM	97
4.12	Fourth User form of the FlexCoM	99
4.13	Five User form of the FlexCoM	101
5.1	Normal Robot Work Cell Configuration with $Nr = 3$	105
5.2	Normal Robot Work Cell Configuration with $Nr = 4$	106
5.3	Normal Robot Work Cell Configuration with Nr = 5	107

5.4	Minimum Workspace Area Robot Work Cell Configuration	
	with $Nr = 3$	108
5.5	Minimum Workspace Area of Robot Work Cell Configuration	
	with $Nr = 4$	109
5.6	Minimum Workspace Area of Robot Work Cell Configuration	
	with $Nr = 5$	110
5.7	Minimum Manufacturing Throughput Time of Robot Work Cell	
	Configuration with $Nr = 3$	111
5.8	Minimum Manufacturing Throughput Time of Robot Work Cell	
	Configuration with $Nr = 4$	112
5.9	Minimum Manufacturing Throughput Time of Robot Work Cell	
	Configuration with $Nr = 5$	113
5.10	Both Minimum Workspace Area and Manufacturing Throughput	
	Time of Robot Work Cell Configuration with $Nr = 3$	114
5.11	Both Minimum Workspace Area and Manufacturing Throughput	
	Time of Robot Work Cell Configuration with $Nr = 4$	116
5.12	Both Minimum Workspace Area and Manufacturing Throughput	
	Time of Robot Work Cell Configuration with $Nr = 5$	118

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Worldwide Annual Supply of Industrial Robots	2
2.1	Manufacturing Work Cell	9
2.2	Traditional Manufacturing Work Cell	10
2.3	Cellular Manufacturing Work Cell	11
2.4	Assembly Work Cell	11
2.5	Machining Work Cell	12
2.6	U-shaped work cell layout	13
2.7	T-shaped work cell layout	13
2.8	Z-shaped work cell layout	14
2.9	Manufacturing Throughput Time Illustration	14
2.10	Manufacturing Work Cell Configuration	16
2.11	Robot Work Cell	22
2.12	Semi-Automatic Industrial Robotic Scenario	22
2.13	Fully Automatic Industrial Robotic Scenario	23
2.14	Robot-Centered Type Cell	24
2.15	Overhead Rail System	26
2.16	Floor Track System	26
2.17	In Line Type Cell	27
2.18	Robot Workspace	28
2.19	A Robot Work Envelope	29
2.20	Robot Work Cell Configuration	30
3.1	Strategy of Flexible Configuration Approach	40
3.2	Design Development Process Flow	42
3.3	Process Flow of Investigation Current Configuration Work	43
3.4	FlexCoM Process Details	46
3.5	Development of New Robot Work Cell Configuration Approach	49
3.6	Process Flow of Validation the developed Approach	50

4.1	Robot Work Cell	54
4.2	Dual Condition	57
4.3	Mirror Condition	58
4.4	Line Graph of Configuration Pattern	66
4.5	Line Graph of Configuration Pattern with Basic Fitting	66
4.6	Line Graph of Residuals of Configuration Pattern	68
4.7	Evaluation Results in Basic Fitting	69
4.8	Evaluation Plot	69
4.9	Configuration Pattern	71
4.10	Illustration of Safe Multiple Robot Work Cell	73
4.11	Illustration of Manufacturing Throughput Time for Multiple	
	Robot Work Cell	75
4.12	Robot Work Cell Configuration Layout 1	76
4.13	Robot Work Cell Configuration Layout 2	77
4.14	Robot Work Cell Configuration Layout 3	78
4.15	Robot Work Cell Configuration Layout 4	79
4.16	Robot Work Cell Configuration Layout 5	80
4.17	Robot Work Cell Configuration Layout 6	81
4.18	Robot Work Cell Configuration Layout 7	83
4.19	Robot Work Cell Configuration Layout 8	83
4.20	Robot Work Cell Configuration Layout 9	85
4.21	Robot Work Cell Configuration Layout 10	86
4.22	Robot Work Cell Configuration Layout 11	88
4.23	Robot Work Cell Configuration Layout 12	89
4.24	Forward Chain of the FlexCoM	90
4.25	First Level User Interface	94
4.26	Second Level User Interface	95
4.27	Third Level User Interface	97
4.28	Fourth Level User Interface	99
4.29	Fifth Level User Interface	100
4.30	Single Robot Work Cell Configuration Layout	102
5.1	Robot Work Cell Configuration Layout Drawing Test 1	105
5.2	Robot Work Cell Configuration Layout Drawing Test 2	106
5.3	Robot Work Cell Configuration Layout Drawing Test 3	107
5.4	Robot Work Cell Configuration Layout Drawing Test 4	108

