

Faculty of Electrical Engineering

HIGH ACCURACY WALKING MOTION TRAJECTORY GENERATION PROFILE BASED ON 6-5-6-PSPB POLYNOMIAL SEGMENT WITH POLYNOMIAL BLEND

Marwan Qaid Abdulrazzaq Mohammed

Master of Science in Mechatronic Engineering

2018

C Universiti Teknikal Malaysia Melaka

HIGH ACCURACY WALKING MOTION TRAJECTORY GENERATION PROFILE BASED ON 6-5-6-PSPB POLYNOMIAL SEGMENT WITH POLYNOMIAL BLEND

MARWAN QAID ABDULRAZZAQ MOHAMMED

A thesis submitted

in fulfilment of the requirement for the degree of Master of Science in Mechatronics Engineering

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "High Accuracy Walking Motion Trajectory Generation Profile Based on 6-5-6-PSPB Polynomial Segment with Polynomial Blend" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in the candidature of any other degree.

Signature	:	
Name	:	Marwan Qaid Abdulrazzaq Mohammed
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion, this thesis is sufficient in terms of scope and quality for the award of Master of Science in Mechatronic Engineering.

Signature	:
Supervisor Name	: Assoc. Prof. Ts. Dr. Muhammad Fahmi Bin Miskon
Date	:

DEDICATION

To my beloved Mother (Wahbah), Father (Qaid), and Brother (Mohammed)

ABSTRACT

Many robots, such as humanoid robot, biped robot, and robotic exoskeleton, need human guide. Particularly, there is a strong need for devices to assist individuals who lost limb function due to illnesses or injuries. Thus, several methods of generating walking motion have been implemented in order to generate walking motion according to natural human behaviour for the exoskeleton robot system. Polynomial blend technique has implemented to generate the walking motion trajectory, where the polynomial blend refers to the combination of more than one polynomial. However, three constraints (angular position, velocity, and acceleration) have been imposed by the polynomial blend techniques where the constraint of angular jerk was neglected because involving the jerk constrain will be caused problem of the non-ideal match of kinematic constraints at via point. Based on the aforementioned problem, there are three objectives to be achieved in this project. The first objective is to investigate the trajectory profile for various kinematic constraints of walking motion condition when using polynomial equation. The second objective is to modify a technique for improving a trajectory generation method to solve the problem of non-ideal match of the kinematic constraints through via points that connects between successive segments of the human walking motion. The last objective is to validate the trajectory generation method by testing the trajectory generation methods based on simulation using SimMechanics as well as to ensure that the coefficients values of the polynomial equations are correctly obtained. In this project, 5th polynomial segment with the 6th polynomial blend (6-5-6 PSPB) trajectory is proposed that aims to reduce the error that increases because of non-ideal match between kinematic constraints at the via points of successive segments. The trajectory planning of the 6-5-6 PSPB is generated based on the stance and swing phases. Each phase is presented by one full of the 6-5-6 PSPB trajectory. In order to validate the 6-5-6 PSPB trajectory, simulation using SimMechanics is conducted to ensure that the coefficients values of the polynomial equations are correctly obtained. The result shows that the error was improved almost 0.1445 degree based on the proposed 6-5-6 PSPB compared with the 4-3-4 PSPB and 5-4-5 PSPB. Thus, the 6th -5th -6th Polynomial blend leads to impose the angular jerk kinematic constraint beside the angular position, velocity, and acceleration kinematic constraints during the whole walking motion trajectory. Minimizing the maximum jerk in joint space has a beneficial effect in terms of reducing the actuator and mechanical strain and joint wear and to limit excessive wear on the robot and the excitation of resonances so that the robot life-span is expanded.

