

Faculty of Electrical Engineering

OPTIMAL DESIGN AND POSITIONING CONTROL PERFORMANCE OF A 2-DOF ROBOTIC FINGER

Mohamad Adzeem bin Mohamad Yuden

Master of Science in Mechatronic Engineering

2018

C Universiti Teknikal Malaysia Melaka

OPTIMAL DESIGN AND POSITIONING CONTROL PERFORMANCE OF A 2-DOF ROBOTIC FINGER

MOHAMAD ADZEEM BIN MOHAMAD YUDEN

A thesis submitted in fulfilment of the requirements for the degree of Master of Science in Mechatronic Engineering

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

DECLARATION

I declare that this thesis entitled "Optimal Design and Positioning Control Performance of a 2-DOF Robotic Finger" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	Mohamad Adzeem bin Mohamad Yuden
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Mechatronic Engineering.

Signature	:	
Supervisor's Name	:	Assoc. Prof. Dr. Mariam binti Md Ghazaly
Date	:	

DEDICATION

To my beloved mother and father

ABSTRACT

This research focuses on the positioning control performances of two degrees of freedom (2-DOF) robotic finger mechanism in achieving precision motion control. The research outcomes were expected to contribute in wider robotic hands for precision applications and suggest that the advantages of 2-DOF robotic finger can be carried over to precision and dexterous tasks. The research investigates the design of a 2-DOF robotic finger mechanism and its control strategies for achieving high precision grasping as initial research towards developing a multi-fingered robotic hand system. Behaviors such as instability, large steadystate error and poor transient performance often occurred in the robotic hand mechanism. Therefore, the goal of this research is to design a 2-DOF robotic finger mechanism and compare the performances of several controllers for positioning motion control and evaluate the effectiveness of controllers by Point-to-Point (PTP) control and tracking control. In this research, the proposed controllers will depend on the angular position control of each motor joints, i.e. the position control of the 2-DOF robotic finger mechanism. In order to achieve the research objectives, the research was implemented in three (3) main phases. Phase 1 involve the optimization of the robotic hand design using Finite Element Analysis (FEA) using Solidworks software and its experimental setup. In Phase 2, the robotic finger mechanism mathematical modeling and system identification methods were discussed and compared. In phase 3, two categories of control system experiments were carried out which are the open-loop control system and the closed-loop control system. For open-loop system, the evaluation was done using the step input signal. Meanwhile, the closed-loop system was carried out for uncompensated and compensated system using several reference angles. Three different control startegies namely (i) Proportional Integral Derivative (PID) controller (ii) Fuzzy Logic controller (FLC) and (iii) Linear Quadratic Regulator (LQR) controller were chosen to be compared via simulation and experimental works. The controller results were validated by Point-to-Point (PTP) control and tracking control with frequency from 0.1 Hz to 0.5 Hz at different reference amplitudes. From the analyze results, it is proven that the Fuzzy controller gave the best performances and has higher level of adaptability for the PTP control with improvements in both response time by 97.9 % (0.075 s) and steady-state error by 99.5 % (0.01 °) in compared to the uncompensated system. Meanwhile, it was concluded that LQR controller exhibits the best tracking control performances. The LOR controller had demonstrated an improvement in steady-state error by 98.5 % (0.11 °) over the uncompensated system in a series of experimental tracking tests. It was also concluded that the 2-DOF robotic finger mechanism had also succeeded the grasping tasks with the specific reference trajectory using the Fuzzy controller.