5.5	Robot Work Cell Configuration Layout Drawing Test 5	109
5.6	Robot Work Cell Configuration Layout Drawing Test 6	110
5.7	Robot Work Cell Configuration Layout Drawing Test 7	111
5.8	Robot Work Cell Configuration Layout Drawing Test 8	112
5.9	Robot Work Cell Configuration Layout Drawing Test 9	114
5.10	Robot Work Cell Configuration Layout Drawing Test 10	115
5.11	Robot Work Cell Configuration Layout Drawing Test 11	116
5.12	Robot Work Cell Configuration Layout Drawing Test 12	117
5.13	Robot Work Cell Configuration Layout Drawing Test 13	118
5.14	Robot Work Cell Configuration Layout Drawing Test 14	119
5.15	Feedback of Industrial Survey from Company A	120
5.16	Feedback of Industrial Survey from Company B	121
5.17	Feedback of Industrial Survey from Company C	122

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Industrial Feedback	138
В	Programming Coding of FlexCoM	154

LIST OF ABBREVIATIONS

AI	-	Artificial Intelligence
AIP	-	Artificial Intelligence Planning
ASRP	-	Assembly System Reconfiguration Planning
DE	-	Differential Evolution
DOF	-	Degree of Freedom
FlexCoM	-	Flexible Configuration Model
FLP	-	Facility Layout Planning
FMS	-	Flexible Manufacturing System
FraRWCC	-	Framework for the Robotic Work Cell Configuration
GUI	-	Graphical User Interface
IDEF0	-	Integrated Definition for Function Modelling 0
IDEF3	-	Integrated Definition for Function Modelling 3
IFR	-	International Federation of Robotics
IJASM	-	International Journal Agile and Management System
LMTT	-	Manufacturing Throughput Time Limit
LCT	-	Line Cycle Time
MCE	-	Manufacturing Cycle Efficiency
NIST	-	National Institute of Standards and Technology, United States of
		America
OTM	-	OSHA Technical Manual
PC	-	Personnel Computer
RAS	-	Reconfigurable Manufacturing System
RCT	-	Robot Cycle Time
RMS	-	Reconfigurable Manufacturing System
SPSS	-	Statistical Package for the Social Sciences
VBA	-	Visual Basic for Applications

xiii

LIST OF SYMBOLS

Asafew	-	Safe Area
A_{W}	-	Workspace Area
С	-	Clearance for the Worker Movement in a Worker Cell
C_1	-	Configuration with both dual and mirror condition
C_2	-	Configuration without dual and with mirror condition
C ₃	-	Configuration with dual and without mirror condition
C4	-	Configuration without both dual and mirror condition
CT	-	Configuration Condition
L	-	Length
LAw	-	Workspace Area Limit
LMTT	-	Manufacturing Throughput Time Limit
Lopt	-	Optimum Robot Work Cell Configuration Layout
L _{safe}	-	Safe Length
L _{xsafe}	-	Safe Length at X-axis
Lysafe	-	Safe Length at Y-axis
Max L	-	Maximum Length
Max W	-	Maximum Width
min(A _w)	-	Minimum Workspace Area
min(MTT)	-	Minimum Manufacturing Throughput Time
mm	-	Milimeter
MTT	-	Manufacturing Throughput Time
N _c	-	Number of Configurations
Noc	-	Number of Optimum Configuration
Nr	-	Number of Robot Use
P ₍₁₋₁₀₎	-	Coefficients
sec	-	Second
ti	-	Inspection Time
t _m	-	Move Time
T_m	-	Manufacturing Throughput Time
t _p	-	Process Time
t _q	-	Queue Time
W	-	Width
Wsafe	-	Safe Width
Y	-	Length of the Robot Tooling And Work Piece
Х	-	Length of Robot Arm

