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ABSTRACT 

 

 

Underwater Remotely Operated Crawler (ROC) is a class of the Unmanned Underwater 
Vehicle (UUV) that is tethered, unoccupied, manoeuvres on the seabed and remotely 
operated by a pilot from a platform. Underwater characteristic parameters such as added 
mass, buoyancy, hydrodynamic forces, underwater currents, including pressure could 
considerably affect and reduce the mobility of the ROC. The challenges faced by the ROCs 
are that the needs to reduce the overshoot in the system response, including, the time 
response and settling time. For yaw control (a motion around the z-axis), an occurrence of 
an overshoot in the system response is highly intolerable. Reducing the overshoot in the 
ROC trajectory is crucial since there are many challenging underwater natures and 
underwater vehicle control problems while studies on finding the solutions are still ongoing 
to find an improvement. Conventional Proportional-Integral-Derivative (PID) controller is 
not robust to be applied in the ROC due to the non-linear dynamic model of the ROC and 
underwater conditions. Besides that, by reducing the overshoot, the ROC mobility will be 
much more efficient and provided a reliable platform for underwater data mining. This study 
is focused to give an optimum performance of yaw control without overshoot in the system 
response and faster time response. This research begins by designing an underwater ROC as 
the research’s platform. Then, the designed ROC is simulated by using SolidWorks software 
obtain the analysis of structural integrity and hydrodynamic properties. System identification 
technique is conducted to obtain the empirical modelling design of the fabricated ROC which 
equipped with Inertial Measurement Unit (IMU) sensor. The fuzzy logic controller (FLC) is 
designed based on 5 by 5 rule matrix which has to deal with fuzzification, rule base, inference 
mechanism and defuzzification operations. A simplification of the FLC is proposed and the 
method is called Single Input Fuzzy Logic Controller (SIFLC). The simplification is 
achieved by applying the “signed distance method” where the SIFLC reduces the two-input 
FLC to a single input FLC. In other words, SIFLC is based on the signed distance method 
which eventually reduces the controller as single input-single output (SISO) controller. A 
PID controller is designed for the purpose of benchmarking with the FLC and SIFLC. SIFLC 
has the capability to adapt the non-linear underwater parameters (currents, waves and etc.). 
This research has discussed and compared the performance of PID, FLC and SIFLC. The 
algorithm is verified in MATLAB/Simulink software. Based on the results, SIFLC provides 
more robust and reliable control system. Based on the computation results, SIFLC reduces 
the percentage of overshoot (%OS) of the system and achieve 0.121%, while other 
controllers (PID and FLC) 4.4% and 1.7% respectively. Even that so, this does not mean that 
PID and FLC are not reliable but due to the presence of %OS. 
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ABSTRAK 

 

 

