
    

i 
 

 

 
 

Faculty of Electrical Engineering 

 

 

 

 

HIGH ACCURACY WALKING MOTION TRAJECTORY 

GENERATION PROFILE BASED ON 6-5-6-PSPB POLYNOMIAL 

SEGMENT WITH POLYNOMIAL BLEND 

 

 

 

 

Marwan Qaid Abdulrazzaq Mohammed 

 

 

 

 

Master of Science in Mechatronic Engineering 

 

 

 

 

2018 

 



    

i 
 

 

HIGH ACCURACY WALKING MOTION TRAJECTORY GENERATION 

PROFILE BASED ON 6-5-6-PSPB POLYNOMIAL SEGMENT WITH 

POLYNOMIAL BLEND  

 

MARWAN QAID ABDULRAZZAQ MOHAMMED 

A thesis submitted  

in fulfilment of the requirement for the degree of Master of Science 

in Mechatronics Engineering 

Faculty of Electrical Engineering 

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 

2018 



    

i 
 

 

 

DECLARATION 

 

 

I declare that this thesis entitled “High Accuracy Walking Motion Trajectory Generation 

Profile Based on 6-5-6-PSPB Polynomial Segment with Polynomial Blend” is the result of my 

own research except as cited in the references. The thesis has not been accepted for any degree 

and is not concurrently submitted in the candidature of any other degree. 

 

 

 

Signature : ………………………………………… 

Name : Marwan Qaid Abdulrazzaq Mohammed 

Date : …………………………………………. 

 

 

 

 

 

 

 

 

 

 



    

i 
 

 

 

APPROVAL 

 

 

I hereby declare that I have read this thesis and in my opinion, this thesis is sufficient in 

terms of scope and quality for the award of Master of Science in Mechatronic Engineering.  

 

 

 

Signature : ……………………………………… 

Supervisor Name : Assoc. Prof. Ts. Dr. Muhammad Fahmi Bin Miskon 

Date : ………………………………………… 

 

 

 

 

 

 

 



    

i 
 

 

 

DEDICATION 

 

 

To my beloved Mother (Wahbah), Father (Qaid), and Brother (Mohammed) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



    

i 
 

 

 

ABSTRACT 

 

 

Many robots, such as humanoid robot, biped robot, and robotic exoskeleton, need human 
guide. Particularly, there is a strong need for devices to assist individuals who lost limb 
function due to illnesses or injuries. Thus, several methods of generating walking motion 
have been implemented in order to generate walking motion according to natural human 
behaviour for the exoskeleton robot system. Polynomial blend technique has implemented 
to generate the walking motion trajectory, where the polynomial blend refers to the 
combination of more than one polynomial. However, three constraints (angular position, 
velocity, and acceleration) have been imposed by the polynomial blend techniques where 
the constraint of angular jerk was neglected because involving the jerk constrain will be 
caused problem of the non-ideal match of kinematic constraints at via point. Based on the 
aforementioned problem, there are three objectives to be achieved in this project. The first 
objective is to investigate the trajectory profile for various kinematic constraints of walking 
motion condition when using polynomial equation. The second objective is to modify a 
technique for improving a trajectory generation method to solve the problem of non-ideal 
match of the kinematic constraints through via points that connects between successive 
segments of the human walking motion. The last objective is to validate the trajectory 
generation method by testing the trajectory generation methods based on simulation using 
SimMechanics as well as to ensure that the coefficients values of the polynomial equations 
are correctly obtained. In this project, 5th polynomial segment with the 6th polynomial 
blend (6-5-6 PSPB) trajectory is proposed that aims to reduce the error that increases 
because of non-ideal match between kinematic constraints at the via points of successive 
segments. The trajectory planning of the 6-5-6 PSPB is generated based on the stance and 
swing phases. Each phase is presented by one full of the 6-5-6 PSPB trajectory. In order to 
validate the 6-5-6 PSPB trajectory, simulation using SimMechanics is conducted to ensure 
that the coefficients values of the polynomial equations are correctly obtained. The result 
shows that the error was improved almost 0.1445 degree based on the proposed 6-5-6 
PSPB compared with the 4-3-4 PSPB and 5-4-5 PSPB. Thus, the 6th -5th -6th Polynomial 
blend leads to impose the angular jerk kinematic constraint beside the angular position, 
velocity, and acceleration kinematic constraints during the whole walking motion 
trajectory. Minimizing the maximum jerk in joint space has a beneficial effect in terms of 
reducing the actuator and mechanical strain and joint wear and to limit excessive wear on 
the robot and the excitation of resonances so that the robot life-span is expanded. 
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ABSTRAK 

 

 