ABSTRAK

Kebanyakan robot, seperti robot 'humanoid', robot berkaki, dan 'exoskeleton' robot, memerlukan panduan dari manusia. Terutamanya, terdapat keperluan yang kuat untuk peranti yang dapat membantu individu yang kehilangan fungsi anggota badan akibat dari penyakit atau pun kecederaan. Oleh itu, beberapa kaedah penjanaan pergerakan berjalan telah dilaksanakan bagi menghasilkan pergerakan berjalan seperti manusia secara semula jadi untuk sistem robot 'exoskeleton'. Teknik gabungan Polinomial telah dilaksanakan untuk penjanaan trajektori pergerakan, di mana campuran polinomial merujuk kepada gabungan lebih dari satu polinomial. Walau bagaimanapun, tiga kekangan (kedudukan sudut, halaju, dan pecutan) telah dalam teknik campuran polinomial dikenakan di mana kekangan sudut bergetar sentakan diabaikan kerana melibatkan kekangan getaran akan menyebabkan masalah ketidakseragaman kinematik di titik via. Berdasarkan masalah yang disebutkan di atas, terdapat tiga objektif yang perlu dicapai dalam projek ini. Objektif pertama adalah untuk menyiasat profil trajektori untuk pelbagai kekangan kinematik dalam keadaan bergerak semasa menggunakan persamaan polinomial. Objektif kedua adalah pengubahsuaian teknik bagi memperbaiki kaedah penjanaan trajektori bagi menyelesaikan masalah ketidakseragaman kinematik menerusi titik-titik yang pertemuan (via-point) antara segmen pergerakan berjalan manusia yang berturut-turut. Objektif terakhir adalah untuk mengesahkan kaedah penjanaan trajektori dengan menguji kaedah penjanaan trajektori secara simulasi menggunakan SimMechanics serta untuk memastikan nilai pekali persamaan polinomial diperolehi dengan betul. Dalam projek ini, segmen polinomial ke-5 dengan campuran polinomial ke-6 (6-5-6 PSPB) dicadangkan bertujuan untuk mengurangkan kesilapan yang meningkat kerana ketidakseragaman kinematik di titik pertemuan segmen yang berturut-turut. Penjanaan trajektori 6-5-6 PSPB dihasilkan berdasarkan kepada fasa berdiri dan beravun. Setiap fasa diwakili oleh satu set lengkap trajektori 6-5-6 PSPB. Untuk mengesahkan trajektori 6-5-6 PSPB, simulasi menggunakan SimMechanics dijalankan bagi memastikan nilai pekali persamaan polinomial yang diperolehi adalah betul. Hasil keputusan menunjukkan bahawa ralat telah diperbaiki hampir 0.1445 darjah menggunakan 6-5-6 PSPB berbanding dengan 4-3-4 PSPB dan 5-4-5 PSPB. Oleh itu, campuran Polynomial ke-6 ke-5 membawa kepada menekan kekangan kinematik sudut bergetar selain dari kedudukan sudut, halaju, dan pecutan kinematik semasa keseluruhan pergerakan trajektori berjalan. Mengurangkan getaran maksimum di ruang kerja memberikan kesan yang baik dari segi mengurangkan ketegangan penggerak dan mekanikal dan pemakaian sendi dan untuk menghadkan pemakaian berlebihan dan pengujaan resonans supaya jangka hayat robot dipanjangkan.

ACKNOWLEDGEMENTS

First and foremost, I would like to take this opportunity to express my sincere acknowledgement to my supervisor Associate Prof. Dr. Muhamad Fahmi Bin Miskon from the Faculty of Electrical Engineering Universiti Teknikal Malaysia Melaka (UTeM) for his essential supervision, support and encouragement towards the completion of this thesis.

I would also like to express my greatest gratitude to Dr. Fariz Bin Ali@Ibrahim from the Faculty of Electrical Engineering, co-supervisor of this research for his advices and suggestions. Special thanks to UTeM and UTeM Zamalah Scheme for the financial support throughout this research.

Thanks to all my colleagues, my beloved mother, father and siblings for their moral support in completing this degree. Finally, thanks to everyone who motivated me to finish up my research.