ABSTRAK

Kajian ini menumpukan kepada prestasi kawalan kedudukan mekanisme jari robot dua tahap kebebasan (2-DOF) dalam mencapai ketepatan gerakan. Hasil penyelidikan dijangka menyumbang kepada tangan robot yang lebih luas untuk penggunaan ketepatan dan mencadangkan bahawa kelebihan jari robot 2-DOF dapat dibawa kepada tugas-tugas yang mahir dan tepat. Penyelidikan ini mengkaji reka bentuk mekanisme jari robot 2-DOF dan kaedah-kaedah kawalannya untuk mencapai ketepatan genggaman yang tinggi sebagai langkah penyelidikan awal ke arah menghasilkan sistem tangan robot pelbagai jari. Kelakuan seperti ketidakstabilan, kesilapan keadaan mantap yang besar dan prestasi fana yang lemah sering terjadi dalam mekanisme tangan robot. Oleh itu, matlamat penyelidikan ini adalah untuk merekabentuk mekanisme jari robot 2-DOF dan membandingkan prestasi beberapa pengawal untuk mengawal pergerakan dan menilai keberkesanan pengawal dengan cara kawalan titik-ke-titik (PTP) dan kawalan penjejakan. Dalam kajian ini, pengawal yang dicadangkan bergantung kepada posisi kawalan setiap sudut sendi motor, iaitu kedudukan kawalan mekanisme jari robot 2-DOF. Untuk mencapai matlamat penvelidikan ini, penvelidikan telah dilaksanakan dalam tiga (3) fasa utama. Tahap 1 melibatkan pengoptimuman reka bentuk tangan robot menggunakan analisis unsur terhingga (FEA) menggunakan perisian Solidworks dan persediaan ujikaji. Dalam Fasa 2, kaedah model matematik dan pengenalan sistem mekanisme jari robot dibincangkan dan dibandingkan. Dalam fasa 3, dua kategori ujikaji sistem kawalan telah dijalankan iaitu sistem gelung terbuka dan sistem gelung tertutup. Bagi sistem gelung terbuka, penilaian dilakukan menggunakan isyarat masukan langkah. Sementara itu, sistem gelung tertutup telah dijalankan untuk sistem tanpa pampasan dan sistem pampasan menggunakan beberapa sudut rujukan. Tiga kawalan yang berbeza iaitu (i) pengawal berkadar dengan kemahiran dan terbitan (PID) (ii) Pengawal Logik Fuzzy (FLC) dan (iii) Pengawal Kuadrat Latar Belakang (LOR) telah dipilih untuk dibandingkan dengan penyelakuan dan kerja ujikaji. Hasil pengawal disahkan oleh kawalan titik-ke-titik (PTP) dan kawalan penjejakan dengan frekuensi dari 0.1 Hz hingga 0.5 Hz pada amplitud rujukan yang berlainan. Dari hasil analisa, terbukti bahawa pengawal Fuzzy memberikan prestasi yang terbaik dan mempunyai tahap penyesuaian yang lebih tinggi untuk kawalan PTP dengan peningkatan dalam kedua-dua masa tindak balas sebanyak 97.9% (0.075 s) dan ralat keadaan mantap sebanyak 99.5% (0.01°) berbanding dengan sistem yang tidak dikompensasikan. Sementara itu, disimpulkan bahawa pengawal LQR mempamerkan prestasi kawalan penjejakan terbaik. Pengawal LQR telah menunjukkan peningkatan dalam ralat keadaan mantap sebanyak 98.5% (0.11°) ke atas sistem tidak dikompensasikan dalam satu siri eksperimen ujian penjejakan. Disimpulkan juga bahawa mekanisme jari robot 2-DOF juga telah berjaya melakukan genggaman kerja dengan trajektori rujukan khusus menggunakan pengawal Fuzzy.

ACKNOWLEDGEMENTS

Firstly, I would like to express my deepest appreciation to those who provided me support and expertise for the past few months. First of all, I would like to thank my respective supervisor, Assoc. Prof. Dr. Mariam binti Md Ghazaly and co-supervisor, Dr. Aliza binti Che Amran for guiding me all the way to accomplish my research work. I am grateful for having such a concerned and dedicated supervisors to guide and support me in this research. Under their supervisions, this research work was closely directed and monitored besides the abundance of encouragements and ideas towards the completion of this thesis. A special thanks to my close friend Izzati binti Yusri, who shared the ups and downs as a research students in Motion Control Research Laboratory (MCON Research Lab) and also for sharing the knowledges throughout my research journey. I also would like to dedicate my appreciation to all my friends, lecturers and technitions under MCON Research Lab and to research members under the Department of Mechatronic Engineering, Faculty of Electrical Engineering (FKE), UTeM for sharing their knowledges and experiences, which had make this research possible. Last, but not least, I would like to express my gratitude to my father, Mohamad Yuden bin Zakaria and dearest mother, Noor Hayati binti Mohd Yazid who were always there for me, and had ensure my good health and continuously giving moral support and advices.