Perangkak Kawalan Jauh (ROC) merupakan satu kelas Kenderaan Dasar Laut Tanpa 
Pemandu (UUV) yang terikat dengan kabel, tanpa pemandu, beroperasi di dasar laut dan 
dikawal oleh seseorang dari platform permukaan. Ciri dalam air seperti penambahan jisim, 
daya apung, daya hidrodinamik, arus dasar laut serta tekanan boleh menjejaskan dan 
membataskan pergerakan ROC. Cabaran dihadapi ROC adalah keperluan mengurangkan 
peratusan terlajak dalam tindak balas sistem kawalan termasuk masa tindak balas dan masa 
penetapan. Untuk kawalan rewang (pergerakkan sekitar paksi z), tindak balas lajak adalah 
sangat tidak boleh diterima. Mengurangkan lanjakkan dalam trajektori ROC adalah penting 
kerana terdapat banyak cabaran dalam masalah kawalan kenderaan bawah air dan 
penyelidikan kepeda mencari penyelesaian masih lagi dijalankan. Sistem kawalan Terbitan-
Berkadar-Terus (PID) tidak dapat digunakan kepada ROC disebabkan model ROC tidak 
berkadar terus serta keaadaan dasar laut. Selain itu, dengan mengurangkan lajakkan, 
pergerakan ROC akan menjadi lebih cekap dan menyediakan sebuah platform yang boleh 
dipercayai untuk pengumpulan data dia bawah air. Kajian in memfokuskan untuk 
menghasilkan keupayaan yang optima tanpa lajakan dalam tindak balas system dan tindak 
balas masa yang cepat. Kajian ini dimulakan dengan mereka perangkak dalam air kawalan 
jauh sebagai barang kajaian. Kemudian, rekaan ROC disimulasikan menggunakan perisian 
SolidWorks untuk mendapatkan analisa struktur dan ciri hidrodinamik. Teknik pengenalan 
system digunakan untuk mendapatkan model empirikal ROC yang dilengkapi dengan sensor 
IMU. Pengawal Logik Samar (FLC) direka berdasarkan matrik 5 kali 5 yang memerlukan 
proses pengkaburan, dasar syarat, mekanisma kesimpulan dan pengkaburan. Pengawal 
pintar satu input diperkenalkan dan kaedah ini dipanggil Satu Input Pengawal Logik Samar 
(SIFLC). Pemudahan dihasilkan dengan menggunakan kaedah jarak ditandakan iaitu 
SIFLC mengurangkan dua input FLC kepada satu input FLC. Dalam kata lain, SIFLC ialah 
berdasarkan kaedah jarak ditandakan yang akhirnya mengurangkan input pengawal iaitu 
Satu Input Satu pengeluaran. Pengawal PID dihasilkan bagi tujuan penanda aras kepada 
FLC dan SIFLC. SIFLC berupaya untuk menyesuaikan parameter tidak berkadar terus 
(arus, ombak dan sebagainya. Kajian ini membincangkan dan membandingkan keupayaan 
PID, FLC dan SIFLC. Algoritma ini disahakan menggunakan perisian MATLAB/Simulink. 
Berdasarkan keputusan simulasi, SIFLC mengurangkan peratusan lajakan (%OS) system 
dan mencapai 0.121% manakan (PID dan FLC) masing-masing 4.4% dan 1.7%. Namun 
demikian, ini tidak bermakna PID dan FLC tidak dapat diharapkan kerana kewujudan %OS. 
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CHAPTER 1 

 

INTRODUCTION 

 

This chapter is an introduction to the project that covers briefly about the research 

background. The motivation and significance of the research are also included in this 

chapter. Other significant contents are also being determined such as motivation, problem 

statements, objectives, scopes and report outlines of this research. Each stated content is 

explained in detail as an execution of the report outline. 

 

1.1  Introduction 

Ocean exploration technologies have been developed over the last few decades and 

capable of meeting many challenges impose during the exploration. The technologies 

available today includes platforms such as vessels and submersibles, observing systems and 

sensors, communication technologies and diving technologies (Oceanexplorer, 2014a). By 

having all these technologies, humans can explore the underwater environment, searching 

for new specimens, scientific research, oil exploration, hull inspections or even for search 

and rescue (SAR) operation. Discoveries that are made through ocean exploration are 

important to reduce the unknowns in the ocean areas. Besides that, an underwater exploration 

provides a high-value environmental intelligence needed to address both science and 

management needs. Exploration helps to ensure that ocean resources are well managed for 
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future generations. The knowledge from underwater exploration is often the only source for 

basic information needed to respond appropriately in the face of deep-sea disasters 

(Oceanexplorer, 2014b). 

Underwater vehicles are among of the technology often used in ocean exploration. 

This kind of technology increasingly sophisticated and more advanced than decades ago. 

The current technologies have removed the need for pilots to be in the vessels and dive into 

the deep water. This will reduce the risk taken for a man as the need for deeper and further 

underwater exploration. Smaller and versatile design of underwater vehicles could be made 

since there is no space needed for the man inside the vessel. As the human is removed from 

the advancing systems, the critical constraints are removed and yet poses the problem of 

guaranteeing the vehicle’s effective capabilities, performing tasks, structure integrity and 

controlling system including its autonomy. 

There are various types of underwater vehicles available today. These submersibles 

can be classified into few types which are; Human Occupied Vehicle (HOV), Remotely 

Operated Vehicle (ROV), Autonomous Underwater Vehicle (AUV) and Hybrid Remotely 

Operated Vehicle (HROV) (Ocean Portal | Smithsonian, 2016) as shown in Figure 1.1. The 

HOV is a vessel or submarine that carries men or scientists themselves to the deep ocean in 

order to investigate first-hand the environments and specimens there while ROVs and AUVs 

are the unmanned craft that let explorers observe and study those places they cannot dive. 