TABLE OF CONTENTS

DE(APF DEI	CLARA PROVA DICATI	TION L ION	_
ABS ABS ACI	STRAC STRAK KNOW	T LEDGEMENTS	i ii iii
TAI	BLE OF	CONTENTS	iv
LIS	T OF T	ABLES	vii
	T OF F.	IGURES	ix
	T OF A	PPENDICES DRDENIA TIONG	XII ·
	I OF A	BBREVIATIONS	XIV
LIS LIS	T OF S	UBLICATIONS	xv xvi
СН	A DTFR		
1.	INTI INTI	RODUCTION	1
	1.1	Motivation	3
	1.2	The Problem Statement	4
	1.3	Significance of the Problem	6
	1.4	Hypothesis	6
	1.5	The Objectives of the Research	6
	1.6	Scope and Limitations of the Project	7
	1.7	The Contribution of the Project	9
	1.8	Thesis Organization	9
2.	LITI	ERATURE REVIEW	12
	2.1	Motion Locomotion Fundamentals	12
		2.1.1 Dimensions of Motion	12
	2.2	Gait Motion Analysis	14
		2.2.1 Gait Motion Based on Two Phases: Stance and Swing Phases.	15
		2.2.2 Gait Motion Based on Four Phases: DS-Stance, SS-Stance, DS-Stance, and SS-Swing	15
		2.2.3 Gait Motion Based on Seven Phases	16
	2.3	Trajectory Generation	17
		2.3.1 Trajectory Types	18
		2.3.2 Path and Trajectory Approaches	21
	2.4	Categories of the Trajectory Generation Scheme	21
		2.4.1 Off-line Trajectory Scheme	21
		2.4.2 On-line Trajectory Scheme	22
	_	2.4.3 Hybrid Trajectory Scheme	23
	2.5	State of the Art Based on the Off-Line Trajectory Scheme	24
		2.5.1 Trajectory Planning	24
		2.5.2 Analysis Result Related To the Project Research	34

		2.5.3 Summary	34
3.	MET	THODOLOGY	37
	3.1	Comparative Study between Quintic and Cubic Polynomial	40
		Equations	
		3.1.1 Quintic Polynomial Equation	40
		3.1.2 Cubic Polynomial Equation	40
	2.2	3.1.3 Trajectory Generation	41
	3.2	Generating Motion Profiling Based on Different Sub-Phases	42
		3.2.1 Swing and Stance Phases Trajectory: Two Phases	43
		3.2.2 Single and Double Support Phases Trajectory: Four Phases 3.2.3 Seven Sub-Phases Based Trajectory	44
	33	The Effectiveness of the Kinematic Constraints on the Walking	ΔΔ
	5.5	Motion Profile	
		3.3.1 The Trajectory of the 4-3-4 PSPB	46
		3.3.2 The Trajectory of the 5-4-5 PSPB	47
		3 3 3 The Trajectory of the 6-5-6 PSPB	47
	34	Trajectory Planning Based on the Proposed 6-5-6 PSPB Technique	48
	5.1	3.4.1 Trajectory Planning	49
	35	Simulation Work	56
	5.0	3.5.1 The Purpose of Simulation	56
		3.5.2 Equipment and Material	57
		3.5.3 Simulation Setup	58
		3.5.4 Validation Based on Modeling of the Hip Joint Link	58
		3.5.5 Validation Based on Modeling of the Lower Limb Joints	60
	3.6	Statistical Analysis techniques	62
	3.7	Summary	63
4	RES	ULT AND DISCUSSION	64
т.	4 1	Comparison between Cubic and Quintic Polynomial	65
	1.1	4.1.1 Angular Position	65
		4.1.2 Angular Velocity	67
		4 1 3 Angular Acceleration	68
		4 1 4 Scaling Time	70
		4 1.5 Summary of the Comparison	72
	4.2	The Effectiveness of Having Different Sub-Phases on the Walking	73
		Motion	
		4.2.1 Angular Position	74
		4.2.2 Angular Velocity	76
		4.2.3 Angular Acceleration	79
		4.2.4 Summary of the Effectiveness of Having Different Number	81
		Phases on the Motion	
	4.3	The Comparison between 2-Phase, 4-Phases, 7-Phases and 6-5-6	82
		PSPB Profiles	
		4.3.1 Angular Position	82
		4.3.2 Angular Velocity	85
		4.3.3 Angular Acceleration	87
		4.3.4 Angular Jerk	89
		4.3.5 The Summary of the Comparison	90