TABLE OF CONTENTS

DECLARATION	
APPROVAL	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	viii
LIST OF APPENDICES	xiv
LIST OF ABBREVIATIONS	xvi
LIST OF SYMBOLS	xviii
LIST OF PUBLICATIONS	xxi

CHAPTER

1.	INTR	ODUCTIO	DN	1
	1.1	Introduc	tion	1
	1.2	Problem	Statements	3
	1.3	Objectiv	/es	4
	1.4	Scopes of	of Research	5
	1.5	Significa	ant of Research	6
	1.6	Thesis C	Dutline	6
2.	LITE	RATURE	REVIEW	8
	2.1	Introduc	tion	8
	2.2	Past Stu	dies on Robotic Hand System	9
	2.3	Past stud	dies on Optimal Design of Robotic Hand System	13
	2.4	Past Stu	dies on Robotic Hand Actuator	14
	2.5	Review	on Robotic Hand Controller Strategies	18
		2.5.1	Review on Proportional Integral Derivative (PID)	21
			Controller	
		2.5.2		27
		2.5.3	Review on Linear Quadratic Regulator (LQR)	31
			Controller	
	2.6	Summar	ry of Chapter 2	37
3.	RESE	CARCH M	ETHODOLOGY	38
	3.1	Introduc	tion	38
	3.2	Construe	ction Design of Robotic Hand	41
	3.3	Design (Optimization using Finite Element Analysis (FEA)	42
	3.4	Robotic	Hand System Prototype and Experimental Setup	45
	3.5	2-DOF I	Robotic Finger Mechanism	48

	3.6	Modelling and System Identification	50
		3.6.1 System Identification	50
		3.6.2 Mathematical Modeling	51
	3.7	Open-Loop Experiment	59
	3.8	Controller Concepts and Designs Procedures	59
		3.8.1 Proportional Integral Derivative (PID) Controller	60
		3.8.2 Fuzzy Logic Controller (FLC)	63
		3.8.3 Linear Quadratic Regulator (LQR) Controller	67
	3.9	Performance Characteristic (Time Domain)	72
	3.10	Uncompensated Closed-Loop Experiment	73
	3.11	Compensated Closed-Loop Experiment	74
		3.11.1 Point-to-Point (PTP) Positioning Experiment	74
		3.11.2 Sinusoidal Wave Tracking Experiment	75
		3.11.3 Grasping Tracking Experiment	78
	3.12	Summary Chapter 3	79
4.	RESU	JLTS AND ANALYSIS	80
	4.1	Introduction	80
	4.2	Finite Element Analysis (FEA)	81
		4.2.1 Stress Force Analysis	82
		4.2.2 Deformation Force Analysis	83
	4.3	Open-Loop Experiment	87
	4.4	Controller Analysis	91
		4.4.1 Proportional Integral Derivative (PID) Controller	92
		4.4.2 Fuzzy Logic Controller (FLC)	96
		4.4.3 Linear Quadratic Regulator (LQR) Controller	99
	4.5	Controller Performances	100
		4.5.1 Point-to-Point (PTP) Performance	101
		4.5.2 Sinusoidal Wave Tracking Performance	117
		4.5.3 Grasping Tracking Performance	130
	4.6	Summary of Chapter 4	132
5.	CON	CLUSIONS AND RECOMMENDATIONS	134
	5.1	Conclusions	134
	5.2	Recommendations for Future Research	137
	5.3	Research Contribution	138
REF	FERENC	ES	140
APP	PENDIX		149

v

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Comparison between the electric motors applied to robotic hands and robotic fingers	17
2.2	Comparison of PD and LQR controller	34
2.3	Comparison of controller designs for robotic hand	36
3.1	Parameter designs of the developed robotic hand	42
3.2	Parameter specifications of 2-DOF robotic finger	49
3.3	Mathematical modeling parameters of 2-DOF robotic finger mechanism	54
3.4	Ziegler-Nichols tuning formula method	63
3.5	Rule base system for Fuzzy controller	67
3.6	Parameters for PTP trajectory control experiments	75
3.7	Parameters for sinusoidal wave tracking error experiments	76
3.8	Parameters for grasping tracking experiments	79
4.1	System identification of Motor 1 and Motor 2 for 10 times repeatability	89
4.2	Parameters of the motor open-loop response	91
4.3	Fine-tuned PID parameters of Motor 1 and Motor 2	94
4.4	Comparison of simulation step input response at angle of 15 $^{\circ}$ for tuning PID controller of Motor 1 and Motor 2	95
4.5	Summarize of tuning simulation for the FLC for Motor 1	97
4.6	Summarize of tuning simulation for the FLC for Motor 2	98

