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ABSTRACT 

 

 

Currently, the excessive emissions of carbon dioxide in atmosphere which can cause the 
increasing of average temperature in atmosphere has become one of the most urgent 
environmental issues. This problem has triggered research for ways to reduce carbon 
dioxide emission. The aims of this research are to fabricate macroporous ceramic material 
by using mixture of aluminium powder with polymeric spheres, and yeast as pore-forming 
agent; determine the main properties of ceramic product such as porosity, pore size and 
mechanical strength; and analyse carbon dioxide adsorption on porous ceramic product. 
The preliminary experiment shows that yeast was found to give better results as a pore-
forming agent compared to the mixture of aluminium powder and polymeric spheres. The 
average pore sizes by using yeast are closer to 200 µm which is the optimal contact surface 
area with the gas flow and to ensure the uptake time of carbon dioxide gas in the order of 
seconds. The porous ceramic material was developed by the mixing of alumina, zeolite and 
calcium oxide as the main materials, yeast as the pore-forming agent and ethylene glycol 
as the binder. The yeast content varied from 0% up to 40% from the total weight of 
ceramic materials. Then, the slurry was cast into mould and allowed to dry under room 
temperature before being sintered at 1400 °C for two hours. Microstructural analysis and 
pores size measurement were performed to determine the effect of pore-forming agent on 
the ceramic and mechanical properties test has been carried out to determine the effect of 
density and porosity of sintered porous ceramic toward its mechanical strength. From the 
results obtained, the average apparent porosity and pore size increased with the increased 
weight percentage of yeast content from 35.46% to 46.54% and 49.814µm to 194.297µm, 
respectively. The increasing of porosity and pore size give an effect to the compression 
strength of sintered porous ceramic by decreasing it from 17.47 MPa to 10.66 MPa, which 
were inversely proportional to porosity and pore size. The phase determination by XRD,  
mapping and point ID spectrum at several points by SEM-EDX of the sintered ceramic 
indicates that zeolite particles remained after been sintered at 1400 ºC. The increased 
average apparent porosity and pore size increased the volume of carbon dioxide 
adsorption. It was found that 20 wt.% of yeast content suitable to be applied as carbon 
dioxide filter. 
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ABSTRAK 

 

 

Pada masa ini, pelepasan karbon dioksida secara berlebihan di atmosfera telah menjadi 
salah satu isu alam sekitar yang penting di mana ia boleh menyebabkan peningkatan 
purata suhu di atmosfera. Masalah ini telah mencetuskan pelbagai cara bagi mengurangi 
pelepasan karbon dioksida di atmosfera. Oleh itu, objektif kajian ini adalah untuk 
menghasilkan bahan seramik berliang dengan menggunakan campuran serbuk aluminium 
dangan sfera polimer dan yis sebagai agen liang-membentuk; menentukan sifat-sifat 
utama produk seramik seperti keporosan, saiz liangdan kekuatan mekanikal; dan 
menganalisis penjerapan karbon dioksida pada produk seramik berliang. Eksperimen awal 
menunjukkan bahawa yis didapati memberi hasil yang lebih baik sebagai agen liang-
membentuk berbanding dengan campuran serbuk aluminium dan sfera polimer. Purata 
saiz liang dengan menggunakan yis lebih dekat kepada 200 μm yang merupakan kawasan 
permukaan sentuhan yang optimum dengan aliran gas bagi menjamin masa pengambilan 
gas karbon dioksida dalam urutan detik. Bahan seramik berliang telah dihasilkan dengan 
mencampurkan alumina, zeolit dan kalsium oksida sebagai bahan utama, yis sebagai agen 
liang-membentuk dan etilena glikol sebagai pengikat. Kandungan yis yang digunakan 
adalah berbeza-beza dari 0% sehingga 40% daripada jumlah berat keseluruhan bahan 
seramik. Kemudian, buburan tersebut dibentuk dalam acuan dan dibiarkan kering di 
dalam suhu bilik sebelum dipanaskan pada suhu 1400 °C selama dua jam. Analisis 
mikrostruktur dan pengukuran saiz liang telah dijalankan untuk menentukan kesan ejen 
liang-membentuk pada seramik dan ujian mekanikal telah dijalankan untuk menentukan 
kesan ketumpatan dan keliangan seramik berliang ke arah kekuatan mekanikal. Daripada 
keputusan-keputusan yang diperolehi, purata keporosan permukaan dan saiz liang 
masing-masing meningkat dengan peratusan berat kandungan yis dari 35.46% kepada 
46.54% dan dari 49.814µm kepada 194.297µm. Peningkatan keporosan permukaan dan 
saiz liang ini memberi kesan kepada kekuatan tekanan seramik berliang tersinter dengan 
mengurangkan kekuatan mekanikal bahan dari 17.47 MPa kepada 10.66 MPa, di mana ia 
berkadar sonsang dengan keporosan permukaan dan saiz liang. Fasa penentuan oleh 
XRD, pemetaan dan titik spectrum ID di beberapa tempat oleh SEM-EDX menunjukkan 
bahawa partikal-partikal zeolite kekal selepas disinter pada suhu 1400 ºC. Peningkatan 
purata keporosan permukaan dan saiz liang mempengaruhi isipadu penjerapan karbon 
dioksida. Didapati,20 wt.% kandungan yis sesuai untuk diaplikasi sebagai penapis karbon 
dioksida.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