	4.4	The Effectiveness of the Kinematic Constraints on the Walking	91
		Motion Profile	
		4.4.1 Accuracy Analysis of the PSPB Technique	91
		4.4.2 Simulation and Calculation Result	96
		4.4.3 Accuracy Analysis at Via Point	102
		4.4.4 Executed Time	110
	4.5	The 5th Polynomial Segments with 6th Polynomial Blend (6-5-6	112
		PSPB)	
		4.5.1 Angular Position	113
		4.5.2 Angular Velocity	115
		4.5.3 Angular Acceleration	116
	4.6	Summary	116
5.	CON	CLUSION AND RECOMMENDATION	119
	5.1	Conclusion	119
	5.2	Recommendation and Future Work	121
REF	EREN	CES	122
APPI	ENDIC	CES	136

LIST OF TABLES

TABLE

TITLE

PAGE

2.1	Advantages and disadvantages of the joint space trajectory.	19
2.2	Advantages and disadvantages of the Cartesian space trajectory.	19
2.3	Literature review of the off-line trajectory generation method	32
	(T.G.M).	
3.1	Kinematics constraints of the 4-3-4 PSPB-1 technique (Cook and	46
	Но, 1984).	
3.2	Kinematics constraints of the 4-3-4 PSPB-2 technique (Biagiotti	46
	and Melchiorri, 2008).	
3.3	Kinematics constraints of the 5-4-5 PSPB-1 technique (Boscariol	47
	et al., 2012).	
3.4	Kinematics constraints of 5-4-5 PSPB-2 technique (Biagiotti and	47
	Melchiorri, 2008).	
3.5	Kinematics constraints of the 6-5-6 PSPB-1 technique.	48
3.6	Kinematics constraints of the 6-5-6 PSPB-2 technique.	48
3.7	The mass, length, Centre of mass of link segments (Jamshidi et	59
	al., 2009).	
3.8	Mass, length, and Centre of mass for the four body segments	61
	(Jamshidi et al., 2009).	
4.1	RMSE and ADE based on the angular position.	66
4.2	RMSE and ADE based on the angular velocity.	68
4.3	RMSE and ADE based on the angular acceleration.	70
4.4	Velocity Max of real human data.	70
4.5	Acceleration Max of real human data.	71
4.6	Duration time based on velocity max.	71

4.7	Duration time based on acceleration max.	72
4.8	RMSE and ADE based on the angular position.	75
4.9	RMSE and ADE based on the angular velocity.	78
4.10	RMSE and ADE based on the angular acceleration	80
4.11	RMSE and ADE based on the angular position.	84
4.12	RMSE and ADE based on the angular velocity.	86
4.13	RMSE and ADE based on the angular acceleration.	88
4.14	RMSE and ADE based on the angular jerk.	90
4.15	RMSE, ADE, and SDE for hip joint	93
4.16	RMSE, ADE, and SDE for hip joint.	94
4.17	RMSE, ADE, and SDE for hip joint.	95
4.18	Root Mean Square Error (RMSE) of angular position.	103
4.19	Average Difference Error (ADE) of angular position.	104
4.20	Root Mean Square Error (RMSE) of angular velocity.	106
4.21	Average Difference Error (ADE) of angular velocity.	107
4.22	Root Mean Square Error (RMSE) of angular acceleration.	108
4.23	Average Difference Error (ADE) of angular acceleration.	109
4.24	Executed Time of PSPB Techniques.	111
4.25	RMSE, SDE and ADE based on the angular position, velocity,	113
	and acceleration.	