4.7	Summarize of tuning simulation for the LQR controller for Motor 1 and Motor 2	100
4.8	Experimental uncompensated closed-loop step response of Motor 1 and Motor 2 at angle of 15 $^\circ$	102
4.9	PID closed-loop experiment of Motor 1 and Motor 2 at angle of 15 °, 30 ° and 40 °	106
4.10	FLC closed-loop experiment of Motor 1 and Motor 2 at angle of 15 °, 30 ° and 40 °	110
4.11	LQR closed-loop experiment of Motor 1 and Motor 2 at angle of 15 °, 30 ° and 40 °	113
4.12	Transient analysis of PID, FLC and LQR controller at different angles of Motor 1	115
4.13	Transient analysis of PID, FLC and LQR controller at different angles of Motor 2	116
4.14	Maximum error for tracking tests of Motor 1	129
4.15	Maximum error for tracking tests of Motor 2	129

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Fuzzy PWM-PID control of artificial finger for motion tracking	9
2.2	Conventional type hand and anthropomorphic type hand	11
2.3	HIRO III Hand mechanism using electric motor	15
2.4	Operation finger with high motion control	19
2.5	Different types of controlling schemes	21
2.6	PID control system of robotic hand	22
2.7	Comparison of joint tracking between PID and adaptive Fuzzy PID controller	23
2.8	PID position control of robotic finger	24
2.9	Transient response of robotic finger for different angles after PID tuning	25
2.10	PID controller with friction compensation	26
2.11	The response of finger when it is controlled by PID-PWM controller	26
2.12	Intelligent control using sinusoidal wave signal	27
2.13	Structure of Fuzzy controller	28
2.14	Comparison of PWM-PID controller and Fuzzy PWM-PID controller to the artificial fingertip	30
2.15	Comparison of PD, PID, FLC and hybrid FLC+PD for tracking errors of joint 1 and joint 2 for two-link thumb	30
2.16	A typical LQR controller used in the robotic system	32

2.17	Performance comparison between PID, Fuzzy and LQR controller of DC motor in unit step response	34
2.18	Performance comparison between PID, Fuzzy and LQR controller of DC motor in signal tracking	34
3.1	Flow chart of whole methodology	40
3.2	The robotic hand design via Solidworks software	41
3.3	Solid mesh type of developed robotic hand via FEA simulation	44
3.4	Melting point experiment using hotplate stirrer machine	45
3.5	Illustrated diagram for the developed robotic hand experimental setup	47
3.6	Experimental setup for the developed robotic hand	47
3.7	View of the developed robotic hand (a) isometric view (b) side view	48
3.8	Schematic diagram of 2-DOF robotic finger (Finger B)	49
3.9	Two degrees of freedom translational mechanical system	51
3.10	Block diagram represents the translational system	52
3.11	All forces act on M_1	52
3.12	All forces act on M_2	52
3.13	Schematic diagram of a 2-DOF robotic finger mechanism at each joint	54
3.14	Schematic diagram of DC micro motor armature circuit	55
3.15	Typical equivalent mechanical loading on a DC micro motor	55
3.16	Step input signal to drive motor	59
3.17	The block diagram structure of the compensated closed- loop system with PID controller	61
3.18	The block diagram structure of the compensated closed- loop system with FLC	64

3.19	The block diagram of Mamdani-type Fuzzy controller	64
3.20	All membership functions for two inputs and one output variables of FLC	66
3.21	The output surface view of the Fuzzy controller	67
3.22	The block diagram structure of the compensated closed- loop system with LQR controller	68
3.23	The block diagram structure of the uncompensated closed- system for the 2-DOF robotic finger	73
3.24	The motion of robotic finger when 1.0 Hz is applied	76
4.1	Structure of Chapter 4	81
4.2	Robotic hand stress force analysis of ABS plastic and PLA plastic	83
4.3	Robotic hand deformation force analysis of ABS plastic and PLA plastic	84
4.4	FEA force simulation test for robotic hand materials structure (a) Von-Mises stress and (b) deformation	85
4.5	FEA heat simulation test for robotic hand materials structure (a) Von-Mises stress and (b) deformation	86
4.6	Melting point experiment for the robotic hand material structure	87
4.7	Relationship between input signal and angle rotation of Motor 1 and Motor 2	88
4.8	The open-loop response between the mathematical modeling and system identification of the Motor 1 and Motor 2	90
4.9	Time response to proposed input signal of Motor 1 and Motor 2	91
4.10	Ziegler-Nichols tuning simulation at angle of 15 $^{\circ}$ step input signal of Motor 1	92
4.11	Ziegler-Nichols tuning simulation at angle of 15 $^{\circ}$ step input signal of Motor 2	93