Kebanyakan robot, seperti robot ‘humanoid’, robot berkaki, dan ‘exoskeleton’ robot, 
memerlukan panduan dari manusia. Terutamanya, terdapat keperluan yang kuat untuk 
peranti yang dapat membantu individu yang kehilangan fungsi anggota badan akibat dari 
penyakit atau pun kecederaan. Oleh itu, beberapa kaedah penjanaan pergerakan berjalan 
telah dilaksanakan bagi menghasilkan pergerakan berjalan seperti manusia secara semula 
jadi untuk sistem robot ‘exoskeleton’. Teknik gabungan Polinomial telah dilaksanakan 
untuk penjanaan trajektori pergerakan, di mana campuran polinomial merujuk kepada 
gabungan lebih dari satu polinomial. Walau bagaimanapun, tiga kekangan (kedudukan 
sudut, halaju, dan pecutan) telah dalam teknik campuran polinomial dikenakan di mana 
kekangan sudut bergetar sentakan diabaikan kerana melibatkan kekangan getaran akan 
menyebabkan masalah ketidakseragaman kinematik di titik via. Berdasarkan masalah 
yang disebutkan di atas, terdapat tiga objektif yang perlu dicapai dalam projek ini. 
Objektif pertama adalah untuk menyiasat profil trajektori untuk pelbagai kekangan 
kinematik dalam keadaan bergerak semasa menggunakan persamaan polinomial. Objektif 
kedua adalah pengubahsuaian teknik bagi memperbaiki kaedah penjanaan trajektori bagi 
menyelesaikan masalah ketidakseragaman kinematik menerusi titik-titik yang pertemuan 
(via-point) antara segmen pergerakan berjalan manusia yang berturut-turut. Objektif 
terakhir adalah untuk mengesahkan kaedah penjanaan trajektori dengan menguji kaedah 
penjanaan trajektori secara simulasi menggunakan SimMechanics serta untuk memastikan 
nilai pekali persamaan polinomial diperolehi dengan betul. Dalam projek ini, segmen 
polinomial ke-5 dengan campuran polinomial ke-6 (6-5-6 PSPB) dicadangkan bertujuan 
untuk mengurangkan kesilapan yang meningkat kerana ketidakseragaman kinematik di 
titik pertemuan segmen yang berturut-turut. Penjanaan trajektori 6-5-6 PSPB dihasilkan 
berdasarkan kepada fasa berdiri dan berayun. Setiap fasa diwakili oleh satu set lengkap 
trajektori 6-5-6 PSPB. Untuk mengesahkan trajektori 6-5-6 PSPB, simulasi menggunakan 
SimMechanics dijalankan bagi memastikan nilai pekali persamaan polinomial yang 
diperolehi adalah betul. Hasil keputusan menunjukkan bahawa ralat telah diperbaiki 
hampir 0.1445 darjah menggunakan 6-5-6 PSPB berbanding dengan 4-3-4 PSPB dan 5-4-
5 PSPB. Oleh itu, campuran Polynomial ke-6 ke-5 membawa kepada menekan kekangan 
kinematik sudut bergetar selain dari kedudukan sudut, halaju, dan pecutan kinematik 
semasa keseluruhan pergerakan trajektori berjalan. Mengurangkan getaran maksimum di 
ruang kerja memberikan kesan yang baik dari segi mengurangkan ketegangan penggerak 
dan mekanikal dan pemakaian sendi dan untuk menghadkan pemakaian berlebihan dan 
pengujaan resonans supaya jangka hayat robot dipanjangkan. 
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1.0 CHAPTER 1 

 

1.0 INTRODUCTION 

 

The human body consists of more than six hundred muscles, producing movements 

which are inseparably connected to its life. That does not necessarily refer to the vital 

functions of the body, like breathing or the heartbeat. It refers to movement in general, 

which is very important for all living creatures. Mobility is one of the most important 

things in life. Already the common daily activities are very important for the quality of life 

such as Getting up from bed in the morning and walking to the bathroom, the breakfast 

table, or the refrigerator. Or during work, whether inside an office or while carrying heavy 

parts in a factory. Furthermore, lack of mobility often results in lack of participation in 

social life, which in turn leads to an undesired reduction of communication. It is also 

important for the body health to move around to activate the circulation system of the body 

and the muscles. Exoskeleton-type walking assistive devices have been developed for this 

reason and can achieve patients' dream of walking, whereas wheelchairs only help them to 

move (Huo et al., 2016).  

The trajectory generation is a complex part of the robot designing either 

exoskeleton, biped, or manipulator robots because a proper trajectory profile will provide 

health, comfort, as well as safety for the user (Miskon and Yusof, 2014). Besides that, a 

suitable trajectory profile helps to perform the target task successfully. The performance of 

a desired walking motion for Exoskeleton robot can be generated based on the trajectory 

that is involving in several dimensions through the space, whereas the trajectory generates 



    

2 
 

based on the four kinematic constrains named angular position, velocity, acceleration, and 

jerk with taking a consideration to the time of every single degree of freedom (Craig,2004).  

Nowadays, trajectory planning of human walking is considered as the most 

concerned by researchers. Achieving an appropriate trajectory with consideration to the 

most effective kinematic constraints which are (angular position, velocity, acceleration, 

and jerk), a complex trajectory planning is needed. According to that, the polynomial 

equations are the technique that has been implemented in generating the walking motion 

trajectory because of its simplicity and ability to cover more kinematic constraints. 

Whereas the polynomials are represented mathematical formula that is comprising the sum 

of the powers in one variable or more with multiplying the coefficients (Jazar, 2010). 

Furthermore, the polynomial blend is a combination of different polynomial equations 

which aims to generate interpolation spline curve (Wiltsche, 2005). At the same time, 

polynomial blend aims to generate the trajectory motion profile with high accuracy where 

the accuracy refers to the closeness of a measured value to an actual value. Different 

kinematic constraints affect the trajectory generation  

Increasing to higher order polynomial (e.g. 7th ,9th , and so on) addressed the 

problem of producing high acceleration and jerk during the trajectory generation (Ezair et 

al., 2014) (Boryga and Graboś, 2009). This higher order polynomial leads to generate 

undesirable trajectory (Jazar, 2010) (Biagiotti and Melchiorri., 2008). At the same time, 

higher order polynomial addressed problem of producing Runge's phenomenon, where the 

Runge phenomenon illustrates that equidistant polynomial interpolation of the Runge 

function will cause wild oscillation near the endpoints of the interpolation interval since 

the order of the interpolation polynomial increases as illustrated in Figure 1.1 (Fornberg 

and Zuev, 2007) (Chen et al., 2014) (Boyd, 2010) (Boyd, 1992).  

 