LIST OF FIGURES

TITLE

PAGE

FIGURE

1.1	Runge phenomenon illustration	3
2.1	Human Anatomy planes of the motion (Regan et al., 2015).	13
2.2	Walking gait phases (Zhang et al., 2010).	15
2.3	The Gait Cycle based on single and double support phases adapted	16
	from (Tsukahara et al., 2011).	
2.4	The human gait cycle based on seven sub-phases (Salleh, 2015).	17
2.5	Categories of trajectories (Zhao, 2016).	18
2.6	Joint and Cartesian space trajectory (Siciliano et al., 2009).	20
2.7	Off-line trajectory generation system (Miskon, and Yusof, 2014).	21
2.8	On-line trajectory generation system (Miskon and Yusof, 2014).	22
2.9	Hybrid system (Miskon and Yusof, 2014).	23
2.10	Linear segment with polynomial blend trajectory generation	25
2.11	Two 3rd order polynomial trajectory technique.	28
2.12	The 4-3-4 Trajectory technique.	29
2.13	The 4-4-5 trajectory technique.	30
2.14	The 5-4-5 trajectory technique.	31
2.15	The 5-4-5-5 trajectory technique.	32
3.1	Flow chart of the proposed 6-5-6 PSPB trajectory technique	39
3.2	Stance and swing phases of on stride length (Seo et al., 2013).	43
3.3	Methodology of Polynomial segment with Polynomial Blend	45
	(PSPB).	
3.4	The 6-5-6 PSPB trajectory planning.	49
3.5	System of off-line trajecroy planning.	58
3.6	Modeling design of hip link segment based on SimMechanics.	59

3.7	Modeling of hip link segment.	59
3.8	Modeling design of human leg.	60
3.9	The Leg Modeling design using SimMechanics.	61
4.1	Angular position profiles: (a) Hip joint, (b) Knee joint, (c) Ankle	66
	joint.	
4.2	Angular velocity profiles: (a) Hip joint, (b) Knee joint, (c) Ankle	67
	joint.	
4.3	Angular acceleration profiles: (a) Hip joint, (b) Knee joint, (c) Ankle	69
	joint.	
4.4	Comparison of angular position profiles with reference profile.	74
4.5	The difference error of angular position for each 0.01 sample data.	76
4.6	Comparison of angular velocity profiles with reference trajectory	77
	profile.	
4.7	The difference error of angular velocity for each 0.01 sample data.	78
4.8	Comparison of angular acceleration profiles with reference trajectory	79
	profile.	
4.9	The difference error of angular acceleration for each 0.01 sample	81
	data.	
4.10	Angular position profiles compared to the reference trajectory	83
	profiles.	
4.11	The error difference of angular position for each 0.01 sample data.	84
4.12	Angular velocity profiles compared to the reference trajectory	85
	profile.	
4.13	The difference error of angular velocity for each 0.01 sample data.	86
4.14	Angular acceleration profiles compared to the reference trajectory	87
	profile.	
4.15	The error difference of angular acceleration for each 0.01 sample	88
	data	
4.16	Angular jerk profiles compared to the reference trajectory profile.	89
4.17	The error difference of angular jerk for each 0.01 sample data.	90
4.18	The 4-3-4 PSPB	97
4.19	The 5-4-5 PSPB	97
4.20	The 6-5-6 PSPB	97

Х

4.21	The 4-3-4 PSPB	100
4.22	The 5-4-5 PSPB	100
4.23	The 6-5-6 PSPB	101
4.24	The 4-3-4 PSPB	101
4.25	The 5-4-5 PSPB	101
4.26	The 6-5-6 PSPB	104
4.27	Root Mean Square Error (RMSE) of angular position.	105
4.28	Average Difference Error (ADE) of angular position.	106
4.29	Root Mean Square Error (RMSE) of angular velocity.	107
4.30	Average Difference Error (ADE) of angular velocity.	109
4.31	Root Mean Square Error (RMSE) of angular acceleration.	109
4.32	Average Difference Error (ADE) of angular acceleration.	110
4.33	Running time chart.	111
4.34	The performance of one gait motion for he leg trajectory motion: (a)	114
	Loading response (b) Mid stance (c) Terminal stance (d) Pre swing	
	(e) Initial swing (f) Mid swing (g) Terminal swing (h) Loading	
	response of anew gait.	
4.35	Trajectory profiles of the all three lower limb joints (Ankle, Knee,	117
	and Hip Joints).	