4.12	Zoom view Ziegler-Nichols simulation at angle of 15 ° step input signal of Motor 2	93
4.13	Comparison of P, PI, and PID closed-loop simulation performance Motor 1 and Motor 2	94
4.14	Optimization simulation of FLC parameters for optimal control Motor 1	97
4.15	Optimization simulation of FLC parameters for optimal control Motor 2	98
4.16	Optimization simulation of LQR control parameters for optimal control for Motor 1 and Motor 2	100
4.17	Uncompensated closed-loop simulation and experimental work with angle of 15 $^\circ$	102
4.18	PID controller experimental and simulation results for Motor 1 with several reference angle (a) 15 $^{\circ}$ (b) 30 $^{\circ}$ (c) 40 $^{\circ}$	104
4.19	PID controller experimental and simulation results for Motor 2 with several reference angle (a) 15 $^{\circ}$ (b) 30 $^{\circ}$ (c) 40 $^{\circ}$	105
4.20	FLC experimental and simulation results for Motor 1 with several reference angle (a) 15 $^{\circ}$ (b) 30 $^{\circ}$ (c) 40 $^{\circ}$	108
4.21	FLC experimental and simulation results for Motor 2 with several reference angle (a) 15 $^{\circ}$ (b) 30 $^{\circ}$ (c) 40 $^{\circ}$	109
4.22	LQR controller experimental and simulation results for Motor 1 with several reference angle (a) 15 $^{\circ}$ (b) 30 $^{\circ}$ (c) 40 $^{\circ}$	111
4.23	LQR controller experimental and simulation results for Motor 2 with several reference angle (a) 15 $^{\circ}$ (b) 30 $^{\circ}$ (c) 40 $^{\circ}$	112
4.24	Experimental step response between PID, FLC and LQR controller with reference angle 15 ° Motor 1 and Motor 2	114
4.25	Experimental step response between PID, FLC and LQR controller with reference angle 30 ° Motor 1 and Motor 2	114
4.26	Experimental step response between PID, FLC and LQR controller with reference angle 40 ° Motor 1 and Motor 2	115

4.27	Uncompensated closed-loop sinusoidal tracking response with frequency at 0.1 Hz with several reference angle (a) 15 ° and (b) 40 ° for Motor 1 and Motor 2	119
4.28	Uncompensated closed-loop sinusoidal tracking response with frequency at 0.5 Hz with several reference angle (a) 15 ° and (b) 40 ° for Motor 1 and Motor 2	120
4.29	Compensated closed-loop sinusoidal tracking response at frequency of 0.1 Hz with reference angle 15 $^{\circ}$ Motor 1 and Motor 2	124
4.30	Compensated closed-loop sinusoidal tracking response at frequency of 0.1 Hz with reference angle 30 $^{\circ}$ Motor 1 and Motor 2	125
4.31	Compensated closed-loop sinusoidal tracking response at frequency of 0.1 Hz with reference angle 40 $^{\circ}$ Motor 1 and Motor 2	125
4.32	Compensated closed-loop sinusoidal tracking response at frequency of 0.2 Hz with reference angle 15 $^{\circ}$ Motor 1 and Motor 2	126
4.33	Compensated closed-loop sinusoidal tracking response at frequency of 0.2 Hz with reference angle 30 ° Motor 1 and Motor 2	126
4.34	Compensated closed-loop sinusoidal tracking response at frequency of 0.2 Hz with reference angle 40 $^{\circ}$ Motor 1 and Motor 2	127
4.35	Compensated closed-loop sinusoidal tracking response at frequency of 0.5 Hz with reference angle 15 ° Motor 1 and Motor 2	127
4.36	Compensated closed-loop sinusoidal tracking response at frequency of 0.5 Hz with reference angle 30 ° Motor 1 and Motor 2	128
4.37	Compensated closed-loop sinusoidal tracking response at frequency of 0.5 Hz with reference angle 40 $^{\circ}$ Motor 1 and Motor 2	128
4.38	Experimental compensated closed-loop grasping tracking response of Motor 1	131

4.39	Experimental compensated closed-loop grasping tracking response of Motor 2			
4.40	Grasping solid object experiment of 2-DOF robotic finger	132		