xiv

LIST OF PUBLICATIONS

The following are the list of journal publications of this research work:

- Osman, N. S., A. Rahman, M. A., Abd. Rahman, A. A., Kamsani, S. H., Bali Mohamad, B. M., Kamsani, S. H., Mohamad, E., Zaini, Z.A. & Ab Rahman, M. F. (2017). Configuring Robot Work Cell based on Multi-Shaped Layout Approach. International Journal of Automotive and Mechanical Engineering (IJAME). 14(4):4826-4845.
- Osman, N. S., A. Rahman, M. A., Abd. Rahman, A. A., Kamsani, S. H., Bali Mohamad, B. M., Kamsani, S. H., Mohamad, E., Zaini, Z.A. & Ab Rahman, M. F. (2017). Configuring Robot Work Cell in Manufacturing Industry. International Journal of Agile Systems and Management (IJASM). 10(3/4), 295-320.
- Osman, N. S., A. Rahman, M. A., Abd. Rahman, A. A., Kamsani, S. H., Bali Mohamad, B. M., Kamsani, S. H., Mohamad, E., Zaini, Z.A. & Ab Rahman, M. F. (2017). Development of an Automated Configuration System for Robot Work Cell. Journal of Advanced Manufacturing Technology (JAMT), 11(1 (1)), 113-128.
- A. Rahman, M. A., Osman, N. S., Boon, C. H., Poh, G. L. T., Abd. Rahman, A. A., Bali Mohamad, B. M., Kamsani, S. H., Mohamad, E., Zaini, Z.A. & Ab Rahman, M. F. (2016). Configuring Safe Industrial Robot Work Cell in Manufacturing Industry. Journal of Advanced Manufacturing Technology (JAMT), 10(2), 125-136.
- Development of Mathematical Models for Determining Optimal Robot Work Cell -Journal of Mechanical Engineering (JAMT) – Waiting for Feedback.

The following are the list of conference proceeding publications of this research work:

 Osman, N. S., A. Rahman, M. A., Abd. Rahman, A. A., Bali Mohamad, B. M., & Kamsani, S. H. (2017). Optimization of multiple robot configuration pattern using shape variant approach. Innovative Research and Industrial Dialogue.

- Osman, N. S., A. Rahman, M. A., Abd. Rahman, A. A., Bali Mohamad, B. M., & Kamsani, S. H. (2017). Determination of the Optimal Workspace and Manufacturing Throughput Time for Configuring Robot Work Cell. In Proceeding of Mechanical Engineering Research Day 2017.
- Osman, N. S., Rahman, M. A. A., Rahman, A. A., Kamsani, S. H., Mohamad, B. B., Mohamad, E., & Zaini, Z. A. (2017). Systematic Approach in Determining Workspace Area and Manufacturing Throughput Time for Configuring Robot Work Cell. Transdisciplinary Engineering: A Paradigm Shift, 959.
- Osman, N. S., Rahman, M. A. A., Rahman, A. A., Kamsani, S. H., Mohamad, B. B., Mohamad, E., Zaini, Z.A., Ab Rahman, M.F. and Mohammad Hatta, M. N. H. (2017). Automated platform for designing multiple robot work cells. In IOP Conference Series: Materials Science and Engineering (Vol. 210, No. 1, p. 012061). IOP Publishing.