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A 1	Reference data of hip angular position, velocity, and acceleration (Povi et al. 2011) (Schwartz et al. 2008)	136
A 2	Coefficients value of the cubic polynomial for hip, knee, and	137
A 3	Coefficients value of the trajectory based on swing and stance	138
B 1	Coefficients Value of the Trajectory Based Single and Double Support Phases	139
B 2	Coefficients value of the trajectory based on seven phases.	139
B 3	Coefficients value of the hip joint based on polynomial segment with polynomial blend (4-3-4 PSPB-1).	139
C 1	Coefficients value of the hip joint based on polynomial segment with polynomial blend (4-3-4 PSPB-2).	140
C 2	Coefficients value of the hip joint based on polynomial segment with polynomial blend (5-4-5 PSPB-1).	140
C 3	Coefficients value of the hip joint based on polynomial segment with polynomial blend (5-4-5 PSPB-2).	141
C 4	Coefficients value of the hip joint based on polynomial segment with polynomial blend (6-5-6 PSPB-1)	141
C 5	Coefficients value of the hip joint based on polynomial segment with polynomial blend (6-5-6 PSPB-2)	142
C 6	Coefficients value of the hip joint based on polynomial segment with polynomial blend (6-5-6 PSPB).	142
D 1	Coefficients value of the quintic polynomial for hip, knee, and	143

	ankle joint	
D 2	Coefficients value of the knee joint based on polynomial segment	143
	with polynomial blend (6-5-6 PSPB).	
D 3	Coefficients value of the ankle joint based on polynomial segment	144
	with polynomial blend (6-5-6 PSPB).	
E 1	Angular position for 3rd, 5th, and 7th order polynomial	145
E 2	Angular velocity for 3rd, 5th, and 7th order polynomial	145
E 3	Angular acceleration for 3rd, 5th, and 7th order polynomial	146
F 1	Position on x-axis for hip segment	147
F 2	Position on y-axis for hip segment	147
F 3	Velocity on x-axis for hip segment	148
F 4	Velocity on y-axis for hip segment	148
F 5	Acceleration on x-axis for hip segment	149
F 6	Acceleration on y-axis for hip segment	149
G	Lower part of human body modeling design of one human leg	150

xiii

LIST OF ABBREVIATIONS

4-3-4 PSPB	-	3 rd order Polynomial Segment with 4 th order Polynomial Blend
5-4-5 PSPB	-	4 th order Polynomial Segment with 5 th order Polynomial Blend
6-5-6 PSPB	-	5 th order Polynomial Segment with 6 th order Polynomial Blend
PSPB	-	Polynomial Segment with Polynomial Blend
LSPB	-	Linear Segment with Parabolic Blend
LSCB	-	Linear Segment with Cubic Blend
LSQB	-	Linear Segment with Quintic Blend
ADE	-	Average Difference Error
RMSE	-	Root Mean Square Error
DE	-	Deference Error
SDE	-	Standard Deviation Error
DS-stance	-	Double Support Stance Phase
SS-stance	-	Single Support Stance Phase
2-phases	-	Motion trajectory is divided into two phases.
4-phases	-	Motion trajectory is divided into four phases.
7-phases	-	Motion trajectory is divided into seven phases.
PD Controller	-	Proportional Derivative Controller
ТСР	-	Tool-Centre Point
EMG	-	Electromyography
TGM	-	Trajectory Generation Method

xiv

LIST OF SYMBOLS

P ₀	-	Initial Position
P _f	-	Final Position
P _m	-	Intermediate Position
t _o	-	Initial Time
t _f	-	Final Time
t _b	-	Blend time of the first segment
t_g	-	Blend time of the last segment
θ	-	Angular position
ė	-	Angular velocity
Ö	-	Angular acceleration
θ̈́	-	Angular Jerk
V	-	Velocity
Α	-	Acceleration
T _{Ref}	-	Reference Trajectory
T _{Gen}	-	Generated Trajectory
$\mu_{T_{Gen}}$	-	The Mean of the Generated Trajectory
$\mu_{T_{Ref}}$	-	The Mean of the Reference Trajectory
σ	-	The Standard Deviation
a_n	-	Coefficient of Polynomial Equation

LIST OF PUBLICATIONS

M. Q. Mohammed and M. F. Miskon. (2018). High Accuracy Motion Trajectory Generation Profile Based on 6-5-6 PSPB For Human Walking. *Int. J. Mech. Mechatronics Eng.*, vol. 18, no. 3, pp. 43–51, 2018. **[Indexed by SCOPUS]**