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A1	The open-loop system model block diagram	149
A2	Real time simulation and experimental open-loop block diagram	149
A3	The uncompensated closed-loop system	149
A4	System identification tools used in the research	150
A5	Compensated closed-loop system with PID controller using Matlab Simulink	151
A6	Compensated closed-loop system with FLC using Matlab Simulink	151
A7	Compensated closed-loop system LQR controller using Matlab Simulink	152
A8	Free body diagram control structure	152
A9	DC micro motor to microbox connection	152
A10	Characteristic of bevel gear	153
A11	Relationship between control signal and angle rotation of Motor 1 and Motor 2	154
A12	Uncompensated closed-loop simulation and experimental work with reference angle (a) 30 $^\circ$ and (b) 40 $^\circ$	155
A13	Experimental uncompensated closed-loop step response of Motor 1 and Motor 2 at angle of 30 $^\circ$ and 40 $^\circ$	156
A14	Simulation step input results of proposed controllers for Motor 1 with several reference angle (a) 15 $^{\circ}$ (b) 30 $^{\circ}$ (c) 40 $^{\circ}$	157

A15	Simulation step input results of proposed controllers for Motor 1 with several reference angle (a) 15 $^{\circ}$ (b) 30 $^{\circ}$ (c) 40 $^{\circ}$	158
A16	Uncompensated closed-loop sinusoidal tracking response with frequency at 0.1 Hz with reference angle 30 $^{\circ}$ for Motor 1 and Motor 2	159
A17	Uncompensated closed-loop sinusoidal tracking response with frequency at 0.2 Hz with several reference angle (a) 15 $^{\circ}$ (b) 30 $^{\circ}$ and (c) 40 $^{\circ}$ for Motor 1 and Motor 2	160
A18	Uncompensated closed-loop sinusoidal tracking response with frequency at 0.5 Hz with reference angle 30 $^{\circ}$ for Motor 1 and Motor 2	161
A19	Simulation compensated closed-loop grasping tracking response of Motor 1	162
A20	Simulation compensated closed-loop grasping tracking response of Motor 1	162

LIST OF ABBREVIATIONS

ABS	-	Acrylonitrile butadiene styrene
ANN	-	Artificial neural network
D	-	Derivative
DC	-	Direct current
DLR	-	Deutsches Luft and Raumfahrt
DOF	-	Degree of freedom
FEA	-	Finite element analysis
FLC	-	Fuzzy logic controller
GA	-	Genetic algorithm
H_{∞}	-	H - infinity
Ι	-	Integral
LQR	-	Linear quadratic regulator
MIT	-	Massachusetts Institute of Technology
Р	-	Proportional
PC	-	Personal computer
PC	-	Polycarbonate
PI	-	Proportional integral
PID	-	Proportional integral derivative
PLA	-	Polylactid acid
PLA PWM	-	Polylactid acid Pulse-width modulation

xvi

РТР	-	Point-to-point
SSE	-	Steady-state error

3D - Three dimensional

xvii

C Universiti Teknikal Malaysia Melaka

LIST OF SYMBOLS

Mathematical Symbol:

А	-	Ampere
е	-	Position error
e _{max}	-	Maximum tracking error
F	-	Force
G	-	Gravity = 9.81 m/s
K_i	-	Integral gain
K_p	-	Proportional gain
K_u	-	Ultimate proportional gain
kg	-	Kilogram
М	-	Mass
m	-	Meter
Ν	-	Newton
Р	-	Pressure
rad	-	Radian
S	-	Second
t	-	Time
Т	-	Torque
T_r	-	Rise time
T_s	-	Sampling time

xviii

T _{settle}	-	Settling time
V	-	Voltage
W	-	Angular velocity of motor
0	-	Degree
θ	-	Angle
θ_r	-	Reference angle
π	-	Pi
Ω	-	Ohm
%	-	Percentage
%OS	-	Overshoot percentage
∞	-	Infinity
+	-	Plus
_	-	Minus
±	-	Plus or minus
/	-	Divide
=	-	Equal

System Model Symbol:

Dm	-	Viscous damping coefficient of motor and load
E_a	-	Armature voltage
Ia	-	Armature current
J_m	-	Moment of inertia of motor and load
K_b	-	Motor back-emf constant
K_t	-	Motor torque constant
La	-	Armature inducatance

xix