ROVs are remotely controlled through a cable which connects to the operator on the land or 

surface platform, limiting their mobility. ROV either in the shape of a submarine or as 

Remotely Operated Crawler (ROC). New developments in automation led to the creation of 

AUVs. This type of underwater technology eliminates pilots or operators since the robotic 

submarines are programmed in advance and do not receive any instruction from the surface. 
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The latest technology developed is the HROV which is the combination of ROV with AUV, 

or ROV with ROC. HROV can operate independently with or without a pilot. 

As technology continues to advance in the ROV industry, the increasing need for a 

robust controller becomes apparent. The field of research in focusing one of the types of 

ROV which a specific discussion on the design and development of the controller for a ROC. 

Figure 1.1 (e) shows the Remotely Operated Sea Crawler (Project ROSCo) developed at 

Florida Tech. ROSCo is the new underwater vehicle concept with the ability to take a wide 

range of underwater excavation project (Florida Tech eCurrent, 2017). The ROC will 

become the platform of the research on designing an Improved Single Input Fuzzy Logic 

Controller (SIFLC) for the yaw motion of the vehicle. Previously, the use of underwater 

crawler is quite unpopular than the submarine type ROV. So, it is important to design and 

build a ROC that fits into any field. The significance of this study is to target wide area of 

usage for the ROC such as the ROC can be used in archaeology, seabed monitoring for 

earthquakes, search and rescue, offshore maintenance and even military purposes. The ROC 

will be working alongside with other ROV. Both vehicles have their advantages and 

disadvantages. By working alongside, both vehicles can give more data and sight of a certain 

situation, for example, SAR operation. 
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Figure 1.1: Types of Underwater Vehicles. (a) Human Operated Vehicle (HOV) adapted from 
Atlantis submarines.travel (2017). (b) Remotely Operated Vehicle (ROV) adapted from 
Shipwrecks: Artifacts & Treasure (2017). (c) Autonomous Underwater Vehicle (AUV) 

adapted from Exercise, G. (2018). (d) Hybrid Remotely Operated Vehicle (HROV) adapted 
from MBARI (2017). (e) Underwater Remotely Operated Crawler (ROC) Adapted from 

Florida Tech eCurrent (2017).  
 

For depth control of the ROV, an existence of overshoot in the system response is 

highly hazardous. Clearly, an overshoot in the ROV vertical trajectory may cause damages 

to both the ROV and the inspected structure. Maintaining the position of a small scale ROV 
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within its working area is difficult even for experienced ROV pilots, especially in the 

presence of underwater currents and waves (Aras and Abdullah, 2015). The operation of 

ROC also has the same problems in overshoot, rise time and settling time in the control 

system. Instead of vertical trajectory, ROC is operated on the x-axis and y-axis which is on 

the horizontal trajectory torque motors. Thus, this project focuses on controlling the ROC 

horizontal trajectory as the ROC tries to remain on the desired path and minimize its 

overshoot, rise time and settling time.  

First of all, this project begins by creating an empirical modelling in order to capture 

the dynamics of the ROC by using system identification technique. From the modelling, an 

intelligent controller is implemented for yaw control of the ROC based on the Single Input 

Fuzzy Logic Controller (SIFLC). Later, the Improved SIFLC is designed to adapt the 

parameters depending on set point. The algorithm is then verified in MATLAB/Simulink 

platform to test the robustness of the controller’ output responses. The results are verified 

that this technique can effectively control the horizontal path of the ROC with no overshoot 

including minimizing the settling time and the rise time. 

 

1.2  Motivation  

In this thesis, there are a few reasons that motivate to carry out the research. The 

reasons are outlined and justified based on information gathered from previous research on 

ROV and ROC. These statements explain the factors that affecting the manoeuvrability and 

navigating the underwater vehicles such as human factors, underwater environment, motion 

control system and the limitation of those vehicles.  

 