M. Q. Mohammed, M. F. Miskon, and S. A. Ali. (2017). The Effectiveness Of Kinematic Constraints On The Accuracy Of Trajectory Profile Of Human Walking Using PSPB Technique. *Int. J. Mech. Mechatronics Eng.*, vol.17, no.6, pp.97–110.[Indexed by SCOPUS]

M. Q. Mohammed, M. F. Miskon, and S. A. Ali. (2017). Comparative Study Between Quintic and Cubic Polynomial Equations Based Walking Trajectory of Exoskeleton System. *Int. J. Mech. Mechatronics Eng.*, vol. 17, no. 4, pp. 43–51, 2017. [Indexed by SCOPUS]

M. Q. Mohammed, M. F. Miskon, and M. A. Jalil. (2017). Smooth Sub-Phases Based Trajectory Planning for Exoskeleton System. *Int. Rev. Electr. Eng.*, vol. 12, no. 3, pp. 267– 276. **[Indexed by SCOPUS]**

xvi

M. Q. Mohammed, M. F. Miskon, M. Bazli, and F. Ali. (2016). Walking Motion Trajectory of Hip Powered Orthotic Device using Quintic Polynomial Equation.*J. Telecommun. Electron. Comput. Eng.*, vol. 8, no. 7, pp. 151–155. [Indexed by SCOPUS]

xvii

CHAPTER 1

INTRODUCTION

The human body consists of more than six hundred muscles, producing movements which are inseparably connected to its life. That does not necessarily refer to the vital functions of the body, like breathing or the heartbeat. It refers to movement in general, which is very important for all living creatures. Mobility is one of the most important things in life. Already the common daily activities are very important for the quality of life such as Getting up from bed in the morning and walking to the bathroom, the breakfast table, or the refrigerator. Or during work, whether inside an office or while carrying heavy parts in a factory. Furthermore, lack of mobility often results in lack of participation in social life, which in turn leads to an undesired reduction of communication. It is also important for the body health to move around to activate the circulation system of the body and the muscles. Exoskeleton-type walking assistive devices have been developed for this reason and can achieve patients' dream of walking, whereas wheelchairs only help them to move (Huo et al., 2016).

The trajectory generation is a complex part of the robot designing either exoskeleton, biped, or manipulator robots because a proper trajectory profile will provide health, comfort, as well as safety for the user (Miskon and Yusof, 2014). Besides that, a suitable trajectory profile helps to perform the target task successfully. The performance of a desired walking motion for Exoskeleton robot can be generated based on the trajectory that is involving in several dimensions through the space, whereas the trajectory generates based on the four kinematic constrains named angular position, velocity, acceleration, and jerk with taking a consideration to the time of every single degree of freedom (Craig,2004).

Nowadays, trajectory planning of human walking is considered as the most concerned by researchers. Achieving an appropriate trajectory with consideration to the most effective kinematic constraints which are (angular position, velocity, acceleration, and jerk), a complex trajectory planning is needed. According to that, the polynomial equations are the technique that has been implemented in generating the walking motion trajectory because of its simplicity and ability to cover more kinematic constraints. Whereas the polynomials are represented mathematical formula that is comprising the sum of the powers in one variable or more with multiplying the coefficients (Jazar, 2010). Furthermore, the polynomial blend is a combination of different polynomial equations which aims to generate interpolation spline curve (Wiltsche, 2005). At the same time, polynomial blend aims to generate the trajectory motion profile with high accuracy where the accuracy refers to the closeness of a measured value to an actual value. Different kinematic constraints affect the trajectory generation

Increasing to higher order polynomial (e.g. 7th,9th, and so on) addressed the problem of producing high acceleration and jerk during the trajectory generation (Ezair et al., 2014) (Boryga and Graboś, 2009). This higher order polynomial leads to generate undesirable trajectory (Jazar, 2010) (Biagiotti and Melchiorri., 2008). At the same time, higher order polynomial addressed problem of producing Runge's phenomenon, where the Runge phenomenon illustrates that equidistant polynomial interpolation of the Runge function will cause wild oscillation near the endpoints of the interpolation interval since the order of the interpolation polynomial increases as illustrated in Figure 1.1 (Fornberg and Zuev, 2007) (Chen et al., 2014) (Boyd, 2010) (Boyd, 1992).

2