 Carbon dioxide (CO2) is a colourless and odourless gas found within our 

atmosphere that surrounding us in our daily life. Theoretically, the atmosphere contains 

about 78.053% of nitrogen gas, 21.014% of oxygen gas, 0.901% of argon gas, 0.030 % of 

carbon dioxide gas and 0.002% of other gases (Harrison, 1992). This means that the 

concentration of CO2 in the atmosphere is about 300 parts per million from these 

percentages.  

However, from decades to decades, the concentration of CO2 keep on increasing at 

an accelerating rate from February 1959 until February 2017 as observed from Mauna Loa 

Observatory as shown in Figure 1.1. Since early February 1989 to date, the concentrations 

of atmospheric CO2 levels have continued to increase higher than 350 parts per million 

where the upper safety limits for concentration atmospheric CO2 is marked (McGee, 

2007). Currently, the concentration of CO2 gas in the atmosphere already reached 400 

parts per million. Muthiya et. al. (2014) stated that the concentration of carbon dioxide is 

predicted to rise above 750 parts per million by 2100.  

 The sources of carbon dioxide emission in the atmosphere come from both natural 

and human sources. Natural sources include decomposition of dead plants and animals, 

ocean release and respiration. Meanwhile, human sources come from the combustion of 

fossil fuel such as coal, natural gas and oil to generate electricity; transportation that uses 

gasoline and diesel to transport people and goods; and certain industrial processes through 
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chemical reactions such as cement and the production of metals  (EPA, 2015). According 

to Albo et. al., 2010, about 60% of global carbon dioxide emissions come from power and 

industrial sectors. 

 

 
Figure 1.1  Concentration of atmospheric CO2 February 1959 until February 2017 from 

Mauna Loa Observatory (McGee, 2007) 
 

The excessive increasing in concentration of carbon dioxide in the atmosphere can 

give an impact on global climate change if no action is taken to overcome this current 

situation. The greenhouse effect is an example. The burning of fossil fuels is the largest 

single source of global greenhouse gas emission. Normally, greenhouse gases such as 

carbon dioxide, methane, nitrous oxide and water vapour make the earth surface warmer 

by absorbing and emitting heat energy from sunlight. However, the excessive of 

greenhouse gases in the atmosphere prevent the heat from escaping into the space. Some of 

the infrared radiation passes through the atmosphere and some is absorbed and re-emitted 

in all directions by greenhouse gas molecules due to the longer heat wavelength than the 

sunlight waves. Greenhouse gases act like a mirror which reflects some of the heat energy 

back to the earth. Thus, this increases the average temperature of the earth.  
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Recently, carbon dioxide capture and storage (CCS) becomes an issue in measuring 

the reduction of CO2 gas emission substantially and rapidly. CCS is a technology that 

attempt to prevent the release of large quantities of CO2 gas into atmosphere from large 

scale discharges sources such as factories and fossil fuel power plants. CCS securely 

pumps and stores CO2 into underground or underwater (Isobe et al., 2013). Another way 

for reducing carbon dioxide emission from energy to the atmosphere is by cross-cutting 

fossil fuel consumption. This applies to homes, businesses, industries and transportation. 

Consequently, cross-cutting fossil fuel consumption can lead to energy efficiency and 

conservation. This can be done through improving the insulation of buildings when 

reducing electricity demand and travelling in fuel-efficient vehicles by using fuels with 

lower carbon contents.  

 Additionally, other various technologies have been developed in order to reduce the 

emission of CO2 gas such as absorption, adsorption and membrane separation. Between 

them, the adsorption process is widely been used process because of its relatively low 

operating and capital cost, as well as abundant selection of adsorbents (Zhang et al., 2008; 

Yu et al., 2013). According to Choi et al. (2009), the use of solid adsorbents is widely 

considered as an alternative technology that offers more energy and cost efficient 

separation as compared to the commonly used amine based liquid for CO2 capture from 

flue gas. Generally, solid adsorbents used for CO2 adsorption have high surface area. They 

can stands thousands of adsorption and desorption cycles (Hedin et. al., 2013). Examples 

of solid adsorbents used are activated carbon, activated alumina, silica gel and molecular 

sieves such as zeolites and meso-porous silica.  

Isobe et al. (2013) states that models for gas separation by using porous ceramic 

filter have long been proposed and the filters with micropores that separate gases by 

molecular sieve and surface diffusion are mainly adopted as research targets. Ceramics are 
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