CHAPTER 1

INTRODUCTION

1.1 Research Background

Nowadays, manufacturing industry has faced a new environment where all the manufacturing competitors around the world have similar opportunities due to the globalization (Koren, 2010). Competition may happen even though they are producing similar functional products but located in different parts of the world (Wadhwa, 2012). Therefore, particular attention on productivity and quality of the products should be emphasized in order to satisfy customer demands (Lueth, 1992; Dalotă, 2011) as well as to win the manufacturing competition. As the result, an automated manufacturing system is required for this type of environment.

Automated manufacturing system has more advantages compared to the traditional system, i.e., they are more efficient and flexible and also may produce quality products rapidly and effectively, may decrease human errors, and also decrease the workload of the employees (Gardner, 1985; Mishev, 2006). Therefore, many manufacturing companies have started investing more in the automated manufacturing system (Ross, 1981; Mittal et al., 2017).

Thereafter, flexible manufacturing system (FMS) becomes a high demand for dealing with the global competition, rapidly changing technology and manufacturing organization. Also for settling the increasing trend in customer's demand for a greater variety, high quality and competitive cost (Choudhury et al., 2008; Altmann et al., 2017). One of the primary benefit of having FMS is manufacturing company may have the ability to reconfigure their current manufacturing system with a new convenient manufacturing system quickly in future (Abdi, 2009; A. Rahman & Mo, 2012c; Wu et al., 2015). This work will present a part of work towards the development of FMS.

Industrial robot plays a vital technology for FMS (Jain et al., 2015) and it has been used widely in several fields following the rapid development of the industrial technology, like the assembly, material handling, welding, spray painting, glazing or machine tending (Adrisano et al., 2007), drilling, cutting, transportation, stacking, measuring, laser processing (Morel, 2004; Li, 2006; Xiangquan et al., 2008) amongst others.

Figure 1.1: Worldwide Annual Supply of Industrial Robots (IFR, 2015)

Figure 1.1 presents the latest statistic issued by the International Federation of Robotics (IFR) in its 2015 World Robotics report. The utilization of industrial robot in manufacturing industry is shown to be increasing from 2013 to 2016. Following the current trends, they predicted that by 2018, global sales of industrial robots will grow on average by at least 15% yearly (IFR, 2015).

Increased demand of industrial robot has led the manufacturing industry encountered a new challenge in reconfiguring their current robot work cell as well as their future cell appropriately (Bojinov et al., 2002; Scholer et al., 2017). In addition, current market situation is unpredictable and frequently changes depending on customer demands (Koren et al., 1998; A. Rahman & Mo, 2010, 2012a, 2012b, 2012c; A. Rahman et al., 2016; Abdi et al., 2018) which is can also contributed to the challenge in configuration work.

Configuration work is referred to the laying out process where it is important to give profound impact on the performance of a particular system, not only on the adaptability to market demands, but also on reliability, productivity, product quality, and cost. Therefore, it is essential to understand the impact of proper selection of robot cell configuration for gaining an optimal performance (Koren et al., 1998).

Current configuration studies repot that a few vital parameters has been challenged in creating the optimal configuration layout. The parameters involve configuration time and cost, human and expert involvement and future investment (Bojinov et al., 2002b; Reinhart & Krug, 2010; A. Rahman & Mo, 2010, 2012a, 2012b, 2012c; Pellegrinelli et al., 2014; Spensieri et al., 2016).

In this work, a new flexible approach for configuring the current and future robot work cell for manufacturing industry was proposed where it may assist in improving the configuration time and cost, optimizing the human and expert involvement as well as capitalizing the available resource for investment.

1.2 Problem Statement

The manufacturing industry has become more competitive in providing high quality products or services to satisfy the customer needs. Automated manufacturing system with flexible automation is in demand in any industry which it could deal with the current market